


EXPONENTS AND RADICALS

xmxn � xm�n

1xy2n � xnyn

SPECIAL PRODUCTS

1x � y2 1x � y2 � x 2 � y 2

1x � y22 � x 2 � 2xy � y 2

1x � y22 � x 2 � 2xy � y 2

1x � y23 � x 3 � 3x 2y � 3xy 2 � y 3

1x � y23 � x 3 � 3x 2y � 3xy 2 � y 3

FACTORING FORMULAS

x 2 � y 2 � 1x � y2 1x � y2

x 2 � 2xy � y 2 � 1x � y22

x 2 � 2xy � y 2 � 1x � y22

x 3 � y 3 � 1x � y2 1x 2 � xy � y 22

x 3 � y 3 � 1x � y2 1x 2 � xy � y 22

QUADRATIC FORMULA

If ax 2 � bx � c � 0, then

INEQUALITIES AND ABSOLUTE VALUE

If a � b and b � c, then a � c.

If a � b, then a � c � b � c.

If a � b and c � 0, then ca � cb.

If a � b and c � 0, then ca � cb.

If a � 0, then

means x � a or x � �a.

means �a � x � a.

means x � a or x � �a.0 x 0 � a

0 x 0 � a

0 x 0 � a

x �
�b � 2b2 � 4ac

2a

2m 1n x � 2n 1m x � 1n x
m Bn x

y
�
1n x1n y

1n xy � 1n x 1n y

x 
m/n � 1n x 

m � A1n xB  mx 
1/ n � 1n x

a
x

y
b

n

�
x 

n

y 
n

x 
�n �

1

x 
n1x 

m 2 n � x 
m

 
n

x m

x n � x m�n

DISTANCE AND MIDPOINT FORMULAS

Distance between P11x1, y12 and P21x2, y2 2 :
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LINES 
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ix

P R E FA C E

For many students a College Algebra course represents the first opportunity to discover the
beauty and practical power of mathematics. Thus instructors are faced with the challenge
of teaching the concepts and skills of algebra while at the same time imparting a sense of
its utility in the real world. In this edition, as in the previous editions, our aim is to pro-
vide instructors and students with tools they can use to meet this challenge.

The emphasis is on understanding concepts. To help instructors foster conceptual un-
derstanding in their students, we use the rule of four: “Topics should be presented geo-
metrically, numerically, algebraically, and verbally.” A major part of conceptual under-
standing is an appreciation for the logical structure of algebra. For this reason every
statement about algebra in this book is supported by a proof, an explanation, or an intu-
itive argument. Students also need to achieve a certain level of technical skill. Indeed, con-
ceptual understanding and technical skill go hand in hand, each reinforcing the other.
Above all, we present algebra as a problem-solving art with numerous applications to
modeling and solving real-world problems.

In writing this Sixth Edition our purpose was to further enhance the utility of the book
as an instructional tool for teachers and as a learning tool for students. We have made sev-
eral major changes in this edition. These include a restructuring of the beginning chapters
to allow for an earlier introduction to functions. Several chapters have been reorganized
and rewritten (as described below) with the goal of further focusing the exposition on the
main concepts. Each exercise set has been reexamined and enhanced where necessary. We
have included more use of the powerful capabilities of the graphing calculator. In all these
changes and numerous others, small and large, we have retained the main features that
have contributed to the success of this book.

New to the Sixth Edition
■ Early Chapter on Functions The chapter on functions now appears earlier in the

book. The review material (in Chapters P and 1) has been streamlined and rewritten. 
■ Diagnostic Test A diagnostic test, designed to test preparedness for College Alge-

bra, can be found at the beginning of the book (p. xxi). 
■ Exercises More than 20% of the exercises are new.  
■ Book Companion Website A new website, www.stewartmath.com, contains

Discovery Projects for each chapter and Focus on Problem Solving sections that
highlight different problem-solving principles outlined in the Prologue.

■ Chapter P: Prerequisites This chapter now contains a section on basic equa-
tions, including linear equations and power equations.
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■ Chapter 1: Equations and Graphs This is a new chapter that includes an intro-
duction to the coordinate plane and graphs of equations in two variables, as well as
the material on solving equations. Including these topics in one chapter highlights
the relationship between algebraic and graphical solutions of equations. 

■ Chapter 2: Functions This chapter now includes a discussion of “net change” in
the value of a function. This concept emphasizes the dynamic nature of functions
and prepares the way for the study of “average rate of change” of a function. 

■ Chapter 3: Polynomial and Rational Functions This chapter includes two new
sections. The material on complex numbers has been moved to this chapter because
the main use of complex numbers in this book is in the solution of polynomial
equations. The section on variation now follows the section on rational functions,
allowing for a graphical analysis of variation.

■ Chapter 4: Exponential and Logarithmic Functions The material on the natural
exponential function is now in a separate section. The section on modeling with ex-
ponential functions includes a subsection on converting a model from one base to
another. 

■ Chapter 5: Systems of Equations and Inequalities This chapter now includes a
separate section on nonlinear equations. 

■ Chapter 6: Matrices and Determinants This chapter now includes additional
(optional) material on the use of the graphing calculator in working with matrices.

■ Chapter 9: Probability and Statistics This chapter has been reorganized into
four sections and includes new material on conditional probability and expected
value.  

■ Appendix A: Calculations and Significant Figures This appendix contains in-
formation on working with approximate data and rounding final answers properly.

■ Appendix B: Graphing with a Graphing Calculator This appendix contains
general guidelines for interpreting graphs produced by a graphing calculator. It also
discusses common pitfalls to avoid when using a graphing calculator.

■ Appendix C: Using the TI-83/84 Graphing Calculator In this appendix we give
step-by-step instructions for performing the basic calculator operations used in this
book.

Teaching and Learning with the Help of This Book
We are keenly aware that good teaching comes in many forms and that there are many dif-
ferent approaches to teaching the concepts and skills of algebra. Moreover, students learn
in different ways, absorbing ideas best in numerical, graphical, or verbal form. The orga-
nization of the topics in this book and the different types of exercises are designed to ac-
commodate different teaching and learning styles. 

EXERCISE SETS The most important way to foster conceptual understanding and hone
technical skill is through the problems that the instructor assigns. To that end we have pro-
vided a wide selection of exercises.

■ Concept Exercises These exercises ask students to use mathematical language to
state fundamental facts about the topics of each section. 

■ Skills Exercises Each exercise set is carefully graded, progressing from basic
skill-development exercises to more challenging problems requiring synthesis of
previously learned material with new concepts.

■ Applications Exercises We have included substantial applied problems that we
believe will capture students’ interest.  

■ Discovery, Writing, and Group Learning Each exercise set ends with a block of
exercises labeled Discovery ■ Discussion ■ Writing. These exercises are designed to

x Preface

90169_FM_i-xxiv.qxd  11/23/11  4:13 PM  Page x



encourage students to experiment, preferably in groups, with the concepts that were
developed in the section and then to write about what they have learned rather than
simply looking for “the answer.”

■ Practice What You've Learned: Do Exercise . . . At the end of each example in
the text the student is directed to a similar exercise in the section that helps to rein-
force the concepts and skills developed in that example (see, for instance, page 4).

■ Check Your Answer Students are encouraged to check whether an answer they have
obtained is reasonable. This is emphasized throughout the text in numerous Check
Your Answer sidebars that accompany the examples (see, for instance, page 55).

GRAPHING CALCULATORS AND COMPUTERS We make use of graphing calculators and
computers in examples and exercises throughout the book. Our calculator-oriented exam-
ples are always preceded by examples in which students must graph or calculate by hand,
so that they can understand precisely what the calculator is doing when they later use it
to simplify the routine, mechanical part of their work.  The graphing calculator sections,
subsections, examples, and exercises, all marked with the special symbol , are optional
and may be omitted without loss of continuity.  We use the following capabilities of the
calculator. 

■ Graphing, Regression, Matrix Algebra The capabilities of the graphing calcula-
tor are used throughout the text to graph and analyze functions, families of func-
tions, and sequences; to calculate and graph regression curves; to perform matrix 
algebra; to graph linear inequalities; to find partial sums of sequences; and for other
powerful uses. 

■ Using the TI-83/84 Graphing Calculator Appendix C contains step-by-step 
instructions for performing all of the operations discussed in the text.

■ Simple Programs We exploit the programming capabilities of the graphing cal-
culator to simulate real-life situations, to sum series, or to compute the terms of a
recursive sequence. (See, for instance, pages 520, 573, 577, and 667.)

FOCUS ON MODELING The “modeling” theme has been used throughout to unify and
clarify the many applications of College Algebra. We have made a special effort to clar-
ify the essential process of translating problems from English into the language of math-
ematics (see pages 248 and 423).

■ Constructing Models There are numerous applied problems throughout the book
in which students are given a model to analyze (see, for instance, page 263). But
the material on modeling, in which students are required to construct mathematical
models, has been organized into clearly defined sections and subsections (see, for
example, pages 247, 384, and 421). 

■ Focus on Modeling Each chapter concludes with a Focus on Modeling section
that explores the ways in which algebra can be used to model real-world situations.
For example, the Focus on Modeling at the end of Chapter 1 introduces the basic
idea of modeling a real-life situation by fitting lines to data. Other sections present
ways in which polynomial, exponential, and logarithmic functions, and  systems of
inequalities can be used to model familiar phenomena from the sciences and from
everyday life (see, for example, pages 340, 403, 458, and 620). 

BOOK COMPANION WEBSITE A website that accompanies this book is located at 
www.stewartmath.com. The site includes many useful resources for teaching algebra, in-
cluding the following:

■ Discovery Projects Discovery Projects for each chapter are available on the web-
site. Each project provides a challenging but accessible set of activities that enable
students (perhaps working in groups) to explore in greater depth an interesting 
aspect of the topic they have just learned. (See, for instance, the Discovery Projects
Visualizing a Formula, Relations and Functions, and Will the Species Survive?)
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■ Focus on Problem Solving Several Focus on Problem Solving sections are avail-
able on the website. Each such section highlights one of the problem-solving prin-
ciples introduced in the Prologue and includes several challenging problems. (See,
for instance, Recognizing Patterns, Using Analogy, Introducing Something Extra,
Taking Cases, and Working Backward.)

MATHEMATICAL VIGNETTES Throughout the book we make use of the margins to pro-
vide historical notes, key insights, or applications of mathematics in the modern world.
These serve to enliven the material and to show that mathematics is an important, vital ac-
tivity, and that even at this elementary level it is fundamental to everyday life. 

■ Mathematical Vignettes These vignettes include biographies of interesting
mathematicians and often include a key insight that the mathematician discovered
and that is relevant to college algebra. (See, for instance, the vignettes on Viète,
page 124; Salt Lake City, page 75; and radiocarbon dating, page 378.)

■ Mathematics in the Modern World These vignettes emphasize the central role
of mathematics in current advances in technology and the sciences (see pages 135,
442, 526, and 582, for example).

REVIEW SECTIONS AND CHAPTER TESTS Each chapter ends with an extensive review
section that includes the following:

■ Learning Objective Summary A summary of the learning objectives of the
chapter is included at the end of the chapter. Each learning objective is linked to
specific review exercises in which students can reinforce their understanding of that
learning objective. 

■ Review Exercises The review exercises at the end of each chapter recapitulate the
basic concepts and skills of the chapter and include exercises that combine the dif-
ferent ideas learned in the chapter.

■ Chapter Test The review sections conclude with a Chapter Test designed to help
students gauge their progress. 

■ Cumulative Review Tests The Cumulative Review Tests following Chapters 4, 7,
and 9 combine skills and concepts from the preceding chapters and are designed to
highlight the connections between the topics in these related chapters.

■ Answers Brief answers to odd-numbered exercises in each section (including the
review exercises), to all concept exercises, and to all questions in the chapter tests,
are given in the back of the book.

Acknowledgments
We thank the following reviewers for their thoughtful and constructive comments.

Andrew Perry, Springfield College; Mehran Hassanpour, South Texas College; Mrinal
Kanti Roychowdhury, The University of Texas-Pan American; Virgil L. Turner,
Southern Nazarene University; Stan Stascinsky, Tarrant County College, Northeast
Campus; Leslie Horton, Delta State University; Alvio Dominguez, Miami Dade 
College—Wolfson Campus; Ramanjit K. Sahi, Austin Peay State University; Hassan
Sayyar, University of Arkansas at Monticello; Michael Frantz, University of La Verne;
Catherine M. Divingian, Regent University; Faith Peters, Miami-Dade College; Thomas
L. Fitzkee, Francis Marion University; Nancy Carpenter, Johnson County Community
College; Daniel Kopsas, Ozarks Technical Community College; Holly Ashton, Pikes
Peak Community College

We are grateful to our colleagues who continually share with us their insights into
teaching mathematics. We especially thank Andrew Bulman-Fleming for writing both the
Study Guide and the Solutions Manual, Doug Shaw at the University of Northern Iowa

xii Preface

90169_FM_i-xxiv.qxd  11/23/11  4:13 PM  Page xii



for writing the Instructor's Guide, and Julian Allagan at Gainesville State College for
checking the accuracy of the examples and exercises.

We thank Martha Emry, our production service and art editor; her energy, devotion,
and experience were essential components in the creation of this book. We thank Barbara
Willette, our copy editor, for her attention to every detail in the manuscript. We thank Jade
Meyers and his staff at Matrix for their attractive and accurate graphs and Network Graph-
ics for bringing many of our illustrations to life. We thank our designer Lisa Henry for the
elegant and appropriate design for the interior of the book. 

At Brooks/Cole we especially thank Stacy Green, developmental editor, for guiding
and facilitating every aspect of the production of this book. Of the many Brooks/Cole staff
involved in this project we particularly thank the following: Jennifer Risden, project con-
tent manager, Cynthia Ashton, assistant editor; Lynh Pham, media editor; Vernon Boes,
art director; and Danae April, marketing manager. They have all done an outstanding job. 

Numerous other people were involved in the production of this book, including per-
missions editors, photo researchers, text designers, typesetters, compositors, proof read-
ers, printers, and many more. We thank them all.

Above all, we thank our editor Gary Whalen. His vast editorial experience, his exten-
sive knowledge of current issues in the teaching of mathematics, and especially his deep
interest in mathematics textbooks have been invaluable resources in the writing of this
book.

Preface xiii

90169_FM_i-xxiv.qxd  11/23/11  4:13 PM  Page xiii



This page intentionally left blank 



Instructor Resources
Printed
Instructor's Edition (ISBN-10: 1-111-99040-9; ISBN-13: 978-1-111-99040-4)

Instructor's Solutions Manual (ISBN-10:1-111-99025-5; ISBN-13: 978-1-111-99025-1)
Complete solutions to all the problems in the text are provided. 

Instructor's Guide (ISBN-10:1-111-99028-X; ISBN-13: 978-1-111-99028-2)
The Instructor's Guide contains points to stress, suggested time to allot, text discussion top-
ics, core materials for lecture, workshop/discussion suggestions, group work exercises in a
form suitable for handout, and suggested homework problems. 

Media
Test Bank (ISBN-10:1-111-99027-1; ISBN-13: 978-1-111-99027-5)
Simplify testing and assessment using this printed selection of questions. The Test Bank in-
cludes 8 tests per chapter and 3 final exams (with multiple-choice, free-response, and fill-
in-the-blank questions).

ExamView Computerized Testing
ExamView® testing software allows instructors to quickly create, deliver, and customize
tests for class in print and online formats and features automatic grading. It includes a test
bank with hundreds of questions customized directly to the text. ExamView is available
within the PowerLecture CD-ROM.

Solution Builder (www.cengage.com/solutionbuilder)
This online instructor database offers complete worked-out solutions to all exercises in the
text, allowing the instructor to create customized, secure solutions printouts (in PDF for-
mat) matched exactly to the problems you assign in class.

PowerLecture with ExamView 
(ISBN-10: 1-111-99029-8; ISBN-13: 978-1-111-99029-9)
This CD-ROM provides the instructor with dynamic media tools for teaching. Create, de-
liver, and customize tests (both print and online) in minutes with ExamView® Computer-
ized Testing Featuring Algorithmic Equations. Easily build solution sets for homework or
exams using Solution Builder's online solutions manual. Microsoft® PowerPoint® lecture
slides and figures from the book are also included on this CD-ROM.

A N C I L L A R I E S
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Enhanced WebAssign (ISBN-10: 0-538-73810-3; ISBN-13: 978-0-538-73810-1)
Exclusively from Cengage Learning, Enhanced WebAssign® offers an extensive online
program for College Algebra to encourage the practice that is so critical for concept mas-
tery. The meticulously crafted pedagogy and exercises in this text become even more ef-
fective in Enhanced WebAssign, supplemented by multimedia tutorial support and imme-
diate feedback as students complete their assignments. Algorithmic problems allow the
instructor to assign unique versions to each student. The Practice Another Version feature
(activated at the instructor’s discretion) allows students to attempt the questions with new
sets of values until they feel confident enough to work the original problem. Students ben-
efit from a YouBook with highlighting and search features; Personal Study Plans (based
on diagnostic quizzing) that identify chapter topics they still need to master; and links to
video solutions, interactive tutorials, and even live online help.

Student Resources
Printed
Student Solutions Manual (ISBN-10: 1-111-99024-7; ISBN-13: 978-1-111-99024-4)
Fully worked-out solutions to all of the odd-numbered exercises in the text are provided,
giving students a way to check their answers and ensure that they took the correct steps
to arrive at an answer.

Study Guide (ISBN-10: 1-111-99037-9; ISBN-13: 978-1-111-99037-4)
The Study Guide reinforces student understanding with detailed explanations, worked-out
examples, and practice problems. Lists key ideas to master and builds problem-solving
skills. There is a section in the Study Guide corresponding to each section in the text. 

Media
Text-Specific DVD (ISBN-10: 1-111-99020-4; ISBN-13: 978-1-111-99020-6)
These text-specific instructional videos provide students with visual reinforcement of con-
cepts and explanations given in easy-to-understand terms with detailed examples and
sample problems. A flexible format offers versatility for quickly accessing topics or cus-
tomizing lectures to self-paced, online, or hybrid courses. Closed captioning is provided
for the hearing impaired.

Enhanced WebAssign (ISBN-10: 0-538-73810-3; ISBN-13: 978-0-538-73810-1)
Exclusively from Cengage Learning, Enhanced WebAssign® offers an extensive online
program for College Algebra to encourage the practice that is so critical for concept mas-
tery. Students will receive multimedia tutorial support as they complete their assignments.
Students will also benefit from a YouBook with highlighting and search features; Personal
Study Plans (based on diagnostic quizzing) that identify chapter topics they still need to
master; and links to video solutions, interactive tutorials, and even live online help.

CengageBrain.com
Visit www.cengagebrain.com to access additional course materials and companion re-
sources. At the CengageBrain.com home page, search for the ISBN of your title (from the
back cover of your book) using the search box at the top of the page. This will take you
to the product page where free companion resources can be found.
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TO  T H E  S T U D E N T

This textbook was written for you to use as a guide to mastering College Algebra. Here
are some suggestions to help you get the most out of your course.

First of all, you should read the appropriate section of text before you attempt your
homework problems. Reading a mathematics text is quite different from reading a novel,
a newspaper, or even another textbook. You may find that you have to reread a passage
several times before you understand it. Pay special attention to the examples, and work
them out yourself with pencil and paper as you read. Then do the linked exercise(s) re-
ferred to in Practice What You’ve Learned at the end of each example. With this kind of
preparation you will be able to do your homework much more quickly and with more un-
derstanding.

Don’t make the mistake of trying to memorize every single rule or fact you may come
across. Mathematics doesn’t consist simply of memorization. Mathematics is a problem-
solving art, not just a collection of facts. To master the subject you must solve problems—
lots of problems. Do as many of the exercises as you can. Be sure to write your solutions
in a logical, step-by-step fashion. Don’t give up on a problem if you can’t solve it right
away. Try to understand the problem more clearly—reread it thoughtfully and relate it to
what you have learned from your teacher and from the examples in the text. Struggle with
it until you solve it. Once you have done this a few times you will begin to understand
what mathematics is really all about.

Answers to the odd-numbered exercises, as well as all the answers to each chapter test,
appear at the back of the book. If your answer differs from the one given, don’t immedi-
ately assume that you are wrong. There may be a calculation that connects the two an-
swers and makes both correct. For example, if you get 1/( ) but the answer given
is 1 � , your answer is correct, because you can multiply both numerator and de-
nominator of your answer by � 1 to change it to the given answer. In rounding ap-
proximate answers, follow the guidelines in Appendix A, Calculations and Significant
Figures.

The symbol is used to warn against committing an error. We have placed this sym-
bol in the margin to point out situations where we have found that many of our students
make the same mistake.

12
12

12 � 1

xvii

90169_FM_i-xxiv.qxd  11/23/11  4:13 PM  Page xvii



xviii

A B B R E V I AT I O N S

cm centimeter mg milligram
dB decibel MHz megahertz
F farad mi mile
ft foot min minute
g gram mL milliliter
gal gallon mm millimeter
h hour N Newton
H henry qt quart
Hz Hertz oz ounce
in. inch s second
J Joule � ohm
kcal kilocalorie V volt
kg kilogram W watt
km kilometer yd yard
kPa kilopascal yr year
L liter °C degree Celsius
lb pound °F degree Fahrenheit
lm lumen K Kelvin
M mole of solute ⇒ implies

per liter of solution ⇔ is equivalent to
m meter
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To succeed in your College Algebra course you need to use some of the skills that you
learned in your previous mathematics classes. In particular, you need to be familiar with
the real number system, algebraic expressions, solving basic equations, and graphing. The
following diagnostic tests are designed to assess your knowledge of these topics. After
taking each test you can check your answers using the answer key on page xxiv. If you
have difficulty with any topic, you can refresh your skills by studying the review materi-
als from Chapters P and 1 that are referenced after each test.

A DIAGNOSTIC TEST: Real Numbers and Exponents

1. Perform the indicated operations. Write your final answer as an integer or as a frac-
tion in lowest terms.

(a) (b) (c) (d)

2. Determine whether the given number is an integer, rational, or irrational.

(a) 10 (b) (c) (d)

3. Is the inequality true or false?

(a) (b) (c) (d) (e)

4. Express the inequality in interval notation.

(a) (b) (c)

5. Express the interval using inequalities.

(a) (b) (c)

6. Evaluate the expression without using a calculator.

(a) (b) (c)

(d) (e) (f) 163/4a
3

4
b

�2512

510

3�4�341�3 2 4

�0, 9 2��3, �1�12, q 2

x � 4x � 3�1 � x � 5

�2 � �63 � �105 � 55 � 5�2 � 0

255216
3

12
4
3 � 1

6

4A2 � 2
3B2 � 2

3 � 1
4

1
3 � 1

2

xxi
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7. Simplify the expression. Write your final answer without negative exponents.

(a) (b) (c)

Answers to Test A are on page xxiv. If you had difficulty with any of the questions
on Test A, you should review the material covered in Sections P.2, P.3, and P.4. 

B DIAGNOSTIC TEST: Algebraic Expressions

1. Expand and simplify.

(a) (b) (c)

(d) (e) (f)

2. Factor the expression.

(a) (b) (c)

(d)  (e) (f)

3. Simplify the rational expression.

(a) (b)

(c) (d)

4. Rationalize the denominator and simplify.

(a)  (b)

Answers to Test B are on page xxiv. If you had difficulty with any of the questions
on Test B, you should review the material covered in Sections P.5, P.6, and P.7. 

C DIAGNOSTIC TEST: Equations

1. Solve the linear equation.

(a) (b)

(c)  (d)

2. Solve the equation.

(a)  (b)

3. Find all real solutions of the equation.

(a) (b)  

(c)  (d)

4. Solve the equation for the indicated variable.

(a) , for x (b) , for m8 �
mn

k24x � y � 108

x4 � 16 � 02x3 � 54 � 0

x3 � 8 � 0x2 � 7 � 0

1
2   
x � 3

2 � 7
2

1
3   
x � 6

x � 11 � 6 � 4x2x � 5x � 6

2x � 3 � 83x � 1 � 5

12

3 � 25

2327

1
x

�
1
y

2
xy

x2 � x

x2 � 9
�

x � 1

x � 3

2x2 � 3x � 2

x2 � 1
# x � 1

2x � 1

x2 � 4x � 3

x2 � 2x � 3

x2 � 162x2 � 5x � 12x2 � x � 2

x2 � 8x � 153xy2 � 6x2y4x2 � 2x

12x � 5 2 21  y � 3 2 21a � 2b 2 1a � 2b 2

12x � 1 2 13x � 2 21x � 3 2 1x � 5 241x � 3 2 � 512x � 1 2

1x�2y�3 2 1xy2 2 2a
5a1/2

a2 b
2

14x2y3 2 12xy2 2
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Answers to Test C are on page xxiv. If you had difficulty with any of the questions
on Test C, you should review the material covered in Section P.8. 

D DIAGNOSTIC TEST: The Coordinate Plane

1. Graph the following points in a coordinate plane.

(a) (b) (c)

(d) (e) (f)

2. Find the distance between the given pair of points.

(a) (b) (c)

3. Find the midpoint of the segment PQ.

(a) (b)

4. Graph the equation in a coordinate plane by plotting points.

(a) (b)

Answers to Test D are on page xxiv. If you had difficulty with any of the questions
on Test D, you should review the material covered in Sections 1.1 and 1.2. 

y � 4 � x2y � x � 2

P1�2, 3 2 , Q18, �7 2P13, 7 2 , Q15, 13 2

10, �4 2 , 14, 0 21�2, 0 2 , 13, 12 211, 3 2 , 15, 6 2

10, �1 215, 0 210, 0 2

13, �1 21�1, 3 212, 4 2
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ANSWERS TO DIAGNOSTIC TESTS

A Answers

1. (a) (b) (c) (d) 8 2. (a) Integer and rational (b) Rational

(c) Integer and rational (d) Irrational 3. (a) True (b) True (c) False

(d) False (e) True 4. (a) (b) (c) 5. (a)

(b) (c) 6. (a) 81 (b) (c) (d) 25 (e)

(f) 7. (a) (b) (c)

B Answers

1. (a)  (b) (c) (d)

(e)  (f) 2. (a) (b)

(c) (d) (e) (f)

3. (a) (b) (c) (d) 4. (a) (b)

C Answers

1. (a) 2 (b) (c) (d) 2. (a) 18 (b) 10 3. (a)

(b) (c) 3 (d) 4. (a) (b)

D Answers

1.

2. (a) 5 (b) 13 (c) 3. (a) (b)

4.

1

1
0

y

x

1

1

0

y

x

y=x+2 y=4-≈

13, �2 214, 10 2422 � 5.66

1

1

0

y

x
(0, 0)

(3, _1)

(2, 4)

(5, 0)

(0, _1)

(_1, 3)

m �
8k2

n
x � 27 � 1

4  
y�2, 2�2

�27, 27�1�25
2

9 � 325
221

7

y � x

2

1

x � 3

x � 2

x � 1

x � 3

x � 3

1x � 4 2 1x � 4 212x � 3 2 1x � 4 21x � 2 2 1x � 1 21x � 3 2 1x � 5 2

3xy1  y � 2x 22x12x � 1 24x2 � 20x � 25y2 � 6y � 9

a2 � 4b26x2 � x � 2x2 � 2x � 1514x � 7

y
25

a38x3y58

16
9

1
81�810 � x � 9�3 � x � �1

x � 2�4, q 21�q, 3 21�1, 5�

16
3

19
12

5
6
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P1

P R O L O G U E PRINCIPLES OF PROBLEM SOLVING

The ability to solve problems is a highly prized skill in many aspects of our lives; it is cer-
tainly an important part of any mathematics course. There are no hard and fast rules that
will ensure success in solving problems. However, in this Prologue we outline some gen-
eral steps in the problem-solving process and we give principles that are useful in solv-
ing certain types of problems. These steps and principles are just common sense made ex-
plicit. They have been adapted from George Polya’s insightful book How To Solve It.

1. Understand the Problem
The first step is to read the problem and make sure that you understand it. Ask yourself
the following questions:

What is the unknown?
What are the given quantities?
What are the given conditions?

For many problems it is useful to

draw a diagram

and identify the given and required quantities on the diagram. Usually, it is necessary to

introduce suitable notation

In choosing symbols for the unknown quantities, we often use letters such as a, b, c, m,
n, x, and y, but in some cases it helps to use initials as suggestive symbols, for instance,
V for volume or t for time.

2. Think of a Plan
Find a connection between the given information and the unknown that enables you to
calculate the unknown. It often helps to ask yourself explicitly: “How can I relate the
given to the unknown?” If you don’t see a connection immediately, the following ideas
may be helpful in devising a plan.

� Tr y  t o  R e c o g n i z e  S o m e t h i n g  Fa m i l i a r

Relate the given situation to previous knowledge. Look at the unknown and try to recall
a more familiar problem that has a similar unknown.

G E O R G E  P O LYA (1887–1985) is famous
among mathematicians for his ideas on
problem solving. His lectures on prob-
lem solving at Stanford University at-
tracted overflow crowds whom he held 
on the edges of their seats, leading
them to discover solutions for them-
selves. He was able to do this because
of his deep insight into the psychology
of problem solving. His well-known
book How To Solve It has been trans-
lated into 15 languages. He said that
Euler (see page 300) was unique
among great mathematicians because
he explained how he found his results.
Polya often said to his students and
colleagues,“Yes, I see that your proof is
correct, but how did you discover it?” In
the preface to How To Solve It, Polya
writes,“A great discovery solves a great
problem but there is a grain of discov-
ery in the solution of any problem. Your
problem may be modest; but if it chal-
lenges your curiosity and brings into
play your inventive faculties, and if you
solve it by your own means, you may
experience the tension and enjoy the
triumph of discovery.”
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� Tr y  t o  R e c o g n i z e  P a t t e r n s

Certain problems are solved by recognizing that some kind of pattern is occurring. The
pattern could be geometric, numerical, or algebraic. If you can see regularity or repetition
in a problem, then you might be able to guess what the pattern is and then prove it.

� U s e  A n a l o g y

Try to think of an analogous problem, that is, a similar or related problem but one that is
easier than the original. If you can solve the similar, simpler problem, then it might give
you the clues you need to solve the original, more difficult one. For instance, if a prob-
lem involves very large numbers, you could first try a similar problem with smaller num-
bers. Or if the problem is in three-dimensional geometry, you could look for something
similar in two-dimensional geometry. Or if the problem you start with is a general one,
you could first try a special case.

� I n t r o d u c e  S o m e t h i n g  E x t r a

You might sometimes need to introduce something new—an auxiliary aid—to make 
the connection between the given and the unknown. For instance, in a problem for which
a diagram is useful, the auxiliary aid could be a new line drawn in the diagram. In a more
algebraic problem the aid could be a new unknown that relates to the original unknown.

� Ta k e  C a s e s

You might sometimes have to split a problem into several cases and give a different ar-
gument for each case. For instance, we often have to use this strategy in dealing with ab-
solute value.

� Wo r k  B a c k w a r d

Sometimes it is useful to imagine that your problem is solved and work backward, step
by step, until you arrive at the given data. Then you might be able to reverse your steps
and thereby construct a solution to the original problem. This procedure is commonly
used in solving equations. For instance, in solving the equation 3x � 5 � 7, we suppose
that x is a number that satisfies 3x � 5 � 7 and work backward. We add 5 to each side of
the equation and then divide each side by 3 to get x � 4. Since each of these steps can be
reversed, we have solved the problem.

� E s t a b l i s h  S u b g o a l s

In a complex problem it is often useful to set subgoals (in which the desired situation is
only partially fulfilled). If you can attain or accomplish these subgoals, then you might be
able to build on them to reach your final goal.

� I n d i r e c t  R e a s o n i n g

Sometimes it is appropriate to attack a problem indirectly. In using proof by contradic-
tion to prove that P implies Q, we assume that P is true and Q is false and try to see why
this cannot happen. Somehow we have to use this information and arrive at a contradic-
tion to what we absolutely know is true.

� M a t h e m a t i c a l  I n d u c t i o n

In proving statements that involve a positive integer n, it is frequently helpful to use the
Principle of Mathematical Induction, which is discussed in Section 8.5.

3. Carry Out the Plan
In Step 2, a plan was devised. In carrying out that plan, you must check each stage of the
plan and write the details that prove that each stage is correct.

P2 Prologue
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4. Look Back
Having completed your solution, it is wise to look back over it, partly to see whether any
errors have been made and partly to see whether you can discover an easier way to solve
the problem. Looking back also familiarizes you with the method of solution, which may
be useful for solving a future problem. Descartes said, “Every problem that I solved be-
came a rule which served afterwards to solve other problems.”

We illustrate some of these principles of problem solving with an example.

P R O B L E M Average Speed

A driver sets out on a journey. For the first half of the distance, she drives at the
leisurely pace of 30 mi/h; during the second half she drives 60 mi/h. What is her aver-
age speed on this trip?

THINKING ABOUT THE PROBLEM

It is tempting to take the average of the speeds and say that the average speed for
the entire trip is

But is this simple-minded approach really correct?
Let’s look at an easily calculated special case. Suppose that the total distance

traveled is 120 mi. Since the first 60 mi is traveled at 30 mi/h, it takes 2 h. The 
second 60 mi is traveled at 60 mi/h, so it takes one hour. Thus, the total time is 
2 � 1 � 3 hours and the average speed is

So our guess of 45 mi/h was wrong.

S O L U T I O N

We need to look more carefully at the meaning of average speed. It is defined as

Let d be the distance traveled on each half of the trip. Let t1 and t2 be the times taken
for the first and second halves of the trip. Now we can write down the information we
have been given. For the first half of the trip we have

and for the second half we have

Now we identify the quantity that we are asked to find:

To calculate this quantity, we need to know t1 and t2, so we solve the above equations
for these times:

t1 �
d

30
  t2 �

d

60

average speed for entire trip �
total distance

total time
�

2d

t1 � t2

60 �
d

t2

30 �
d

t1

average speed �
distance traveled

time elapsed

120

3
� 40 mi/h

30 � 60

2
� 45 mi/h

Prologue P3

Introduce notation �

Try a special case �

Understand the problem �

State what is given �

Identify the unknown �

Connect the given
with the unknown �
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Now we have the ingredients needed to calculate the desired quantity:

So the average speed for the entire trip is 40 mi/h. ■

P R O B L E M S
1. Distance, Time, and Speed An old car has to travel a 2-mile route, uphill and down. 

Because it is so old, the car can climb the first mile—the ascent—no faster than an average
speed of 15 mi/h. How fast does the car have to travel the second mile—on the descent it can
go faster, of course—to achieve an average speed of 30 mi/h for the trip?

2. Comparing Discounts Which price is better for the buyer, a 40% discount or two succes-
sive discounts of 20%?

3. Cutting up a Wire A piece of wire is bent as shown in the figure. You can see that one cut
through the wire produces four pieces and two parallel cuts produce seven pieces. How many
pieces will be produced by 142 parallel cuts? Write a formula for the number of pieces pro-
duced by n parallel cuts.

4. Amoeba Propagation An amoeba propagates by simple division; each split takes 
3 minutes to complete. When such an amoeba is put into a glass container with a nutrient
fluid, the container is full of amoebas in one hour. How long would it take for the container
to be filled if we start with not one amoeba, but two?

5. Batting Averages Player A has a higher batting average than player B for the first half of
the baseball season. Player A also has a higher batting average than player B for the second
half of the season. Is it necessarily true that player A has a higher batting average than 
player B for the entire season?

6. Coffee and Cream A spoonful of cream is taken from a pitcher of cream and put into a
cup of coffee. The coffee is stirred. Then a spoonful of this mixture is put into the pitcher of
cream. Is there now more cream in the coffee cup or more coffee in the pitcher of cream?

7. Wrapping the World A ribbon is tied tightly around the earth at the equator. How much
more ribbon would you need if you raised the ribbon 1 ft above the equator everywhere?
(You don’t need to know the radius of the earth to solve this problem.)

8. Ending Up Where You Started A woman starts at a point P on the earth’s surface and
walks 1 mi south, then 1 mi east, then 1 mi north, and finds herself back at P, the starting
point. Describe all points P for which this is possible. [Hint: There are infinitely many such
points, all but one of which lie in Antarctica.]

 �
120d

2d � d
�

120d

3d
� 40

Multiply numerator and
denominator by 60

 �
6012d 2

60 a
d

30
�

d

60
b

average speed �
2d

t1 � t2
�

2d

d

30
�

d

60

P4 Prologue

Don’t feel bad if you can’t solve these
problems right away. Problems 1 and 4
were sent to Albert Einstein by his
friend Wertheimer. Einstein (and his
friend Bucky) enjoyed the problems
and wrote back to Wertheimer. Here is
part of his reply:

Your letter gave us a lot of
amusement. The first intelli-
gence test fooled both of us
(Bucky and me). Only on work-
ing it out did I notice that no
time is available for the down-
hill run! Mr. Bucky was also
taken in by the second example,
but I was not. Such drolleries
show us how stupid we are!

(See Mathematical Intelligencer, Spring
1990, page 41.)
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Many more problems and examples that highlight different problem-solving principles are
available at the book companion website: www.stewartmath.com. You can try them as
you progress through the book.
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Making Good Decisions In our daily lives we are continually faced with
situations in which we have to decide between different alternatives. We may
need to decide on the best cell phone plan, which size pizza is the best deal, or
whether to rent or buy a mathematics textbook. In many such situations
algebra can reveal the best choice. In algebra we use letters to stand for
numbers. This allows us to write equations that describe real-world situations.
Of course, the letters in our equation must obey the same rules that numbers
do. So in this chapter we review properties of numbers and algebraic
expressions. You are probably already familiar with many of these properties,
but it is helpful to get a fresh look at how these properties work together to
solve real-world problems. 

In the first section of this chapter we look at the central reason for studying
algebra: its usefulness in describing (or modeling) real-world situations. In the
Focus on Modeling at the end of the chapter we see how equations can help us
make the best decisions in some everyday situations. This theme of using
algebra to model real-world situations is further developed throughout the
textbook.

1
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PREREQUISITES

P.1 Modeling the Real World 
with Algebra

P.2 The Real Numbers

P.3 Integer Exponents and
Scientific Notation

P.4 Rational Exponents 
and Radicals

P.5 Algebraic Expressions

P.6 Factoring 

P.7 Rational Expressions

P.8 Solving Basic Equations

FOCUS ON MODELING

Making the Best Decisions
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In algebra we use letters to stand for numbers. This allows us to describe patterns that we
see in the real world.

For example, if we let N stand for the number of hours you work and W stand for your
hourly wage, then the formula

P � NW

gives your pay P. The formula P � NW is a description or model for pay. We can also call
this formula an algebra model. We summarize the situation as follows:

Real World Algebra Model
You work for an hourly wage. You would like to

P � NW
know your pay for any number of hours worked.

The model P � NW gives the pattern for finding the pay for any worker, with any hourly
wage, working any number of hours. That’s the power of algebra: By using letters to stand
for numbers, we can write a single formula that describes many different situations.

We can now use the model P � NW to answer questions such as “I make $10 an hour,
and I worked 35 hours; how much do I get paid?” or “I make $8 an hour; how many hours
do I need to work to get paid $1000?”

In general, a model is a mathematical representation (such as a formula) of a real-
world situation. Modeling is the process of making mathematical models. Once a model
has been made, it can be used to answer questions about the thing being modeled.

The examples we study in this section are simple, but the methods are far reaching.
This will become more apparent as we explore the applications of algebra in subsequent
Focus on Modeling sections that follow each chapter.

▼ Using Algebra Models
We begin our study of modeling by using models that are given to us. In the next subsec-
tion we learn how to make our own models.

E X A M P L E  1 Using a Model for Pay

Aaron makes $9 an hour at his part-time job. Use the model to answer the fol-
lowing questions:

(a) Aaron worked 35 hours last week. How much did he get paid?

(b) Aaron wants to earn enough money to buy a calculus text that costs $126. How
many hours does he need to work to earn this amount?

P � NW

REAL WORLD

Making a model

Using the model

MODEL

2 C H A P T E R  P | Prerequisites

Unless otherwise noted, all content on this page is © Cengage Learning.

P.1 MODELING THE REAL WORLD WITH ALGEBRA

LEARNING OBJECTIVES After completing this section, you will be able to:

Use an algebra model � Make an algebra model
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S O L U T I O N

(a) We know that h and . To find P, we substitute these values into the
model.

Model

Substitute N � 35, W � 9

Calculate

So Aaron was paid $315.

(b) Aaron's hourly wage is , and the amount of pay he needs to buy the book is
. To find N, we substitute these values into the model:

Model

Substitute P � 126, W � 9

Divide by 9

Calculate

So Aaron must work 14 hours to buy this book.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 3 AND 9 ■

E X A M P L E  2 Using an Elevation-Temperature Model

A mountain climber uses the model

T � 20 � 10h

to estimate the temperature T (in �C) at elevation h (in kilometers, km).

(a) Make a table that gives the temperature for each 1-km change in elevation, from
elevation 0 km to elevation 5 km. How does temperature change as elevation increases?

(b) If the temperature is 5�C, what is the elevation?

S O L U T I O N

(a) Let’s use the model to find the temperature at elevation h � 3 km:

Model

Substitute h � 3

Calculate

So at an elevation of 3 km the temperature is �10�C. The other entries in the fol-
lowing table are calculated similarly. 

We see that temperature decreases as elevation increases.

 � �10

 � 20 � 1013 2

 T � 20 � 10h

 N � 14

 
126

9
� N

 126 � 9N

 P � NW

P � $126
W � $9

 � 315

 � 35 � 9

 P � NW

W � $9N � 35

S E C T I O N  P. 1 | Modeling the Real World with Algebra 3

Elevation (km) Temperature (ºC)

0 20�
1 10�
2 0�
3 �10�
4 �20�
5 �30�

Unless otherwise noted, all content on this page is © Cengage Learning.
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(b) We substitute T � 5�C in the model and solve for h:

Model

Substitute T � 5

Subtract 20

Divide by –10

Calculator

The elevation is 1.5 km.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 13 ■

▼ Making Algebra Models
In the next example we explore the process of making an algebra model for a real-life situation.

E X A M P L E  3 Making a Model for Gas Mileage

The gas mileage of a car is the number of miles it can travel on one gallon of gas.

(a) Find a formula that models gas mileage in terms of the number of miles driven and
the number of gallons of gasoline used.

(b) Henry’s car used 10.5 gallons to drive 230 miles. Find its gas mileage.

S O L U T I O N

(a) To find the formula we want, we need to assign symbols to the quantities involved:

In Words In Algebra

Number of miles driven N
Number of gallons used G
Gas mileage (mi/gal) M

We can express the model as follows:

Model

(b) To get the gas mileage, we substitute N = 230 and G = 10.5 in the formula:

Model

Substitute N � 230, G � 10.5

Calculator

The gas mileage for Henry’s car is about 21.9 mi/gal.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 23 ■

 � 21.9

 �
230

10.5

 M �
N

G

 M �
N

G

 gas mileage �
number of miles driven

number of gallons used

 1.5 � h

 
�15

�10
� h

 �15 � �10h

  5 � 20 � 10h

 T � 20 � 10h

4 C H A P T E R  P | Prerequisites
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THINKING ABOUT THE PROBLEM

Let’s try a simple case. If a car uses 2 gallons to drive 100 miles, we easily see that

So gas mileage is the number of miles driven divided by the number of gallons used.

gas mileage �
100

2
� 50 mi/gal

12 mi/gal 40 mi/gal
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S E C T I O N  P. 1 | Modeling the Real World with Algebra 5

C O N C E P T S
1. The model L � 4S gives the total number of legs that S

sheep have. Using this model, we find that 12 sheep have 

L � legs.

2. Suppose gas costs $3.50 a gallon. We make a model for the 
cost C of buying x gallons of gas by writing the formula 

C � .

S K I L L S
3–12 ■ Use the model given to answer the questions about the ob-
ject or process being modeled.

3. The sales tax T in a certain county is modeled by the formula
T � 0.06x. Find the sales tax on an item whose price is $120.

4. Mintonville School District residents pay a wage tax T that is
modeled by the formula . Find the wage tax paid
by a resident who earns $62,000 per year.

5. A bakery finds that the cost C (in dollars) of producing x apple
pies is modeled by

Find the cost of producing 32 apple pies.

6. A company models its profit P (in dollars) on the sale of x golf
balls by

Find the profit on the sale of 1000 golf balls.

7. The distance d (in miles) driven by a car traveling at a speed
of miles per hour for t hours is given by 

If the car is driven at 70 mi/h for 3.5 h, how far has it traveled?

8. The volume V of a cylindrical can is modeled by the formula

V � pr 2h

where r is the radius and h is the height of the can. Find the
volume of a can with radius 3 in. and height 5 in.

9. The gas mileage M (in mi/gal) of a car is modeled by 
M � N/G, where N is the number of miles driven and G is the
number of gallons of gas used.
(a) Find the gas mileage M for a car that drove 240 miles on 

8 gallons of gas.

5 in.

3 in.

d � √t

√

P � 0.6x � 450

C � 50 � 1.25x

T � 0.005x

(b) A car with a gas mileage M � 25 mi/gal is driven 
175 miles. How many gallons of gas are used?

10. A mountain climber models the temperature T (in �F) at eleva-
tion h (in ft) by

T � 70 � 0.003h

(a) Find the temperature T at an elevation of 1500 ft.
(b) If the temperature is 64�F, what is the elevation?

11. The portion of a floating iceberg that is below the water sur-
face is much larger than the portion above the surface. The to-
tal volume V of an iceberg is modeled by 

V � 9.5S

where S is the volume showing above the surface.
(a) Find the total volume of an iceberg if the volume showing

above the surface is 4 km3.
(b) Find the volume showing above the surface for an iceberg

with total volume 19 km3.

12. The power P measured in horsepower (hp) needed to drive a
certain ship at a speed of s knots is modeled by

P � 0.06s3

(a) Find the power needed to drive the ship at 12 knots.
(b) At what speed will a 7.5-hp engine drive the ship?

13. An ocean diver models the pressure P (in lb/in2) at depth d 
(in ft) by

P � 14.7 � 0.45d

(a) Make a table that gives the pressure for each 10-ft change
in depth, from a depth of 0 ft to 60 ft.

(b) If the pressure is 30 lb/in2, what is the depth?

14. Arizonans use an average of 40 gallons of water per person
each day.
(a) Find a model for the number of gallons W of water used

by x Arizona residents each day.
(b) Make a table that gives the number of gallons of water

used for each 1000-person increase in population, from 
0 to 5000.

(c) Estimate the population of an Arizona town whose water
usage is 140,000 gallons per day.

15–22 ■ Write an algebraic formula that models the given quan-
tity.

15. The number N of days in „ weeks

16. The number N of cents in q quarters

P. 1  E X E R C I S E S

Unless otherwise noted, all content on this page is © Cengage Learning.
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(b) Find a formula for the volume V of the crate in terms of
its width x.

27. Cost of a Phone Call A phone card company charges a $1
connection fee for each call and 10¢ per minute.
(a) How much does a 10-minute call cost?
(b) Find a formula that models the cost C of a phone call that

lasts t minutes.
(c) If a particular call cost $2.20, how many minutes did the

call last?
(d) Find a formula that models the cost C (in cents) of a

phone call that lasts t minutes if the connection fee is F
cents and the rate is r cents per minute.

28. Grade Point Average In many universities students are
given grade points for each credit unit according to the
following scale:

A 4 points
B 3 points
C 2 points
D 1 point
F 0 point

For example, a grade of A in a 3-unit course earns 4 � 3 � 12
grade points and a grade of B in a 5-unit course earns 
3 � 5 � 15 grade points. A student’s grade point average
(GPA) for these two courses is the total number of grade
points earned divided by the number of units; in this case 
the GPA is 112 � 152/8 � 3.375.
(a) Find a formula for the GPA of a student who earns a

grade of A in a units of course work, B in b units, C in c
units, D in d units, and F in f units.

(b) Find the GPA of a student who has earned a grade of A in
two 3-unit courses, B in one 4-unit course, and C in three
3-unit courses.

2x

x

x

17. The average A of two numbers a and b

18. The average A of three numbers a, b, and c

19. The cost C of purchasing x gallons of gas at $3.50 a gallon

20. The amount T of a 15% tip on a restaurant bill of x dollars

21. The distance d in miles that a car travels in t hours at 60 mi/h

22. The speed r of a boat that travels d miles in 3 hours

A P P L I C A T I O N S
23. Cost of a Pizza A pizza parlor charges $12 for a cheese

pizza and $1 for each topping.
(a) How much does a 3-topping pizza cost?
(b) Find a formula that models the cost C of a pizza with 

n toppings.
(c) If a pizza costs $16, how many toppings does it have?

24. Renting a Car At a certain car rental agency a compact car
rents for $30 a day and 10¢ a mile.
(a) How much does it cost to rent a car for 3 days if the car is

driven 280 miles?
(b) Find a formula that models the cost C of renting this car

for n days if it is driven m miles.
(c) If the cost for a 3-day rental was $140, how many miles

was the car driven?

25. Energy Cost for a Car The cost of the electricity needed to
drive an all-electric car is about 4 cents per mile. The cost of
the gasoline needed to drive the average gasoline-powered car
is about 12 cents per mile.
(a) Find a formula that models the energy cost C of driving 

x miles for (i) the all-electric car and (ii) the average
gasoline-powered car. 

(b) Find the cost of driving 10,000 miles with each type of
car.

26. Volume of Fruit Crate A fruit crate has square ends and is
twice as long as it is wide (see the folowing figure).
(a) Find the volume of the crate if its width is 20 inches.

n=1 n=4

6 C H A P T E R  P | Prerequisites
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S E C T I O N  P. 2 | The Real Numbers 7

Let’s review the types of numbers that make up the real number system. We start with the
natural numbers:

The integers consist of the natural numbers together with their negatives and 0:

We construct the rational numbers by taking ratios of integers. Thus any rational num-
ber r can be expressed as

where m and n are integers and n � 0. Examples are

(Recall that division by 0 is always ruled out, so expressions like and are undefined.)
There are also real numbers, such as , that cannot be expressed as a ratio of integers
and are therefore called irrational numbers. It can be shown, with varying degrees of
difficulty, that these numbers are also irrational:

The set of all real numbers is usually denoted by the symbol �. When we use the word
number without qualification, we will mean “real number.” Figure 1 is a diagram of the
types of real numbers that we work with in this book.

F I G U R E  1 The real number system

Every real number has a decimal representation. If the number is rational, then its cor-
responding decimal is repeating. For example,

(The bar indicates that the sequence of digits repeats forever.) If the number is irrational,
the decimal representation is nonrepeating:12 � 1.414213562373095. . .   p � 3.141592653589793. . .

9
7 � 1.285714285714. . . � 1.285714157

495 � 0.3171717. . . � 0.317

2
3 � 0.66666. . . � 0.61

2 � 0.5000. . . � 0.50

1
2 46,  0.17,  0.6,  0.317 ,œ3

. . . , _3, _2, _1,  0,  1,  2,  3, . . .

Rational numbers Irrational numbers

Integers
Natural numbers

, 3
7- , ,œ5 , ,œ2 π

π2
3 3– – —

13   15   13 2   p   
3

p2

12

0
0

3
0

1
2   �3

7   46 � 46
1    0.17 � 17

100

r �
m
n

. . . , �3, �2, �1, 0, 1, 2, 3, 4, . . .

1, 2, 3, 4, . . .

P.2 THE REAL NUMBERS

LEARNING OBJECTIVES After completing this section, you will be able to:

Classify real numbers � Use properties of real numbers � Work with frac-
tions � Graph numbers on a number line � Use the order symbols , ,

, � Work with set and interval notation � Work with absolute values
� Find distances on the real line

�	

�

The different types of real numbers
were invented to meet specific needs.
For example, natural numbers are
needed for counting, negative num-
bers for describing debt or below-zero 
temperatures, rational numbers for 
concepts like “half a gallon of milk,”
and irrational numbers for measuring
certain distances, like the diagonal 
of a square.

A repeating decimal such as

is a rational number. To convert it to a
ratio of two integers, we write

Thus . (The idea is to multiply x
by appropriate powers of 10 and then
subtract to eliminate the repeating part.)

x � 3512
990

 990x � 3512.0
 10x �   35.47474747. . .

 1000x � 3547.47474747. . .

x � 3.5474747. . .

Unless otherwise noted, all content on this page is © Cengage Learning.
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8 C H A P T E R  P | Prerequisites

If we stop the decimal expansion of any number at a certain place, we get an approxima-
tion to the number. For instance, we can write

where the symbol � is read “is approximately equal to.” The more decimal places we re-
tain, the better our approximation.

▼ Properties of Real Numbers
We all know that 2 � 3 � 3 � 2, and 5 � 7 � 7 � 5, and 513 � 87 � 87 � 513, and so
on. In algebra we express all these (infinitely many) facts by writing

where a and b stand for any two numbers. In other words, “a � b � b � a” is a concise
way of saying that “when we add two numbers, the order of addition doesn’t matter.” This
fact is called the Commutative Property for addition. From our experience with numbers
we know that the properties in the following box are also valid.

The Distributive Property applies whenever we multiply a number by a sum. 
Figure 2 explains why this property works for the case in which all the numbers are pos-
itive integers, but the property is true for any real numbers a, b, and c.

a � b � b � a

p � 3.14159265

PROPERTIES OF REAL NUMBERS

Property Example Description

Commutative Properties

When we add two numbers, order doesn’t matter.

When we multiply two numbers, order doesn’t 
matter.

Associative Properties

When we add three numbers, it doesn’t matter which
two we add first.

When we multiply three numbers, it doesn’t 
matter which two we multiply first.

Distributive Property

When we multiply a number by a sum of two 
numbers, we get the same result as we would get if  
we multiply the number by each of the terms and
then add the results.

13 � 5 2 # 2 � 2 # 3 � 2 # 51b � c 2a � ab � ac

2 # 13 � 5 2 � 2 # 3 � 2 # 5a1b � c 2 � ab � ac

13 # 7 2 # 5 � 3 # 17 # 5 21ab 2c � a1bc 2

12 � 4 2 � 7 � 2 � 14 � 7 21a � b 2 � c � a � 1b � c 2

3 # 5 � 5 # 3ab � ba

7 � 3 � 3 � 7a � b � b � a

2(3+5)

2#3 2#5

F I G U R E  2 The Distributive Property

The Distributive Property is crucial 
because it describes the way addition
and multiplication interact with each
other.

The word algebra comes from the 
9th-century Arabic book Hisâb al-
Jabr w’al-Muqabala, written by 
al-Khowarizmi. The title refers to trans-
posing and combining terms, two
processes that are used in solving
equations. In Latin translations the title
was shortened to Aljabr, from which we
get the word algebra. The author’s
name itself made its way into the 
English language in the form of our
word algorithm.
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E X A M P L E  1 Using the Distributive Property

(a) Distributive Property

Simplify

(b) Distributive Property

Distributive Property

Associative Property of Addition

In the last step we removed the parentheses because, according to the 
Associative Property, the order of addition doesn’t matter.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 17 AND 25 ■

▼ Addition and Subtraction
The number 0 is special for addition; it is called the additive identity because 
a � 0 � a for any real number a. Every real number a has a negative, �a, that satisfies

. Subtraction is the operation that undoes addition; to subtract a number
from another, we simply add the negative of that number. By definition

To combine real numbers involving negatives, we use the following properties.

Property 6 states the intuitive fact that a � b and b � a are negatives of each other.
Property 5 is often used with more than two terms:

E X A M P L E  2 Using Properties of Negatives

Let x, y, and z be real numbers.

(a) Property 5: �(a � b) � �a � b

(b) Property 5: �(a � b) � �a � b

Property 2: �(�a) � a

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

 � �x � y � z
�1x � y � z 2 � �x � y � 1�z 2
�1x � 2 2 � �x � 2

�1a � b � c 2 � �a � b � c

a � b � a � 1�b 2

a � 1�a 2 � 0

 � ax � bx � ay � by

 � 1ax � bx 2 � 1ay � by 2

 1a � b 2 1x � y 2 � 1a � b 2x � 1a � b 2y

 � 2x � 6

 21x � 3 2 � 2 # x � 2 # 3

S E C T I O N  P. 2 | The Real Numbers 9

PROPERTIES OF NEGATIVES

Property Example

1.

2.

3.

4.

5.

6. �15 � 8 2 � 8 � 5�1a � b 2 � b � a

�13 � 5 2 � �3 � 5�1a � b 2 � �a � b

1�4 2 1�3 2 � 4 # 31�a 2 1�b 2 � ab

1�5 27 � 51�7 2 � �15 # 7 21�a 2b � a1�b 2 � �1ab 2

�1�5 2 � 5�1�a 2 � a

1�1 25 � �51�1 2a � �a

Don’t assume that �a is a negative
number. Whether �a is negative or
positive depends on the value of a. For
example, if a � 5, then �a � �5, a
negative number, but if a � �5, then

(Property 2), a pos-
itive number.
�a � �1�5 2 � 5

c

90169_ChP_001-072.qxd  12/2/11  9:19 AM  Page 9



10 C H A P T E R  P | Prerequisites

▼ Multiplication and Division
The number 1 is special for multiplication; it is called the multiplicative identity because
a � 1 � a for any real number a. Every nonzero real number a has an inverse, 1/a, that
satisfies . Division is the operation that undoes multiplication; to divide by a
number, we multiply by the inverse of that number. If b � 0, then, by definition,

We write as simply a/b. We refer to a/b as the quotient of a and b or as the frac-
tion a over b; a is the numerator and b is the denominator (or divisor). To combine real
numbers using the operation of division, we use the following properties.

When adding fractions with different denominators, we don’t usually use Property 4.
Instead we rewrite the fractions so that they have the smallest possible common de-
nominator (often smaller than the product of the denominators), and then we use Prop-
erty 3. This denominator is the Least Common Denominator (LCD) described in the
next example.

E X A M P L E  3 Using the LCD to Add Fractions

Evaluate:

S O L U T I O N Factoring each denominator into prime factors gives

We find the least common denominator (LCD) by forming the product of all the 
factors that occur in these factorizations, using the highest power of each factor.

36 � 22 # 32  and  120 � 23 # 3 # 5

5

36
�

7

120

a # 11/b 2

a  b � a # 1

b

a # 11/a 2 � 1

PROPERTIES OF FRACTIONS

Property Example Description

1.

2.

3.

4.

5.

6. If , then , so Cross-multiply.2 # 9 � 3 # 6
2

3
�

6

9
ad � bc

a

b
�

c

d

Cancel numbers that are common factors in numer-
ator and denominator.

2 # 5

3 # 5
�

2

3

ac

bc
�

a

b

When adding fractions with different denomina-
tors, find a common denominator. Then add the nu-
merators.

2

5
�

3

7
�

2 # 7 � 3 # 5

35
�

29

35

a

b
�

c

d
�

ad � bc

bd

When adding fractions with the same denomi-
nator, add the numerators.

2

5
�

7

5
�

2 � 7

5
�

9

5

a
c

�
b
c

�
a � b

c

When dividing fractions, invert the divisor and
multiply.

2

3


5

7
�

2

3
# 7

5
�

14

15

a

b


c

d
�

a

b
# d
c

When multiplying fractions, multiply numerators
and denominators.

2

3
# 5

7
�

2 # 5

3 # 7
�

10

21

a

b
# c

d
�

ac

bd
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S E C T I O N  P. 2 | The Real Numbers 11

Thus the LCD is . So

Use common denominator

Property 3: Adding fractions with the 
same denominator

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

▼ The Real Line
The real numbers can be represented by points on a line, as shown in Figure 3. The pos-
itive direction (toward the right) is indicated by an arrow. We choose an arbitrary refer-
ence point O, called the origin, which corresponds to the real number 0. Given any con-
venient unit of measurement, each positive number x is represented by the point on the
line a distance of x units to the right of the origin, and each negative number �x is repre-
sented by the point x units to the left of the origin. The number associated with the point
P is called the coordinate of P, and the line is then called a coordinate line, or a real
number line, or simply a real line. Often we identify the point with its coordinate and
think of a number as being a point on the real line.

The real numbers are ordered. We say that a is less than b and write if 
b � a is a positive number. Geometrically, this means that a lies to the left of b on 
the number line. Equivalently, we can say that b is greater than a and write b 	 a. The
symbol means that either a � b or a � b and is read “a is less than or
equal to b.” For instance, the following are true inequalities (see Figure 4):

F I G U R E  4

▼ Sets and Intervals
A set is a collection of objects, and these objects are called the elements of the set. If S
is a set, the notation a � S means that a is an element of S, and b � S means that b is not
an element of S. For example, if Z represents the set of integers, then �3 � Z but p � Z.

Some sets can be described by listing their elements within braces. For instance, the
set A that consists of all positive integers less than 7 can be written as

We could also write A in set-builder notation as

which is read “A is the set of all x such that x is an integer and 0 � x � 7.”

A � 5x 0  x is an integer and 0 � x � 76

A � 51, 2, 3, 4, 5, 66

0 1 2 3 4 5 6 7 8_1_2_3_4

œ∑2 7.4 7.5_π

7 � 7.4 � 7.5      �p � �3      12 � 2      2 
 2

a 
 b 1or b � a 2

a � b

 �
50

360
�

21

360
�

71

360

 
5

36
�

7

120
�

5 # 10

36 # 10
�

7 # 3

120 # 3

23 # 32 # 5 � 360

0_1_2_3_4_5 1 2 3 4 5

1
2

1
4

1
8

0.3∑

2
œ∑3

œ∑5 π
4.9999

4.5

4.44.2

4.3

1
16_

_ 2_2.63
_3.1725_4.7_4.9

_4.85

œ∑ œ∑

F I G U R E  3 The real line

Unless otherwise noted, all content on this page is © Cengage Learning.
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12 C H A P T E R  P | Prerequisites

If S and T are sets, then their union S � T is the set that consists of all elements that
are in S or T (or in both). The intersection of S and T is the set S � T consisting of all el-
ements that are in both S and T. In other words, S � T is the common part of S and T. The
empty set, denoted by �, is the set that contains no element.

E X A M P L E  4 Union and Intersection of Sets

If S � {1, 2, 3, 4, 5}, T � {4, 5, 6, 7}, and V � {6, 7, 8}, find the sets S � T, S � T,
and S � V.

S O L U T I O N

All elements in S or T

Elements common to both S and T

S and V have no element in common

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 47 ■

Certain sets of real numbers, called intervals, occur frequently in calculus and corre-
spond geometrically to line segments. If a � b, then the open interval from a to b con-
sists of all numbers between a and b and is denoted . The closed interval from a to
b includes the endpoints and is denoted . Using set-builder notation, we can write

Note that parentheses in the interval notation and open circles on the graph in 
Figure 5 indicate that endpoints are excluded from the interval, whereas square brackets

and solid circles in Figure 6 indicate that the endpoints are included. Intervals may also
include one endpoint but not the other, or they may extend infinitely far in one direction
or both. The following table lists the possible types of intervals.

E X A M P L E  5 Graphing Intervals

Express each interval in terms of inequalities, and then graph the interval.

(a)

(b)

(c)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

1�3,  q 2 � 5x 0  �3 � x6

31.5,  4 4 � 5x 0  1.5 
 x 
 46

3�1,  2 2 � 5x 0  �1 
 x � 26

3  4

1  2

1a,  b 2 � 5x 0  a � x � b6   3a,  b 4 � 5x 0  a 
 x 
 b6

3a,  b 4
1a,  b 2

 S � V � �

 S � T � 54, 56

 S � T � 51, 2, 3, 4, 5, 6, 76T
64748

1, 2, 3, 4, 5, 6, 7, 8
14243 123

S V

a b

F I G U R E  5 The open interval 1a,  b 2

a b

F I G U R E  6 The closed interval 3a,  b 4

Notation Set description Graph

� (set of all real numbers)1�q,  q 2

5x 0  x 
 b61�q,  b 4

5x 0  x � b61�q,  b 2

5x 0  a 
 x63a,  q 2

5x 0  a � x61a,  q 2

5x 0  a � x 
 b61a,  b 4

5x 0  a 
 x � b63a,  b 2

5x 0  a 
 x 
 b63a,  b 4
a b

a b

a b

a b

a

a

b

b

5x 0  a � x � b61a,  b 2

The symbol q (“infinity”) does not
stand for a number. The notation ,
for instance, simply indicates that the
interval has no endpoint on the right 
but extends infinitely far in the positive 
direction.

1a,  q 2

_3 0

1.5 40

_1 20
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S E C T I O N  P. 2 | The Real Numbers 13

E X A M P L E  6 Finding Unions and Intersections of Intervals

Graph each set.

(a) (b)

S O L U T I O N

(a) The intersection of two intervals consists of the numbers that are in both 
intervals. Therefore

This set is illustrated in Figure 7.

(b) The union of two intervals consists of the numbers that are in either one 
interval or the other (or both). Therefore

This set is illustrated in Figure 8.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 71 ■

▼ Absolute Value and Distance
The absolute value of a number a, denoted by , is the distance from a to 0 on 
the real number line (see Figure 9). Distance is always positive or zero, so we have

for every number a. Remembering that �a is positive when a is negative, we
have the following definition.

E X A M P L E  7 Evaluating Absolute Values of Numbers
(a)

(b)

(c)

(d)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 77 ■

0 3 � p 0 � �13 � p 2 � p � 3  1since 3 � p 1  3 � p � 0 2

0 0 0 � 0

0 �3 0 � �1�3 2 � 3

0 3 0 � 3

0 a 0 � 0

0 a 0

 � 5x 0  1 � x 
 76 � 11,  7 4

 11,  3 2 � 32,  7 4 � 5x 0  1 � x � 3 or 2 
 x 
 76

 � 5x 0  2 
 x � 36 � 32,  3 2

 11,  3 2 � 32,  7 4 � 5x 0  1 � x � 3 and 2 
 x 
 76

11,  3 2 � 32,  7 411,  3 2 � 32,  7 4

30 1

70 2

30 2

(1, 3)

[2, 7]

[2, 3)

30 1

70 2

10 7

(1, 3)

[2, 7]

(1, 7]

F I G U R E  7 11,  3 2 � 32,  7 4 � 32,  3 2 F I G U R E  8 11,  3 2 � 32,  7 4 � 11,  7 4

No Smallest or Largest Number
in an Open Interval
Any interval contains infinitely many
numbers—every point on the graph of
an interval corresponds to a real num-
ber. In the closed interval , the
smallest number is 0 and the largest is
1, but the open interval contains
no smallest or largest number. To see
this, note that 0.01 is close to zero, but
0.001 is closer, 0.0001 is closer yet, and
so on. We can always find a number in
the interval closer to zero than
any given number. Since 0 itself is not
in the interval, the interval contains no
smallest number. Similarly, 0.99 is close
to 1, but 0.999 is closer, 0.9999 closer
yet, and so on. Since 1 itself is not in
the interval, the interval has no largest
number.

10,  1 2

10,  1 2

30,  1 4

0.10 0.01

0.010 0.001

0.0001 0.0010

DEFINITION OF ABSOLUTE VALUE

If a is a real number, then the absolute value of a is

0 a 0 � e
a if a � 0

�a if a � 0

50_3

| 5 |=5| _3 |=3

F I G U R E  9

Unless otherwise noted, all content on this page is © Cengage Learning.
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When working with absolute values, we use the following properties.

What is the distance on the real line between the numbers �2 and 11? From 
Figure 10 we see that the distance is 13. We arrive at this by finding either

or . From this observation we make the follow-
ing definition (see Figure 11).

From Property 6 of negatives it follows that

This confirms that, as we would expect, the distance from a to b is the same as the dis-
tance from b to a.

E X A M P L E  8 Distance Between Points on the Real Line

The distance between the numbers �8 and 2 is

We can check this calculation geometrically, as shown in Figure 12.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 85 ■

d1a,  b 2 � 0 �8 � 2 0 � 0 �10 0 � 10

0 b � a 0 � 0 a � b 0

0 1�2 2 � 11 0 � 130 11 � 1�2 2 0 � 13

PROPERTIES OF ABSOLUTE VALUE

Property Example Description

1. The absolute value of 
a number is always positive
or zero.

2. A number and its negative
have the same absolute
value.

3. The absolute value of a 
product is the product of 
the absolute values.

4. The absolute value of a 
quotient is the quotient of
the absolute values.

`
12

�3
` �

0 12 0

0 �3 0
`
a

b
` �
0 a 0

0 b 0

0 �2 # 5 0 � 0 �2 0 0 5 00 ab 0 � 0 a 0 0 b 0

0 5 0 � 0 �5 00 a 0 � 0 �a 0

0 �3 0 � 3 � 00 a 0 � 0

DISTANCE BET WEEN POINTS ON THE REAL LINE

If a and b are real numbers, then the distance between the points a and b on the
real line is

d1a, b 2 � 0 b � a 0

110_2

13

ba

| b-a |

F I G U R E  1 0 F I G U R E  1 1 Length of a line 
segment is 0 b � a 0

20_8

10

F I G U R E  1 2
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S E C T I O N  P. 2 | The Real Numbers 15

C O N C E P T S
1. Give an example of each of the following:

(a) A natural number

(b) An integer that is not a natural number

(c) A rational number that is not an integer

(d) An irrational number

2. Complete each statement and name the property of real numbers
you have used.

(a) ab � ; Property 

(b) a � 1b � c2 � ; Property 

(c) a 1b � c2 � ; Property

3. Express the set of real numbers between but not including 2 and
7 as follows:

(a) In set-builder notation:

(b) In interval notation:

4. Explain the difference between the following two sets of 
numbers:

5. The symbol stands for the of the num-

ber x. If x is not 0, then the sign of is always .

6. The absolute value of the difference between a and b is 

(geometrically) the between a and b on the real num-
ber line.

S K I L L S
7–8 ■ List the elements of the given set that are

(a) natural numbers

(b) integers

(c) rational numbers

(d) irrational numbers

7.

8.

9–20 ■ State the property of real numbers being used.

9. 10.

11. 12.

13. 14.

15.

16.

17.

18.

19.

20. 71a � b � c 2 � 71a � b 2 � 7c

2x13 � y 2 � 13 � y 22x

1x � a 2 1x � b 2 � 1x � a 2x � 1x � a 2b

15x � 1 23 � 15x � 3

21A � B 2 � 2A � 2B

1x � 2y 2 � 3z � x � 12y � 3z2

12 � 7 29 � 2 # 9 � 7 # 9315 � 8 2 � 3 # 5 � 3 # 8

15 � 8 2 � 12 � 5 � 18 � 12 2213 # 7 2 � 12 # 3 27

6 # 13 � 13 # 65 � 14 � 14 � 5

E3.3, 3.3333. . . , �22, 2.714, �500, 4 
2
3, 225, 1234

5678, �
9
3F

E�3, 0, 22
7 , 27, 3.14, �p, 2.76, �1000, �2

5F

0 x 0

0 x 0

A � ��2, 5�   B � 1�2, 5 2

21–24 ■ Rewrite the expression using the given property of 
real numbers.

21. Commutative Property of addition,

22. Associative Property of multiplication,

23. Distributive Property,

24. Distributive Property,

25–30 ■ Use properties of real numbers to write the expression
without parentheses.

25. 26.

27. 28.

29. 30.

31–36 ■ Perform the indicated operations.

31. (a) (b)

32. (a) (b)

33. (a) (b)

34. (a) (b)

35. (a) (b)

36. (a) (b)

37–38 ■ Place the correct symbol (�, 	, or �) in the space.

37. (a) (b) (c)

38. (a) (b) (c)

39–44 ■ State whether each inequality is true or false.

39. (a) (b)

40. (a) (b)

41. (a) (b)

42. (a) (b)

43. (a) (b)

44. (a) (b)

45–46 ■ Write each statement in terms of inequalities.

45. (a) x is positive

(b) t is less than 4

(c) a is greater than or equal to p

(d) x is less than and is greater than �5

(e) The distance from p to 3 is at most 5

46. (a) y is negative

(b) z is greater than 1

(c) b is at most 8

(d) „ is positive and is less than or equal to 17

(e) y is at least 2 units from p

1
3

�p � �3p 	 3

8 
 �8�8 	 1

�
3

5
	 �

3

4

3

5
	

3

4

�2 � �2�2.1 � �2

1.41 � 2222 	 1.41

�5 � �75 � 7

0 �0.67 00 0.67 0�0.672
30.672

3

7
23.5� 

7
2�37

23

2
5 � 1

2
1

10 � 3
15

2 � 3
4

1
2 � 1

3

1
12

1
8 � 1

9

2
2
3

�
2
3

2

A12 � 1
3B  A

1
2 � 1

3BA3 � 1
4B  A1 � 4

5B

0.25A89 � 1
2B

2
3A6 � 3

2B

1 � 5
8 � 1

6
2
3 � 3

5

1
4 � 1

5
3

10 � 4
15

13a 2 1b � c � 2d 2� 
5
2 12x � 4y 2

4
3 1�6y 2412m 2

1a � b 2831x � y 2

5x � 5y �

41A � B 2 �

713x 2 �

x � 3 �

P. 2  E X E R C I S E S
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77–82 ■ Evaluate each expression.

77. (a) (b)

78. (a) (b)

79. (a) @ @ (b)

80. (a) @ @ (b) @ @

81. (a) (b)

82. (a) (b)

83–86 ■ Find the distance between the given numbers.

83.

84.

85. (a) 2 and 17 (b) �3 and 21 (c) and 

86. (a) and (b) �38 and �57 (c) �2.6 and �1.8

87–88 ■ Express each repeating decimal as a fraction. (See the
margin note on page 7.)

87. (a) (b) (c)

88. (a) (b) (c)

A P P L I C A T I O N S
89. Area of a Garden Mary’s backyard vegetable garden mea-

sures 20 ft by 30 ft, so its area is 20 � 30 � 600 ft2. 
She decides to make it longer, as shown in the figure, so 
that the area increases to . Which property of
real numbers tells us that the new area can also be written 
A � 600 � 20x?

90. Temperature Variation The bar graph shows the daily
high temperatures for Omak, Washington, and Geneseo, New
York, during a certain week in June. Let TO represent the tem-
perature in Omak and TG the temperature in Geneseo. Calcu-
late and for each day shown. Which of
these two values gives more information?

80
Omak, WA
Geneseo, NY

75

70

65
Sun Mon Tue Wed

Day

D
ai

ly
 h

ig
h

te
m

pe
ra

tu
re

 (
*F

)

Thu Fri Sat

0 TO � TG 0TO � TG

x30 ft

20 ft

A � 20130 � x 2

2.1351.375.23

0.570.280.7

� 
1
21

7
15

� 
3
10

11
8

321_3 _2 _1 0

321_3 _2 _1 0

`
7 � 12

12 � 7
``

�6

24
`

0 A� 
1
3B  1�15 2 00 1�2 2 # 6 0

1 � 0 �1 0�1 �2 � 0 �12 0

�1

0 �1 0
0 �6 0 � 0 �4 0

0 10 � p 00 15 � 5 0

0 �73 00 100 0

47–50 ■ Find the indicated set if

A � {1, 2, 3, 4, 5, 6, 7} B � {2, 4, 6, 8} 

C � {7, 8, 9, 10}

47. (a) A � B (b) A � B

48. (a) B � C (b) B � C

49. (a) A � C (b) A � C

50. (a) A � B � C (b) A � B � C

51–52 ■ Find the indicated set if

51. (a) B � C (b) B � C

52. (a) A � C (b) A � B

53–58 ■ Express the interval in terms of inequalities, and then
graph the interval.

53. 54.

55. 56.

57. 58.

59–64 ■ Express the inequality in interval notation, and then
graph the corresponding interval.

59. x 
 1 60. 1 
 x 
 2

61. �2 � x 
 1 62. x � �5

63. x 	 �1 64. �5 � x � 2

65–70 ■ Express each set in interval notation.

65. (a)

(b)

66. (a)

(b)

67. (a)

(b)

68. (a)

(b)

69. (a)

(b)

70. (a)

(b)

71–76 ■ Graph the set.

71. 72.

73. 74.

75. 76. 1�q,  6 4 � 12,  10 21�q,  �4 2 � 14,  q 2

3�4,  6 2 � 30,  8 23�4,  6 4 � 30,  8 2

1�2,  0 2 � 1�1,  1 21�2,  0 2 � 1�1,  1 2

20

20

50

_5 0

_3 30

_3 30

410

_4 _1 0

_2 0

20

5_3 0

5_3 0

1�q,  1 232,  q 2

3�6,  � 
1
2 432,  8 2

12,  8 41�3,  0 2

C � 5x 0  �1 � x 
 56

B � 5x 0  x � 46A � 5x 0  x � �26
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96. Irrational Numbers and Geometry Using the 
following figure, explain how to locate the point on a
number line. Can you locate by a similar method? What
about ? List some other irrational numbers that can be 
located this way.

97. Commutative and Noncommutative Operations We
have seen that addition and multiplication are both commuta-
tive operations.
(a) Is subtraction commutative?
(b) Is division of nonzero real numbers commutative?
(c) Are the actions of putting on your socks and putting on

your shoes commutative?
(d) Are the actions of putting on your hat and putting on your

coat commutative?
(e) Are the actions of washing laundry and drying it

commutative?
(f) Give an example of a pair of actions that are commutative.
(g) Give an example of a pair of actions that are not

commutative.

0_1

œ∑2

1 2

1

16
15

12

91. Mailing a Package The post office will only accept 
packages for which the length plus the “girth” (distance
around) is no more than 108 inches. Thus, for the package in
the figure, we must have

(a) Will the post office accept a package that is 6 in. wide,
8 in. deep, and 5 ft long? What about a package that mea-
sures 2 ft by 2 ft by 4 ft?

(b) What is the greatest acceptable length for a package that
has a square base measuring 9 in. by 9 in?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
92. Signs of Numbers Let a, b, and c be real numbers such that

a 	 0, b � 0, and c � 0. Find the sign of each expression.

(a) �a (b) �b (c) bc

(d) a � b (e) c � a (f) a � bc

(g) ab � ac (h) �abc (i) ab2

93. Sums and Products of Rational and Irrational 
Numbers Explain why the sum, the difference, and the
product of two rational numbers are rational numbers. 
Is the product of two irrational numbers necessarily 
irrational? What about the sum?

94. Combining Rational Numbers with Irrational 
Numbers Is rational or irrational? Is 
rational or irrational? In general, what can you say about 
the sum of a rational and an irrational number? What about the
product?

95. Limiting Behavior of Reciprocals Complete the following
tables. What happens to the size of the fraction 1/x as x gets
large? As x gets small?

1
2
# 121

2 � 12

6 in.

L

8 in.

5 ft=60 in.
x

y

L � 21x � y 2 
 108

x 1/x

1
2

10
100

1000

x 1/x

1.0
0.5
0.1
0.01
0.001

P.3 INTEGER EXPONENTS AND SCIENTIFIC NOTATION

LEARNING OBJECTIVES After completing this section, you will be able to:

Use exponential notation � Simplify expressions using the Laws of Exponents
� Write numbers using scientific notation

In this section we review the rules for working with exponent notation. We also see how
exponents can be used to represent very large and very small numbers.

Unless otherwise noted, all content on this page is © Cengage Learning.
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18 C H A P T E R  P | Prerequisites

E X A M P L E  1 Exponential Notation

(a)

(b)

(c)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 9 ■

We can state several useful rules for working with exponential notation. To discover
the rule for multiplication, we multiply 54 by 52:

54 52 � 15 5 5 52 15 52 � 5 5 5 5 5 5 � 56 � 54�2

144424443 123 1444442444443

4 factors 2 factors 6 factors

It appears that to multiply two powers of the same base, we add their exponents. In gen-
eral, for any real number a and any positive integers m and n, we have

aman � 1a a . . . a2 1a a . . . a2 � a a a . . . a � am�n

144424443 1442443 144424443

m factors n factors m � n factors

Thus aman � am�n.
We would like this rule to be true even when m and n are 0 or negative integers. For

instance, we must have

But this can happen only if 20 � 1. Likewise, we want to have

and this will be true if 5�4 � 1/54. These observations lead to the following definition.

54 # 5�4 � 54� 1�42 � 54�4 � 50 � 1

20 # 23 � 20�3 � 23

##########

##########

�34 � �13 # 3 # 3 # 3 2 � �81

1�3 2 4 � 1�3 2 # 1�3 2 # 1�3 2 # 1�3 2 � 81

A12B
5

� A12B A
1
2B A

1
2B A

1
2B A

1
2B � 1

32

Note the distinction between 
and �34. In the exponent

applies to �3, but in �34 the exponent
applies only to 3.

1�3 2 41�3 2 4

ZERO AND NEGATIVE EXPONENTS

If a � 0 is any real number and n is a positive integer, then

and a�n �
1

ana0 � 1

EXPONENTIAL NOTATION

If a is any real number and n is a positive integer, then the nth power of a is

1442443

n factors

The number a is called the base, and n is called the exponent.

an � a # a # . . . # a

▼ Exponential Notation
A product of identical numbers is usually written in exponential notation. For example,

is written as 53. In general, we have the following definition.5 # 5 # 5
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S E C T I O N  P. 3 | Integer Exponents and Scientific Notation 19

E X A M P L E  2 Zero and Negative Exponents

(a)

(b)

(c)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 11 ■

▼ Rules for Working with Exponents
Familiarity with the following rules is essential for our work with exponents and bases. In
the table the bases a and b are real numbers, and the exponents m and n are integers.

P R O O F  O F  L A W  3 If m and n are positive integers, we have

1am2n � 1a a . . . a2n
1444442444443

m factors

� 1a a . . . a2 1a a . . . a2 . . . 1a a . . . a2
1444442444443 1444442444443 1444442444443

m factors m factors m factors
144444444444424444444444443

n groups of factors

� a a . . . a � amn

1442443
mn factors

The cases for which m 
 0 or n 
 0 can be proved using the definition of negative 
exponents. ■

P R O O F  O F  L A W  4 If n is a positive integer, we have

144424443 1442443 1442443
n factors n factors n factors

1ab 2 n � 1ab 2 1ab 2 p 1ab 2 � 1a # a #  
p

 # a 2 # 1b # b #  
p

 # b 2 � anbn

###

#########

###

1�2 2�3 �
1

1�2 2 3
�

1

�8
� � 

1

8

x�1 �
1

x1 �
1
x

A47B
0

� 1

L AWS OF EXPONENTS

Law Example Description

1. aman � am�n 32 35 � 32�5 � 37 To multiply two powers of the same number, add the exponents.

2. To divide two powers of the same number, subtract the exponents.

3. To raise a power to a new power, multiply the exponents.

4. To raise a product to a power, raise each factor to the power.

5.

6.

7.
To move a number raised to a power from numerator to denominator or
from denominator to numerator, change the sign of the exponent.

3�2

4�5 �
45

32

a�n

b�m �
bm

an

To raise a fraction to a negative power, invert the fraction and change
the sign of the exponent.a

3

4
b

�2

� a
4

3
b

2

a
a

b
b

�n

� a
b
a
b

n

To raise a quotient to a power, raise both numerator and denominator
to the power.a

3

4
b

2

�
32

42a
a

b
b

n

�
an

bn

13 # 4 2 2 � 32 # 421ab 2 n � anbn

132 2 5 � 32 #5 � 3101am 2 n � amn

35

32 � 35�2 � 33am

an � am�n

#
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20 C H A P T E R  P | Prerequisites

Here we have used the Commutative and Associative Properties repeatedly. If n 
 0,
Law 4 can be proved by using the definition of negative exponents. ■

You are asked to prove Laws 2, 5, 6, and 7 in Exercise 51 and 52.

E X A M P L E  3 Using Laws of Exponents

(a) x4x7 � x4�7 � x11 Law 1: aman � am�n

(b) Law 1: aman � am�n

(c) Law 2: � am�n

(d) Law 3: (am)n � amn

(e) Law 4: (ab)n � anbn

(f) Law 5:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 19 AND 21 ■

E X A M P L E  4 Simplifying Expressions with Exponents

Simplify:

(a) (b)

S O L U T I O N

(a) Law 4: (ab)n � anbn

Law 3: (am)n � amn

Group factors with the same base

Law 1: aman � am�n

(b) Laws 5 and 4

Law 3

Group factors with the same base

Laws 1 and 2

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 27 AND 33 ■

When simplifying an expression, you will find that many different methods will lead to
the same result; you should feel free to use any of the rules of exponents to arrive at your own
method. In the next example we see how to simplify expressions with negative exponents.

E X A M P L E  5 Simplifying Expressions with Negative Exponents

Eliminate negative exponents, and simplify each expression.

(a) (b) a
y

3z3 b
�26st�4

2s�2t2

 � 
x7y5

z4

 � 1x3x4 2 a
y8

y3 b
1

z4

 � 
x3

y3 
y8x4

z4

 a
x
y
b

3

a
y2x
z b

4

�
x3

y3 
1y2 2 4x4

z4

 � 54a6b14

 � 12 2 127 2a3a3b2b12

 � 12a3b2 2 127a3b12 2

 12a3b2 2 13ab4 2 3 � 12a3b2 2 333a31b4 2 3 4

a
x
y
b

3

a
y2x
z b

4

12a3b2 2 13ab4 2 3

a
a

b
b

n

�
an

bna
x

2
b

5

�
x5

25 �
x5

32

13x 2 3 � 33x3 � 27x3

1b4 2 5 � b4 #5 � b20

am

an

c9

c5 � c9�5 � c4

y4y�7 � y4�7 � y�3 �
1

y3
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S E C T I O N  P. 3 | Integer Exponents and Scientific Notation 21

S O L U T I O N

(a) We use Law 7, which allows us to move a number raised to a power from the 
numerator to the denominator (or vice versa) by changing the sign of the 
exponent:

Law 7

Law 1

(b) We use Law 6, which allows us to change the sign of the exponent of a fraction by
inverting the fraction:

Law 6

Laws 5 and 4

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

▼ Scientific Notation
Exponential notation is used by scientists as a compact way of writing very large num-
bers and very small numbers. For example, the nearest star beyond the sun, Proxima Cen-
tauri, is approximately 40,000,000,000,000 km away. The mass of a hydrogen atom is
about 0.00000000000000000000000166 g. Such numbers are difficult to read and to
write, so scientists usually express them in scientific notation. 

For instance, when we state that the distance to the star Proxima Centauri is 
4 � 1013 km, the positive exponent 13 indicates that the decimal point should be moved
13 places to the right:

When we state that the mass of a hydrogen atom is 1.66 � 10�24 g, the exponent �24 in-
dicates that the decimal point should be moved 24 places to the left:

1.66 � 10�24 � 0.00000000000000000000000166

4 � 1013 � 40,000,000,000,000

 � 
9z6

y2

 a
y

3z3 b
�2

� a
3z3

y
b

2

 � 
3s3

t6

 
6st � 4

2s�2t 2 �
6ss2

2t 2t 4

t�4 moves to denominator
and becomes t4

s�2 moves to numerator
and becomes s2

Although we are often unaware of its
presence,mathematics permeates
nearly every aspect of life in the modern
world.With the advent of modern tech-
nology,mathematics plays an ever
greater role in our lives.Today you were
probably awakened by a digital alarm
clock in a room whose temperature is
controlled by a digital thermostat, made
a phone call that used digital transmis-
sion,sent an e-mail message over the In-
ternet,drove a car with digitally con-
trolled fuel injection, and listened to
music on a CD or MP3 player.Mathemat-
ics is crucially involved in each of these
activities. In general,a property such as
the intensity or frequency of sound,the
oxygen level in a car’s exhaust emission,
the colors in an image,or the tempera-
ture in your bedroom is transformed
into sequences of numbers by sophisti-
cated mathematical algorithms.These
numerical data,which usually consist of
many millions of bits (the digits 0 and 1),
are then transmitted and reinterpreted.
Dealing with such huge amounts of
data was not feasible until the invention
of computers,machines whose logical
processes were invented by mathemati-
cians.

The contributions of mathematics
in the modern world are not limited to
technological advances. The logical
processes of mathematics are now
used to analyze complex problems in
the social, political, and life sciences in
new and surprising ways. Advances in
mathematics continue to be made,
some of the most exciting of these just
within the past decade.

In other Mathematics in the Modern
World vignettes, we will describe in
more detail how mathematics affects
us in our everyday activities.

M AT H E M AT I C S  I N  
T H E  M O D E R N  W O R L D

SCIENTIFIC NOTATION

A positive number x is said to be written in scientific notation if it is expressed
as follows:

x � a � 10n  where 1 
 a � 10 and n is an integer

Move decimal point 13 places to the right

Move decimal point 24 places to the left
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22 C H A P T E R  P | Prerequisites

E X A M P L E  6 Changing from Decimal Notation 
to Scientific Notation

Write each number in scientific notation.

(a) 56,920 (b) 0.000093

S O L U T I O N

(a) 56,920 � 5.692 � 104 (b) 0.000093 � 9.3 � 10�5
123 123

4 places 5 places

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

E X A M P L E  7 Changing from Scientific Notation 
to Decimal Notation

Write each number in decimal notation.

(a) 6.97 � 109 (b) 4.6271 � 10�6

S O L U T I O N

(a) 6.97 � 109 � 6,970,000,000 Move decimal 9 places to the right
1442443

9 places

(b) 4.6271 � 10�6 � 0.0000046271 Move decimal 6 places to the left
14243
6 places

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

Scientific notation is often used on a calculator to display a very large or very small
number. For instance, if we use a calculator to square the number 1,111,111, the display
panel may show (depending on the calculator model) the approximation

or

Here the final digits indicate the power of 10, and we interpret the result as

E X A M P L E  8 Calculating with Scientific Notation

If a � 0.00046, b � 1.697 � 1022, and c � 2.91 � 10�18, use a calculator to approxi-
mate the quotient ab/c.

S O L U T I O N We could enter the data using scientific notation, or we could use laws 
of exponents as follows:

We state the answer rounded to two significant figures because the least accurate of the
given numbers is stated to two significant figures. (See Appendix A, Calculations and
Significant Figures.)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

 � 2.7 � 1036

 � 
14.6 2 11.697 2

2.91
� 10�4�22�18

 
ab
c

�
14.6 � 10�4 2 11.697 � 1022 2

2.91 � 10�18

1.234568 � 1012

1.234568 E121.234568 12

To use scientific notation on a calcula-
tor, use a key labeled or 

or to enter the exponent. 
For example, to enter the number 
3.629 � 1015 on a TI-83 or TI-84 
calculator, we enter

3.629 15

and the display reads

3.629E15

EE2ND

EEXEXP

EE
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SECTION P.3 | Integer Exponents and Scientific Notation 23

C O N C E P T S
1. Using exponential notation, we can write the product 

5 5 5 5 5 5 as .

2. Is there a difference between and ?

3. In the expression 34 the number 3 is called the ,

and the number 4 is called the .

4. When we multiply two powers with the same base, we 

the exponents. So 34 35 � .

5. When we divide two powers with the same base, we 

the exponents. So � .

6. When we raise a power to a new power, we the 

exponents. So 13422 � .

7. Express the following numbers without using exponents.

(a) 2�1 � (b) 2�3 �

(c) � (d)

8. Scientists express very large or very small numbers using 

notation. In scientific notation 8,300,000 is 

, and 0.0000327 is .

S K I L L S
9–18 ■ Evaluate each expression.

9. (a) (b) (c) 

10. (a) (b) (c)

11. (a) (b) (c)

12. (a) (b) (c)

13. (a) (b) (c)

14. (a) (b) (c)

15. (a) (b) (c)

16. (a) (b) (c)

17. (a) (b) (c)

18. (a) (b) (c)

19–24 ■ Simplify each expression.

19. (a) (b) (c)

20. (a) (b) (c)

21. (a) (b) (c)

22. (a) (b) (c)
x6

x 10z5z�3z�4y2 # y�5

y10y0

y7„�2„�4„5x�5 # x 3

x 4x�318x 2 2y5 # y2

y�2y712y2 2 3x 3 # x 4

72

75

54

5
3�3 # 3�1

32

34

107

10454 # 5�2

1�3 2 0�3013100 2 0

�501�5 2 0128 2 0

154 2 260 # 638 # 35

122 2 332 # 3053 # 5

A�2
3 B

�3
�23 # 1�2 2 0�2�3 # 1�2 2 0

A14B
�22�3

30A53B
0 # 2�1

1�5 2 2 # A25B2�531�5 2 3
A23 2

3 # 1�3B31�3 2 2�32

1

2�3 �A12B
�1

35

32

#

�541�5 2 4

#####

23. (a) (b) (c)

24. (a) (b) (c)

25–38 ■ Simplify the expression and eliminate any negative 
exponents(s).

25. (a) (b)

26. (a) (b)

27. (a)  (b)

28. (a) (b)

29. (a) (b)

30. (a) (b)

31. (a) (b)

32. (a) (b)

33. (a) (b)

34. (a) (b)

35. (a) (b)

36. (a) (b)

37. (a) (b)

38. (a) (b)

39–40 ■ Write each number in scientific notation.

39. (a) 69,300,000 (b) 7,200,000,000,000

(c) 0.000028536 (d) 0.0001213

40. (a) 129,540,000 (b) 7,259,000,000

(c) 0.0000000014 (d) 0.0007029

41–42 ■ Write each number in decimal notation.

41. (a) 3.19 � 105 (b) 2.721 � 108

(c) 2.670 � 10�8 (d) 9.999 � 10�9

42. (a) 7.1 � 1014 (b) 6 � 1012

(c) 8.55 � 10�3 (d) 6.257 � 10�10

43–44 ■ Write the number indicated in each statement in 
scientific notation.

43. (a) A light-year, the distance that light travels in one year, is
about 5,900,000,000,000 mi.

a
xy�2z�3

x 2y3z�4 b
�3

a
s2t�4

5s�1t
b

�2

a
q�1r �1s�2

r �5sq�8 b
�1

a
3a

b3 b
�1

a
2a�1b

a2b�3 b
�35xy�2

x�1y�3

a
y

5x�2 b
�38a3b�4

2a�5b5

1rs2 2 3

1r �3s2 2 2
a

x 4z2

4y5 b a
2x 3y2

z3 b
2

1u�1√2 2 2

1u3√�2 2 3
a

a2

b
b

5

a
a3b2

c3 b
3

a
x 3y�2

x�3y2 b
�2

a
4r 2t �1

r �4t 2 b
2

a
2x 4

y�1 b
�1

a
a3

2b2 b
3

y4z�1

y�4z3

y�2z�3

y�1

x�3y2

x�2 y�1

x 2 y�1

x�5

13x 2y�1 2�21x�1y�3 2�112y�2 2�412y4 2

13a4b�2 2 31a2b�1 215z�2 2 21z3 2

2pq 41p�3q�1 2 17pq�2 218m�2n4 2 A12n
�2B

16a5b 2 A12a
2b4B13x 3y2 2 12y3 2

1�3z2 2 312z3 212a3a2 2 4
z2z4

z3z�1

12x 2 215x 6 21a2a4 2 3
a9a�2

a

P. 3  E X E R C I S E S
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58. Body-Mass Index The body-mass index is a measure that
medical researchers use to determine whether a person is over-
weight, underweight, or of normal weight. For a person who
weighs W pounds and who is H inches tall, the body-mass in-
dex B is given by

A body-mass index is considered “normal” if it satisfies 
18.5 
 B 
 24.9, while a person with body-mass index 
B � 30 is considered obese.
(a) Calculate the body-mass index for each person listed in

the table, then determine whether he or she is of normal
weight, underweight, overweight, or obese.

(b) Determine your own body-mass index.

59. Interest on a CD A sum of $5000 is invested in a 5-year
certificate of deposit paying 3% interest per year, compounded
monthly. After n years the amount of interest I that has accu-
mulated is given by

Complete the following table, which gives the amount of in-
terest accumulated after the given number of years.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
60. How Big Is a Billion? If you had a million (106) dollars in a

suitcase, and you spent a thousand (103) dollars each day, how
many years would it take you to use all the money? If you
spent at the same rate, how many years would it take you to
empty a suitcase filled with a billion (109) dollars?

61. Easy Powers That Look Hard Calculate these expressions
in your head. Use the Laws of Exponents to help you.

(a) (b)

62. Distances Between Powers Which pair of numbers is
closer together?

1010 and 1050 or 10100 and 10101

63. Signs of Numbers Let a, b, and c be real numbers 
with a 	 0, b � 0, and c � 0. Determine the sign of each
expression.
(a) b5 (b) b10 (c) ab2c3

(d) 1b � a23 (e) 1b � a24 (f)
a3c3

b6c6

206 # 10.5 2 6
185

95

I � 5000 3 11.0025 2 12n � 1 4

B � 703 

W

H 2

(b) The diameter of an electron is about 0.0000000000004 cm.
(c) A drop of water contains more than 33 billion billion 

molecules.

44. (a) The distance from the earth to the sun is about 
93 million miles.

(b) The mass of an oxygen molecule is about
0.000000000000000000000053 g.

(c) The mass of the earth is about
5,970,000,000,000,000,000,000,000 kg.

45–50 ■ Use scientific notation, the Laws of Exponents, and a cal-
culator to perform the indicated operations. State your answer rounded
to the number of significant digits indicated by the given data.

45. 17.2 � 10�92 11.806 � 10�122

46. 11.062 � 10242 18.61 � 10192

47.

48.

49. 50.

51. Prove the given Laws of Exponents for the case in which m
and n are positive integers and m 	 n.
(a) Law 2 (b) Law 5

52. Prove Laws 6 and 7 of Exponents.

A P P L I C A T I O N S
53. Distance to the Nearest Star Proxima Centauri, the star

nearest to our solar system, is 4.3 light-years away. Use the infor-
mation in Exercise 43(a) to express this distance in miles.

54. Speed of Light The speed of light is about 186,000 mi/s.
Use the information in Exercise 44(a) to find how long it takes
for a light ray from the sun to reach the earth.

55. Volume of the Oceans The average ocean depth is 
3.7 � 103 m, and the area of the oceans is 3.6 � 1014 m2.
What is the total volume of the ocean in liters? (One cubic
meter contains 1000 liters.)

56. National Debt As of July 2010, the population of the United
States was 3.070 � 108, and the national debt was 1.320 � 1013

dollars. How much was each person’s share of the debt?

57. Number of Molecules A sealed room in a hospital, mea-
suring 5 m wide, 10 m long, and 3 m high, is filled with pure
oxygen. One cubic meter contains 1000 L, and 22.4 L of any
gas contains 6.02 � 1023 molecules (Avogadro’s number).
How many molecules of oxygen are there in the room?

13.542 � 10�6 2 9

15.05 � 104 2 12

10.0000162 2 10.01582 2

1594,621,000 2 10.0058 2

173.1 2 11.6341 � 1028 2

0.0000000019

1.295643 � 109

13.610 � 10�17 2 12.511 � 106 2

Person Weight Height

Brian 295 lb 5 ft 10 in.
Linda 105 lb 5 ft 6 in.
Larry 220 lb 6 ft 4 in.
Helen 110 lb 5 ft 2 in.

Year Total interest

1 $152.08
2 308.79
3
4
5

Unless otherwise noted, all content on this page is © Cengage Learning.
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In this section we learn to work with expressions that contain radicals or rational expo-
nents.

▼ Radicals
We know what 2n means whenever n is an integer. To give meaning to a power, such as
24/5, whose exponent is a rational number, we need to discuss radicals.

The symbol means “the positive square root of.” Thus

Since a � b2 � 0, the symbol makes sense only when a � 0. For instance,

Square roots are special cases of nth roots. The nth root of x is the number that, when
raised to the nth power, gives x.

Thus

But , , and are not defined. (For instance, is not defined because
the square of every real number is nonnegative.)

Notice that

So the equation is not always true; it is true only when a � 0. However, we can
always write . This last equation is true not only for square roots, but for any
even root. This and other rules used in working with nth roots are listed in the following
box. In each property we assume that all the given roots exist.

2a2 � 0 a 0
2a2 � a

242 � 116 � 4  but  21�4 2 2 � 116 � 4 � 0 �4 0

1�816 �814 �81�8

13 �8 � �2  because  1�2 2 3 � �8

14 81 � 3     because  34 � 81  and  3 � 0

19 � 3  because  32 � 9  and  3 � 0

1a

1 

P.4 RATIONAL EXPONENTS AND RADICALS

LEARNING OBJECTIVES After completing this section, you will be able to:

Simplify expressions involving radicals � Simplify expressions involving 
rational exponents � Express radicals using rational exponents
� Rationalize a denominator and express a quotient of radicals in 
standard form

� b means b2 � a and b � 01a

It is true that the number 9 has two
square roots, 3 and �3, but the nota-
tion is reserved for the positive
square root of 9 (sometimes called the
principal square root of 9). If we want
the negative root, we must write ,
which is �3.

�19

19

DEFINITION OF nth ROOT

If n is any positive integer, then the principal nth root of a is defined as follows:

If n is even, we must have a � 0 and b � 0.

1n a � b  means  bn � a
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E X A M P L E  1 Simplifying Expressions Involving nth Roots

(a) Factor out the largest cube

Property 1:

Property 4:

(b) Property 1:

Property 5:

Property 5:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 27 AND 33 ■

It is frequently useful to combine like radicals in an expression such as .
This can be done by using the Distributive Property. Thus

The next example further illustrates this process.

E X A M P L E  2 Combining Radicals

(a) Factor out the largest squares

Property 1

Distributive Property

(b) If , then 

Property 1:

Property 5; 

Distributive Property

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 39 AND 45 ■

▼ Rational Exponents
To define what is meant by a rational exponent or, equivalently, a fractional exponent such
as a1/3, we need to use radicals. To give meaning to the symbol a1/n in a way that is con-
sistent with the Laws of Exponents, we would have to have

1a1/n 2 n � a 11/n2n � a1 � a

 � 15 � b 22b

b 	 0 � 52b � b2b

2xy � 2x2y 225b � 2b3 � 2252b � 2b22b

b 	 0

 � 412 � 1012 � 1412

 � 11612 � 110012

 132 � 1200 � 116 # 2 � 1100 # 2

213 � 513 � 12 � 5 213 � 713

213 � 513

24 a4 � 0 a 0 , 0 x 2 0 � x 2 � 3x2 0 y 0

24 a4 � 0 a 0 � 324 1x2 2 4 0 y 0

24 abc � 24 a24 b24 c 24 81x8y4 � 24 8124 x824 y4

23 a3 � a � x23 x

23 ab � 23 a23 b � 23 x323 x

 23 x4 � 23 x3x

Avoid making the following error:

For instance, if we let a � 9 and 
b � 16, then we see the error:

 5 � 7  Wrong!

 125 � 3 � 4

 19 � 16 � 19 � 116

1a � b � 1a � 1b

PROPERTIES OF nth ROOTS

Property Example

1.

2.

3. 3mn
a
_

4. if n is odd

5. if n is even 24 1�3 2 4 � 0 �3 0 � 32n an � 0 a 0

23 1�5 2 3 � �5, 25 25 � 22n an � a

313 729 � 16 729 � 33m 1n a �

B4 16

81
�
14 1614 81

�
2

3Bn a

b
�
2n a2n b

13 �8 # 27 � 13 �813 27 � 1�2 2 13 2 � �62n ab � 2n a2n b
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So by the definition of nth root,

In general, we define rational exponents as follows.

With this definition it can be proved that the Laws of Exponents also hold for rational
exponents (see page 19).

E X A M P L E  3 Using the Definition of Rational Exponents

(a)

(b) Alternative solution:

(c)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 51 AND 53 ■

E X A M P L E  4 Using the Laws of Exponents 
with Rational Exponents

(a) Law 1: aman � am�n

(b) Law 1, Law 2:

(c) Law 4:

Law 3:

(d) Laws 5, 4, and 7

Law 3

Laws 1 and 2

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 61, 65, 67 AND 71 ■

E X A M P L E  5 Simplifying by Writing Radicals 
as Rational Exponents

(a)
123 x4

�
1

x4/3
� x�4/3

 � 8x11/4y3

 �
8x9/4

y
# y4x1/2

 a
2x3/4

y1/3
b

3

a
y4

x�1/2
b �

231x3/4 2 3

1y1/3 2 3
# 1y4x1/2 2

 � 212a9/2b6

1am 2 n � amn � 112 2 3a313/22b413/22

1abc 2 n � anbncn12a3b4 2 3/2 � 23/21a3 2 3/21b4 2 3/2

am

an � am�n
a2/5a7/5

a3/5
� a2/5�7/5�3/5 � a6/5

a1/3a7/3 � a8/3

125�1/3 �
1

1251/3
�

113 125
�

1

5

82/3 � 23 82 � 23 64 � 482/3 � 113 8 2 2 � 22 � 4

41/2 � 14 � 2

a1/n � 1n a

DEFINITION OF RATIONAL EXPONENTS

For any rational exponent m/n in lowest terms, where m and n are integers and 
n 	 0, we define

If n is even, then we require that a � 0.

am/n � 11n a 2m  or, equivalently,  am/n � 2n am
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(b) Definition of rational exponents

Law 1

(c) Definition of rational exponents

Law 1

Law 3

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 73, 77, AND 87 ■

▼ Rationalizing the Denominator; Standard Form
It is often useful to eliminate the radical in a denominator by multiplying both numerator
and denominator by an appropriate expression. This procedure is called rationalizing the
denominator. If the denominator is of the form , we multiply numerator and denom-
inator by . In doing this we multiply the given quantity by 1, so we do not change its
value. For instance,

Note that the denominator in the last fraction contains no radical. In general, if the de-
nominator is of the form with m � n, then multiplying the numerator and denomi-
nator by will rationalize the denominator, because (for a 	 0)

A fractional expression whose denominator contains no radicals is said to be in stan-
dard form.

E X A M P L E  6 Rationalizing Denominators

Put each fractional expression into standard form by rationalizing the denominator.

(a) (b) (c)

S O L U T I O N

(a) Multiply by 

(b) Multiply by 

(c) Multiply by 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 89, 91, AND 93 ■

25 x 2 # 25 x 3 � 25 x 5 � x �
25 x3

x

25 x 325 x 3

125 x 2
�

125 x 2
# 25 x 325 x 3

23 5 # 23 52 � 23 53 � 5 �
23 25

5

23 5223 52

123 5
�

123 5
# 23 5223 52

13 # 13 � 3 �
213

3

1313
 

213
�

213
# 1313

125 5x2

123 5

213

2n am2n an�m � 2n am�n�m � 2n an � a

2n an�m
2n am

11a
�

11a
# 1 �

11a
# 1a1a

�
1a
a

1a
1a

 � x3/4

 � 1x3/2 2 1/2

 3x2x � 1xx1/2 2 1/2

 � 6x1/2�1/3 � 6x5/6

 121x 2 1313 x 2 � 12x1/2 2 13x1/3 2

This equals 1
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C O N C E P T S
1. Using exponential notation, we can write as .

2. Using radicals, we can write 51/2 as . 

3. Is there a difference between and ? Explain.

4. Explain what 43/2 means, then calculate 43/2 in two different ways:

141/2 2 � or 1432 �

5. Explain how we rationalize a denominator, then complete the

following steps to rationalize :

6. Find the missing power in the following calculation:
51/3 � 5. 

S K I L L S
7–14 ■ Write each radical expression using exponents, and each
exponential expression using radicals.

Radical expression Exponential expression

7.

8.

9. 42/3

10. 6�3/2

11.

12. 3�1.5

13. a2/5

14.

15.

16.

17–24 ■ Evaluate each expression.

17. (a) (b) (c)

18. (a) (b) (c)

19. (a) (b) (c)

20. (a) (b) (c)

21. (a) (b) (c)

22. (a) (b) (c) 23 1523 75
25426

212224

24 2424 54
24823

27228

218
49

212225
223 81

227
4

218281
323 16

25 �3223 �64164

24 1
1624 16116

y�5/3

23 y4

12x5

25 53

23 52

117

# 5

113
�

113
# ∞

†
�

†
∞

113

115 2 2252

23 5
23. (a) (b) (c)

24. (a) (b) (c)

25–38 ■ Simplify the expression. Assume that the letters denote
any real numbers.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39–50 ■ Simplify the expression. Assume that all letters denote
positive numbers.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51–56 ■ Evaluate each expression.

51. (a) (b) (c)

52. (a) (b) (c)

53. (a) (b) (c)

54. (a) (b) (c)

55. (a) (b) (c)

56. (a) (b) (c)

57–60 ■ Evaluate the expression using x � 3, y � 4, and z � �1.

57. 58.

59. 60.

61–72 ■ Simplify the expression and eliminate any negative expo-
nent(s). Assume that all letters denote positive numbers.

61. (a) (b) y2/3y4/3x3/4x5/4

1xy 2 2z19x 2 2/3 � 12y 2 2/3 � z2/3

24 x3 � 14y � 2z2x2 � y2

125 6 2�1072/3

75/3
32/7 # 312/7

123 4 2 3
33/5

32/5
52/3 # 51/3

27�4/3A25
64B

3/21252/3

A16
81 B

3/4
A49 B

�1/2
322/5

�A18 B
1/3

1�8 2 1/3271/3

9�1/2�1251/3161/4

4218rt 3 � 5232r 3t 523 16a5 � 323 2a2

23 2y4 � 23 2y23 x 4 � 23 8x

216x � 2x 529a3 � 2a

18 � 15023 108 � 23 32

23 54 � 23 161125 � 145

175 � 148132 � 118

24 x4y2z223 164x6

23 a2b23 a4b25 a6b7

24 48a7b4236r 2t 4

2x4y423 x3y

23 x3y624 16x8

23 8a525 32y6

25 x1024 x4

23 423 108
26 1

226 12825 1
825 1

4

24 1
424 1

6423 223 32
221626

P. 4  E X E R C I S E S
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A P P L I C A T I O N S
95. How Far Can You See? Because of the curvature of the

earth, the maximum distance D that you can see from the top
of a tall building of height h is estimated by the formula

where r � 3960 mi is the radius of the earth and D and h are
also measured in miles. How far can you see from the observa-
tion deck of the Toronto CN Tower, 1135 ft above the ground?

96. Speed of a Skidding Car Police use the formula
to estimate the speed s (in mi/h) at which a car is

traveling if it skids d feet after the brakes are applied suddenly.
The number f is the coefficient of friction of the road, which is
a measure of the “slipperiness” of the road. The following
table gives some typical estimates for f.

(a) If a car skids 65 ft on wet concrete, how fast was it
moving when the brakes were applied?

(b) If a car is traveling at 50 mi/h, how far will it skid on
wet tar?

97. Sailboat Races The speed that a sailboat is capable of sail-
ing is determined by three factors: its total length L, the sur-
face area A of its sails, and its displacement V (the volume of
water it displaces).

In general, a sailboat is capable of greater speed if it is longer,
has a larger sail area, or displaces less water. To make sailing
races fair, only boats in the same “class” can qualify to race to-
gether. For a certain race, a boat is considered to qualify if

0.30L � 0.38A1/2 � 3V 1/3 
 16

s � 230fd

r

CN Tower

D � 22rh � h2

62. (a) (b)

63. (a) (b)

64. (a) (b)

65. (a) (b)

66. (a) (b)

67. (a) (b)

68. (a) (b)

69. (a) (b)

70. (a) (b)

71. (a) (b)

72. (a) (b)

73–88 ■ Simplify the expression and express the answer using ra-
tional exponents. Assume that all letters denote positive numbers.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87. 88.

89–94 ■ Put each fractional expression into standard form by 
rationalizing the denominator.

89. (a) (b) (c)

90. (a) (b) (c)

91. (a) (b) (c)

92. (a) (b) (c)

93. (a) (b) (c)

94. (a) (b) (c)
123 x4

124 x3

123 x2

127 x3

126 x 5

123 x

324 23

224 3

125 23

825 2

124 3

123 4

216

512

1213

913

312

116

2s1s323 y1y

B3 54x2y4

2x5yB16u3√
u√5

2a3b24 a3b2

1xy24 16xy

23 8x22x

24 x724 x3

25 x3y22x4y161024st326 s3t2

A21a B A23 a2BA513 x B  A214 x B

24 b31bA26 y5B A23 y2B

125 x 3
29 x 5

a
�8y3/4

y3z6 b
�1/3

a
x8y�4

16y4/3
b

�1/4

a
4y3z2/3

x1/2
b

2

a
x�3y6

8z4 b
1/3

a
x�2/3

y1/2
b a

x�2

y�3 b
1/6

12x3y�1/4 2 218y�3/2 2�1/31x�5y1/3 2�3/5

1u4√6 2�1/318y3 2�2/3

116„8z3/2 2 3/4
164a6b3 2 2/3

14a6b8 2 3/218a6b3/2 2 2/3

12y4/3 2 2y�2/3

y7/3

x 3/4x 7/4

x 5/4

s5/212s5/4 2 2

s1/2

„4/3„ 
2/3

„1/3

132„ 2 3/512„1/5 2 2127y 2 1/31y5/3 2

13a3/4 2 215a1/2 214b 2 1/218b1/4 2

a3/5a3/10r 1/6r 5/6

Tar Concrete Gravel

Dry 1.0 0.8 0.2
Wet 0.5 0.4 0.1

Unless otherwise noted, all content on this page is © Cengage Learning.
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D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
99. Limiting Behavior of Powers Complete the following

tables. What happens to the nth root of 2 as n gets large?
What about the nth root of ?

Construct a similar table for n1/n. What happens to the nth
root of n as n gets large?

100. Comparing Roots Without using a calculator, determine
which number is larger in each pair.

(a) 21/2 or 21/3 (b) or 

(c) 71/4 or 41/3 (d) or 1313 5

A12B
1/3

A12B
1/2

1
2

where L is measured in feet, A in square feet, and V in cubic
feet. Use this inequality to answer the following questions.
(a) A sailboat has length 60 ft, sail area 3400 ft2, and dis-

placement 650 ft3. Does this boat qualify for the race?
(b) A sailboat has length 65 ft and displaces 600 ft3. What is

the largest possible sail area that could be used and still
allow the boat to qualify for this race?

98. Flow Speed in a Channel The speed of water flowing in a
channel, such as a canal or river bed, is governed by the Man-
ning Equation,

Here V is the velocity of the flow in ft/s; A is the cross-
sectional area of the channel in square feet; S is the downward
slope of the channel; p is the wetted perimeter in feet (the dis-
tance from the top of one bank, down the side of the channel,
across the bottom, and up to the top of the other bank); and n
is the roughness coefficient (a measure of the roughness of the
channel bottom). This equation is used to predict the capacity
of flood channels to handle runoff from heavy rainfalls. 
For the canal shown in the figure, A � 75 ft2, S � 0.050,
p � 24.1 ft, and n � 0.040.
(a) Find the speed at which water flows through the canal.
(b) How many cubic feet of water can the canal discharge per

second? [Hint: Multiply V by A to get the volume of the
flow per second.]

5 ft

10 ft

20 ft

V � 1.486 
A2/3S1/2

p2/3n

A variable is a letter that can represent any number from a given set of numbers. If we
start with variables, such as x, y, and z and some real numbers, and we combine them us-
ing addition, subtraction, multiplication, division, powers, and roots, we obtain an alge-
braic expression. Here are some examples:

A monomial is an expression of the form axk, where a is a real number and k is a non-
negative integer. A binomial is a sum of two monomials and a trinomial is a sum of three
monomials. In general, a sum of monomials is called a polynomial. For example, the first
expression listed above is a polynomial, but the other two are not.

2x2 � 3x � 4   1x � 10   
y � 2z
y2 � 4

P.5 ALGEBRAIC EXPRESSIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Add and subtract polynomials � Multiply algebraic expressions � Use the
Special Product Formulas

n 21/n

1
2
5

10
100

n

1
2
5

10
100

A12B
1/n

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_ChP_001-072.qxd  12/2/11  9:20 AM  Page 31



32 C H A P T E R  P | Prerequisites

Note that the degree of a polynomial is the highest power of the variable that appears
in the polynomial.

▼ Adding and Subtracting Polynomials
We add and subtract polynomials using the properties of real numbers that were dis-
cussed in Section P.2. The idea is to combine like terms (that is, terms with the same vari-
ables raised to the same powers) using the Distributive Property. For instance,

In subtracting polynomials, we have to remember that if a minus sign precedes an ex-
pression in parentheses, then the sign of every term within the parentheses is changed
when we remove the parentheses:

[This is simply a case of the Distributive Property, , with a � �1.]

E X A M P L E  1 Adding and Subtracting Polynomials

(a) Find the sum .

(b) Find the difference .

S O L U T I O N

(a)

Group like terms

Combine like terms

(b)

Distributive Property

Group like terms

Combine like terms

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

 � �11x2 � 9x � 4

 � 1x3 � x3 2 � 1�6x2 � 5x2 2 � 12x � 7x 2 � 4

 � x3 � 6x2 � 2x � 4 � x3 � 5x2 � 7x

1x3 � 6x2 � 2x � 4 2 � 1x3 � 5x2 � 7x 2

 � 2x3 � x2 � 5x � 4

 � 1x3 � x3 2 � 1�6x2 � 5x2 2 � 12x � 7x 2 � 4

1x3 � 6x2 � 2x � 4 2 � 1x3 � 5x2 � 7x 2

1x3 � 6x2 � 2x � 4 2 � 1x3 � 5x2 � 7x 2

1x3 � 6x2 � 2x � 4 2 � 1x3 � 5x2 � 7x 2

a1b � c 2 � ab � ac

�1b � c 2 � �b � c

5x7 � 3x7 � 15 � 3 2x7 � 8x7

POLYNOMIALS

A polynomial in the variable x is an expression of the form

where a0, a1, . . . , an are real numbers, and n is a nonnegative integer. If an � 0,
then the polynomial has degree n. The monomials a kxk that make up the poly-
nomial are called the terms of the polynomial.

a n 
x 

n � an�1x
n�1 � . . . � a1x � a0

Polynomial Type Terms Degree

2x2 � 3x � 4 trinomial 2x2, �3x, 4 2

x8 � 5x binomial x8, 5x 8

8 � x � x2 � four terms , x2, �x, 8 3

5x � 1 binomial 5x, 1 1

9x5 monomial 9x5 5

6 monomial 6 0

� 
1
2 x31

2 x3

Distributive Property

ac � bc � 1a � b 2c
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▼ Multiplying Algebraic Expressions

To find the product of polynomials or other algebraic expressions, we need to use the
Distributive Property repeatedly. In particular, using it three times on the product of two
binomials, we get

This says that we multiply the two factors by multiplying each term in one factor by each
term in the other factor and adding these products. Schematically, we have

� � � �

F O I L

In general, we can multiply two algebraic expressions by using the Distributive Prop-
erty and the Laws of Exponents.

E X A M P L E  2 Multiplying Binomials Using FOIL

Distributive Property
� � � �

F O I L

Combine like terms

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

When we multiply trinomials or other polynomials with more terms, we use the Dis-
tributive Property. It is also helpful to arrange our work in table form. The next example
illustrates both methods.

E X A M P L E  3 Multiplying Polynomials

Find the product:

S O L U T I O N  1: Using the Distributive Property

S O L U T I O N  2: Using Table Form

Multiply x2 � 5x � 4 by 3

Multiply x2 � 5x � 4 by 2x

Add like terms

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 65 ■

2x3 �  7x2 �  7x � 12

2x3 � 10x2 �  8x

3x2 � 15x � 12

 2x � 3

x 2 � 5x � 4

12x � 3 2 1x 2 � 5x � 4 2

 � 6x2 � 7x � 5

12x � 1 2 13x � 5 2 � 6x2 � 10x � 3x � 5

1a � b 2 1c � d 2 � ac � ad � bc � bd

1a � b 2 1c � d 2 � a1c � d 2 � b1c � d 2 � ac � ad � bc � bd

S E C T I O N  P. 5 | Algebraic Expressions 33

Distributive Property

Distributive Property

Laws of Exponents

Combine like terms � 2x3 � 7x2 � 7x � 12

 � 12x3 � 10x2 � 8x 2 � 13x2 � 15x � 12 2

 � 12x # x2 � 2x # 5x � 2x # 4 2 � 13 # x2 � 3 # 5x � 3 # 4 2

12x � 3 2 1x2 � 5x � 4 2 � 2x1x2 � 5x � 4 2 � 31x2 � 5x � 4 2

The acronym FOIL helps us remember
that the product of two binomials is the
sum of the products of the First terms,
the Outer terms, the Inner terms, and
the Last terms.
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▼ Special Product Formulas
Certain types of products occur so frequently that you should memorize them. You can
verify the following formulas by performing the multiplications.

The key idea in using these formulas (or any other formula in algebra) is the 
Principle of Substitution: We may substitute any algebraic expression for any letter in a
formula. For example, to find we use Product Formula 2, substituting x2 for A
and y3 for B, to get

E X A M P L E  4 Using the Special Product Formulas

Use a Special Product Formula to find each product.

(a) (b)

S O L U T I O N

(a) Substituting A � 3x and B � 5 in Product Formula 2, we get

(b) Substituting A � x2 and B � 2 in Product Formula 5, we get

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 43 AND 61 ■

E X A M P L E  5 Using the Special Product Formulas

Find each product.

(a) (b)

S O L U T I O N

(a) Substituting A � 2x and B � in Product Formula 1, we get

12x � 1y 2 12x � 1y 2 � 12x 2 2 � 11y 2 2 � 4x2 � y

1y

1x � y � 1 2 1x � y � 1 212x � 1y 2 12x � 1y 2

 � x6 � 6x4 � 12x2 � 8

 1x2 � 2 2 3 � 1x2 2 3 � 31x2 2 212 2 � 31x2 2 12 2 2 � 23

13x � 5 2 2 � 13x 2 2 � 213x 2 15 2 � 52 � 9x2 � 30x � 25

1x2 � 2 2 313x � 5 2 2

1x2 � y3 2 2 � 1x2 2 2 � 21x2 2 1y3 2 � 1y3 2 2

1x2 � y3 2 2

SPECIAL PRODUCT FORMUL AS

If A and B are any real numbers or algebraic expressions, then

1. Sum and difference of same terms

2. Square of a sum

3. Square of a difference

4. Cube of a sum

5. Cube of a difference1A � B 2 3 � A3 � 3A2B � 3AB2 � B3

1A � B 2 3 � A3 � 3A2B � 3AB2 � B3

1A � B 2 2 � A2 � 2AB � B2

1A � B 2 2 � A2 � 2AB � B2

1A � B 2 1A � B 2 � A2 � B2

See the Discovery Project referenced
on page 36 for a geometric interpreta-
tion of some of these formulas.

(A � B)2 � A2 � 2AB � B2
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(b) If we group x � y together and think of this as one algebraic expression, we can
use Product Formula 1 with A � x � y and B � 1:

Product Formula 1

Product Formula 2

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 59 AND 83 ■

 � x2 � 2xy � y2 � 1

 � 1x � y 2 2 � 12

 1x � y � 1 2 1x � y � 1 2 � 3 1x � y 2 � 1 4 3 1x � y 2 � 1 4

C O N C E P T S
1. Which of the following expressions are polynomials?

(a) (b)

(c) (d)

(e) (f)

2. To add polynomials, we add terms. So 

.

3. To subtract polynomials, we subtract terms. So 

.

4. Explain how we multiply two polynomials, then perform the 

following multiplication: 1x � 22 1x � 32 � .

5. The Special Product Formula for the “square of a sum” is 

1A � B22 � . So 12x � 322 � .

6. The Special Product Formula for the product of the “sum and 

difference of terms” is 1A � B2 1A � B2 � . 

So 15 � x2 15 � x2 � .

S K I L L S
7–12 ■ Complete the following table by stating whether the poly-
nomial is a monomial, binomial, or trinomial, then list its terms
and state its degree.

Polynomial Type Terms Degree

7. x2 � 3x � 7

8. 2x5 � 4x2

9. �8

10.

11. x � x2 � x3 � x4

12. 12x � 13

1
2 x7

12x3 � 9x2 � x � 10 2 � 1x3 � x2 � 6x � 8 2 �

13x2 � 2x � 4 2 � 18x2 � x � 1 2 �

23x 4 � 25x 2 � 15x23 8x 6 � 5x 3 � 7x � 3

x 5 � 7x 2 � x � 100
1

x 2 � 4x � 7

x 2 � 1
2 � 32x2x 3 � 1

2x � 23

13–30 ■ Find the sum, difference, or product.

13. 14.

15.

16.

17. 31x � 12 � 41x � 22

18. 812x � 52 � 71x � 92

19. 1x3 � 6x2 � 4x � 72 � Ó3x2 � 2x � 42

20. 41x2 � 3x � 52 � 31x2 � 2x � 12

21. 2x 1x � 12 22. 3y 12y � 52

23. x2 1x � 32 24. �y 1y2 � 22

25. 26.

27. 28.

29. 30.

31–42 ■ Multiply the algebraic expressions using the FOIL
method, and simplify.

31. 32.

33. 34.

35. 13t � 22 17t � 42 36. 14s � 12 12s � 52

37. 13x � 52 12x � 12 38. 17y � 32 12y � 12

39. 1x � 3y2 12x � y2 40. 14x � 5y2 13x � y2

41. 12r � 5s2 13r � 2s2 42. 16u � 5√2 1u � 2√2

43–64 ■ Multiply the algebraic expressions using a Special 
Product Formula, and simplify.

43. 44.

45. 46.

47. 12u � √22 48. 1x � 3y22

49. 12x � 3y22 50. 1r � 2s22

51. 1x2 � 122 52. 12 � y322

53. 1x � 52 1x � 52 54. 1y � 32 1y � 32

55. 13x � 42 13x � 42 56. 12y � 52 12y � 52

57. 1x � 3y2 1x � 3y2 58. 12u � √2 12u � √2

12y � 5 2 213y � 1 2 2
1x � 3 2 21x � 5 2 2

12t � 3 2 1t � 1 21s � 6 2 12s � 3 2

14 � x 2 12 � x 21x � 3 2 1x � 5 2

3x31x4 � 4x2 � 5 2x212x2 � x � 1 2

√ 31√ � 9 2 � 2√ 212 � 2√ 2r1r 2 � 9 2 � 3r 212r � 1 2

513t � 4 2 � 2t1t � 3 2212 � 5t 2 � t1t � 10 2

1x 2 � 10x � 3 2 � 13x 2 � 12x � 5 2

12x 2 � 5x 2 � 1x 2 � 8x � 3 2

13 � 7x 2 � 111 � 4x 216x � 3 2 � 13x � 7 2

P. 5  E X E R C I S E S
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59. 60.

61. 1y � 223 62. 1x � 323

63. 11 � 2r23 64. 13 � 2y23

65–84 ■ Perform the indicated operations, and simplify.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77.

78.

79. 80.

81.

82.

83. 12x � y � 32 12x � y � 32 84. 1x � y � z2 1x � y � z2

A P P L I C A T I O N S
85. Volume of a Box An open box is constructed from a 6 in.

by 10 in. sheet of cardboard by cutting a square piece from
each corner and then folding up the sides, as shown in the
figure. The volume of the box is

V � x 16 � 2x2 110 � 2x2

(a) Explain how the expression for V is obtained.
(b) Expand the expression for V. What is the degree of the re-

sulting polynomial?
(c) Find the volume when x � 1 and when x � 2.

86. Building Envelope The building code in a certain town re-
quires that a house be at least 10 ft from the boundaries of the
lot. The buildable area (or building envelope) for the rectangu-
lar lot shown in the following figure is given by

A � 1x � 202 1y � 202

(a) Explain how the expression for A is obtained.
(b) Expand to express A as a polynomial in x and y.
(c) A contractor has a choice of purchasing one of two rectan-

gular lots, each having the same area. One lot measures
100 ft by 400 ft; the other measures 200 ft by 200 ft.
Which lot has the larger building envelope?

1x � 12 � x2 2 2 1x � 12 � x2 2 2

1 1x � 1 2 � x2 2 1 1x � 1 2 � x2 2

11 � b 2 211 � b 2 211 � x2/3 2 11 � x2/3 2

12h2 � 1 � 1 2 12h2 � 1 � 1 2

11a � b 2 11a � b 2

1x1/2 � y1/2 2 1x1/2 � y1/2 21x2 � a2 2 1x2 � a2 2

a c �
1
c
b

2

1x2 � y2 2 2

x1/412x3/4 � x1/4 2y1/31y2/3 � y5/3 2

x3/211x � 1/1x 21x1x � 1x 2

11 � 2x 2 1x2 � 3x � 1 212x � 5 2 1x2 � x � 1 2

1x � 1 2 12x2 � x � 1 21x � 2 2 1x2 � 2x � 3 2

11y � 12 2 11y � 12 211x � 2 2 11x � 2 2

36 C H A P T E R  P | Prerequisites

87. Interest on an Investment A 3-year certificate of deposit
pays interest at a rate r compounded annually. If $2000 is
invested, then the amount at maturity is

A � 2000 11 � r23

(a) Expand the expression for A. What is the degree of the 
resulting polynomial?

(b) Find the amounts A for the values of r in the table.

88. Profit A wholesaler sells graphing calculators. For an order
of x calculators his total cost in dollars is 

C � 50 � 30x � 0.1x2

and his total revenue is 

R � 50x � 0.05x2

(a) Find the profit P on an order of x calculators.
(b) Find the profit on an order of 10 calculators and on an 

order of 20 calculators.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
89. An Algebra Error Beginning algebra students sometimes

make the following error when squaring a binomial:

1x � 522 � x2 � 25

(a) Substitute a value for x to verify that this is an error.
(b) What is the correct expansion for 1x � 522?

90. Degrees of Sums and Products of Polynomials Make
up several pairs of polynomials, then calculate the sum and
product of each pair. On the basis of your experiments and ob-
servations, answer the following questions.
(a) How is the degree of the product related to the degrees of

the original polynomials?
(b) How is the degree of the sum related to the degrees of the

original polynomials?
(c) Test your conclusions by finding the sum and product of

the following polynomials:

2x3 � x � 3 and �2x3 � x � 7

10 in.

6 in.

x

x

x

x

x

x

x

x
6 _ 2x

10 _ 2x

10 ft

10 ft

Building
envelope

x

y

Interest rate r 2% 3% 4.5% 6% 10%

Amount A

Visualizing a Formula

In this project we discover geometric interpretations of some
of the Special Product Formulas. You can find the project at
the book companion website: www.stewartmath.com

❍ DISCOVERY
PROJECT

Unless otherwise noted, all content on this page is © Cengage Learning.
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C H E C K  Y O U R  A N S W E R

(a) Multiplying gives

✓

(b) Multiplying gives

✓� 8x 4y2 � 6x 3y3 � 2xy4

2xy214x 3 � 3x 2y � y2 23x1x � 2 2 � 3x2 � 6x

P.6 FACTORING

LEARNING OBJECTIVES After completing this section, you will be able to:

Factor out common factors � Factor trinomials by trial and error � Use the
Special Factoring Formulas � Factor algebraic expressions completely
� Factor by grouping terms

We use the Distributive Property to expand algebraic expressions. We sometimes need to
reverse this process (again using the Distributive Property) by factoring an expression as
a product of simpler ones. For example, we can write

We say that x � 2 and x � 2 are factors of x2 � 4.

▼ Common Factors
The easiest type of factoring occurs when the terms have a common factor.

E X A M P L E  1 Factoring Out Common Factors

Factor each expression.

(a) (b)

S O L U T I O N

(a) The greatest common factor of the terms 3x2 and �6x is 3x, so we have

(b) We note that

8, 6, and �2 have the greatest common factor 2

x4, x3, and x have the greatest common factor x

y2, y3, and y4 have the greatest common factor y2

So the greatest common factor of the three terms in the polynomial is 2xy2, and we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 7 AND 9 ■

E X A M P L E  2 Factoring Out a Common Factor

Factor: 12x � 421x � 32 � 51x � 32

 � 2xy214x3 � 3x2y � y2 2

 8x4y2 � 6x3y3 � 2xy4 � 12xy2 2 14x3 2 � 12xy2 2 13x2y 2 � 12xy2 2 1�y2 2

3x2 � 6x � 3x 1x � 2 2

8x4y2 � 6x3y3 � 2xy43x2 � 6x

x2 � 4 � 1x � 2 2 1x � 2 2

Unless otherwise noted, all content on this page is © Cengage Learning.
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S O L U T I O N The two terms have the common factor x � 3.

Distributive Property

Simplify

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 11 ■

▼ Factoring Trinomials
To factor a trinomial of the form x2 � bx � c, we note that

so we need to choose numbers r and s so that r � s � b and rs � c.

E X A M P L E  3 Factoring x2 � bx � c by Trial and Error

Factor: x2 � 7x � 12

S O L U T I O N We need to find two integers whose product is 12 and whose sum is 7.
By trial and error we find that the two integers are 3 and 4. Thus the factorization is

factors of 12

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 13 ■

To factor a trinomial of the form ax2 � bx � c with a � 1, we look for factors of the
form px � r and qx � s:

Therefore we try to find numbers p, q, r, and s such that pq � a, rs � c, ps � qr � b. If
these numbers are all integers, then we will have a limited number of possibilities to try
for p, q, r, and s.

E X A M P L E  4 Factoring ax2 � bx � c by Trial and Error

Factor: 6x2 � 7x � 5

S O L U T I O N We can factor 6 as or , and �5 as or . By trying
these possibilities, we arrive at the factorization

factors of 6

factors of �5

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

E X A M P L E  5 Recognizing the Form of an Expression

Factor each expression.

(a) (b) 15a � 1 2 2 � 215a � 1 2 � 3x2 � 2x � 3

6x2 � 7x � 5 � 13x � 5 2 12x � 1 2

5 # 1�1 2�5 # 13 # 26 # 1

ax2 � bx � c � 1px � r 2 1qx � s 2 � pqx2 � 1ps � qr 2x � rs

x2 � 7x � 12 � 1x � 3 2 1x � 4 2

1x � r 2 1x � s 2 � x2 � 1r � s 2x � rs

 � 12x � 1 2 1x � 3 2

12x � 4 2 1x � 3 2 � 51x � 3 2 � 3 12x � 4 2 � 5 4 1x � 3 2
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C H E C K  Y O U R  A N S W E R

Multiplying gives

✓1x � 3 2 1x � 4 2 � x2 � 7x � 12

factors of a
� �

ax2 � bx � c � Ópx � rÔÓqx � sÔ
� �
factors of c

C H E C K  Y O U R  A N S W E R

Multiplying gives

✓13x � 5 2 12x � 1 2 � 6x2 � 7x � 5
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S O L U T I O N

(a) Trial and error

(b) This expression is of the form
2 � 2 � 3

where represents 5a � 1. This is the same form as the expression in part (a),
so it will factor as 1 � 32 1 � 12 :

1 22 � 21 2 � 3 � 31 2 � 34 31 2 � 14

� 15a � 22 15a � 22

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

▼ Special Factoring Formulas
Some special algebraic expressions can be factored using the following formulas. The first
three are simply Special Product Formulas written backward.

E X A M P L E  6 Factoring Differences of Squares

Factor each expression.

(a) (b)

S O L U T I O N

(a) Using the Difference of Squares Formula with A � 2x and B � 5, we have

(b) We use the Difference of Squares Formula with A � x � y and B � z:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 23 AND 27 ■

E X A M P L E  7 Recognizing Perfect Squares

Factor each trinomial:

(a) (b)

S O L U T I O N

(a) Here A � x and B � 3, so . Since the middle term is 6x, the
trinomial is a perfect square. By the Perfect Square Formula we have

x2 � 6x � 9 � 1x � 3 2 2

2AB � 2 # x # 3 � 6x

4x2 � 4xy � y2x2 � 6x � 9

1x � y 2 2 � z2 � 1x � y � z 2 1x � y � z 2

4x2 � 25 � 12x 2 2 � 52 � 12x � 5 2 12x � 5 2

1x � y 2 2 � z24x2 � 25

5a � 15a � 15a � 15a � 1

x2 � 2x � 3 � 1x � 3 2 1x � 1 2

A2 � B2 � (A � B)( A � B)

FACTORING FORMUL AS

Formula Name

1. Difference of squares

2. Perfect square

3. Perfect square

4. Difference of cubes

5. Sum of cubesA3 � B3 � 1A � B 2 1A2 � AB � B2 2

A3 � B3 � 1A � B 2 1A2 � AB � B2 2

A2 � 2AB � B2 � 1A � B 2 2

A2 � 2AB � B2 � 1A � B 2 2

A2 � B2 � 1A � B 2 1A � B 2
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(b) Here A � 2x and B � y, so . Since the middle term is �4xy,
the trinomial is a perfect square. By the Perfect Square Formula we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 29 AND 35 ■

E X A M P L E  8 Factoring Differences and Sums of Cubes

Factor each polynomial:

(a) (b)

S O L U T I O N

(a) Using the Difference of Cubes Formula with A � 3x and B � 1, we get

(b) Using the Sum of Cubes Formula with A � x2 and B � 2, we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 39 AND 43 ■

A trinomial is a perfect square if it is of the form

or

So we recognize a perfect square if the middle term (2AB or �2AB) is plus or minus
twice the product of the square roots of the outer two terms.

▼ Factoring an Expression Completely
When we factor an expression, the result can sometimes be factored further. In general,
we first factor out common factors, then inspect the result to see whether it can be fac-
tored by any of the other methods of this section. We repeat this process until we have fac-
tored the expression completely.

E X A M P L E  9 Factoring an Expression Completely

Factor each expression completely.

(a) (b)

S O L U T I O N

(a) We first factor out the power of x with the smallest exponent:

Common factor is 2x2

Factor x2 � 4 as a difference of squares

(b) We first factor out the powers of x and y with the smallest exponents:

Common factor is xy2

Factor x4 � y 4 as a difference of squares

Factor x2 � y 2 as a difference of squares

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 85 AND 89 ■

In the next example we factor out variables with fractional exponents. This type of fac-
toring occurs in calculus.

 � xy21x2 � y2 2 1x � y 2 1x � y 2

 � xy21x2 � y2 2 1x2 � y2 2

 x5y2 � xy6 � xy21x4 � y4 2

 � 2x21x � 2 2 1x � 2 2

 2x4 � 8x2 � 2x21x2 � 4 2

x5y2 � xy62x4 � 8x2

A2 � 2AB � B2A2 � 2AB � B2

x6 � 8 � 1x2 2 3 � 23 � 1x2 � 2 2 1x4 � 2x2 � 4 2

 � 13x � 1 2 19x2 � 3x � 1 2

 27x3 � 1 � 13x 2 3 � 13 � 13x � 1 2 3 13x 2 2 � 13x 2 11 2 � 12 4

x6 � 827x3 � 1

4x2 � 4xy � y2 � 12x � y 2 2

2AB � 2 # 2x # y � 4xy
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E X A M P L E  1 0 Factoring Expressions with Fractional Exponents

Factor each expression.

(a) (b)

S O L U T I O N

(a) Factor out the power of x with the smallest exponent, that is, x�1/2:

Factor out 3x�1/2

Factor the quadratic x2 � 3x � 2

(b) Factor out the power of 2 � x with the smallest exponent, that is, :

Factor out 

Simplify

Factor out 2

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 53 AND 55 ■

▼ Factoring by Grouping Terms
Polynomials with at least four terms can sometimes be factored by grouping terms. The
following example illustrates the idea.

E X A M P L E  1 1 Factoring by Grouping

Factor each polynomial.

(a) (b)

S O L U T I O N

(a) Group terms

Factor out common factors

Factor out x � 1 from each term

(b) Group terms

Factor out common factors

Factor out x � 2 from each term

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

 � 1x 2 � 3 2 1x � 2 2

 � x 21x � 2 2 � 31x � 2 2

 x 3 � 2x 2 � 3x � 6 � 1x 3 � 2x 2 2 � 13x � 6 2

 � 1x 2 � 4 2 1x � 1 2

 � x 21x � 1 2 � 41x � 1 2

 x 3 � x 2 � 4x � 4 � 1x 3 � x 2 2 � 14x � 4 2

x3 � 2x2 � 3x � 6x3 � x2 � 4x � 4

 � 212 � x 2�2/311 � x 2

 � 12 � x 2�2/312 � 2x 2

12 � x 2�2/3 12 � x 2�2/3x � 12 � x 2 1/3 � 12 � x 2�2/3 3x � 12 � x 2 4

12 � x 2�2/3

 � 3x�1/21x � 1 2 1x � 2 2

 3x 3/2 � 9x 1/2 � 6x�1/2 � 3x�1/21x 2 � 3x � 2 2

12 � x 2�2/3x � 12 � x 2 1/33x3/2 � 9x1/2 � 6x�1/2

C O N C E P T S
1. Consider the polynomial 2x5 � 6x4 � 4x3.

(a) How many terms does this polynomial have? 

List the terms:

(b) What factor is common to each term? 

Factor the polynomial: 2x5 � 6x4 � 4x3 � .

2. To factor the trinomial x2 � 7x � 10, we look for two integers 

whose product is and whose sum is .

These integers are and , so the trinomial

factors as .

P. 6  E X E R C I S E S

C H E C K  Y O U R  A N S W E R

To see that you have factored correctly, multiply using the Laws of Exponents.

(a) (b)

✓ ✓� 12 � x 2�2/3x � 12 � x 2 1/3
� 3x3/2 � 9x1/2 � 6x�1/2

12 � x 2�2/3 3x � 12 � x 2 43x�1/21x2 � 3x � 2 2
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3. The Special Factoring Formula for the “difference of squares”

is A2 � B2 � . So 4x2 � 25 factors as 

.

4. The Special Factoring Formula for a “perfect square” is 

A2 � 2AB � B2 � . So x2 � 10x � 25 

factors as .

S K I L L S
5–12 ■ Factor out the common factor.

5. 5a � 20 6. �3b � 12

7. �2x3 � 16x 8. 2x4 � 4x3 � 14x2

9. 2x2y � 6xy2 � 3xy 10. �7x4y2 � 14xy3 � 21xy4

11. y 1y � 62 � 9 1y � 62 12. 1z � 222 � 5 1z � 22

13–20 ■ Factor the trinomial.

13. x2 � 2x � 3 14. x2 � 6x � 5

15. x2 � 2x � 15 16. 2x2 � 5x � 7

17. 3x2 � 16x � 5 18. 5x2 � 7x � 6

19. 13x � 222 � 8 13x � 22 � 12

20. 21a � b22 � 5 1a � b2 � 3

21–28 ■ Factor the difference of squares.

21. 22.

23. 24.

25. 26.

27. 28.

29–36 ■ Factor the perfect square.

29. 30.

31. 32.

33. 34.

35. 36.

37–44 ■ Factor the sum or difference of cubes.

37. 38.

39. 40.

41. 42.

43. 44.

45–50 ■ Factor the expression by grouping terms.

45. x3 � 4x2 � x � 4 46. 3x3 � x2 � 6x � 2

47. 2x3 � x 2 � 6x � 3 48. �9x3 � 3x2 � 3x � 1

49. x3 � x2 � x � 1 50. x5 � x4 � x � 1

51–58 ■ Factor the expression completely. Begin by factoring out
the lowest power of each common factor.

51. 52. 3x�1/2 � 4x1/2 � x3/2x5/2 � x1/2

8r 3 � 64t 6u3 � √6

1 � 1000y327x 3 � y3

8 � 27„38a3 � 1

y3 � 64x 3 � 27

x 2 � 10xy � 25y29u2 � 6u√ � √2

16a2 � 24a � 94t 2 � 20t � 25

„2 � 16„ � 64z2 � 12z � 36

9 � 6y � y2x 2 � 10x � 25

x 2 � 1y � 5 2 21x � 3 2 2 � y2

a2 � 36b216y2 � z2

9a2 � 1649 � 4z2

9 � y2x 2 � 25

42 C H A P T E R  P | Prerequisites

53.

54.

55.

56.

57.

58.

59–84 ■ Factor the expression.

59. 12x3 � 18x 60. 30x3 � 15x4

61. 6y4 � 15y3 62. 5ab � 8abc

63. x2 � 2x � 8 64. x2 � 14x � 48

65. y2 � 8y � 15 66. z2 � 6z � 16

67. 2x2 � 5x � 3 68. 2x2 � 7x � 4

69. 9x2 � 36x � 45 70. 8x2 � 10x � 3

71. 6x2 � 5x � 6 72. 6 � 5t � 6t2

73. x2 � 36 74. 4x2 � 25

75. 49 � 4y2 76. 4t2 � 9s2

77. t2 � 6t � 9 78. x2 � 10x � 25

79. 4x2 � 4xy � y2 80. r2 � 6rs � 9s2

81. t3 � 1 82. x3 � 27

83. 8x3 � 125 84.

85–96 ■ Factor the expression completely.

85. x3 � 2x2 � x 86. 3x3 � 27x

87. x4 � 2x3 � 3x2 88.

89. x4y3 � x2y5 90. 18y3x2 � 2xy4

91. x6 � 8y3 92. 27a3 � b6

93. y3 � 3y2 � 4y � 12 94. y3 � y2 � y � 1

95. 2x3 � 4x2 � x � 2 96. 3x3 � 5x2 � 6x � 10

97–106 ■ Factor the expression and simplify.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106. 1a2 � 2a 2 2 � 21a2 � 2a 2 � 3

1a2 � 1 2 2 � 71a2 � 1 2 � 10

n1x � y 2 � 1n � 1 2 1y � x 2

y41y � 2 2 3 � y51y � 2 2 4

1x � 1 2 3x � 21x � 1 2 2x2 � x31x � 1 2

1x � 1 2 1x � 2 2 2 � 1x � 1 2 21x � 2 2

1a2 � 1 2b2 � 41a2 � 1 2

x21x2 � 1 2 � 91x2 � 1 2

a1 �
1
x
b

2

� a1 �
1
x
b

2

1a � b 2 2 � 1a � b 2 2

3„3 � 5„4 � 2„3

125 � 27y3

3x�1/21x2 � 1 2 5/4 � x3/21x2 � 1 2 1/4

2x1/31x � 2 2 2/3 � 5x4/31x � 2 2�1/3

x�1/21x � 1 2 1/2 � x1/21x � 1 2�1/2

1x2 � 1 2 1/2 � 21x2 � 1 2�1/2

1x � 1 2 7/2 � 1x � 1 2 3/2

x�3/2 � 2x�1/2 � x1/2
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(b) Factor the expression in part (a) to show that the area of
the mowed portion is also .

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
117. The Power of Algebraic Formulas Use the Difference of

Squares Formula to factor 172 � 162. Notice that it is easy to
calculate the factored form in your head but not so easy to
calculate the original form in this way. Evaluate each expres-
sion in your head:

(a) 5282 � 5272 (b) 1222 � 1202 (c) 10202 � 10102

Now use the product formula 1A � B2 1A � B2� A2 � B2 to
evaluate these products in your head:

(d) 49 51 (e) 998 1002

118. Differences of Even Powers 
(a) Factor the expressions completely: A4 � B4 and A6 � B6.
(b) Verify that 18,335 � 124 � 74 and that 

2,868,335 � 126 � 76.
(c) Use the results of parts (a) and (b) to factor the integers

18,335 and 2,868,335. Show that in both of these factor-
izations, all the factors are prime numbers.

119. Factoring An � 1 Verify the factoring formulas in the list
by expanding and simplifying the right-hand side in each case.

On the basis of the pattern displayed in this list, how do you
think A5 � 1 would factor? Verify your conjecture. Now gen-
eralize the pattern you have observed to obtain a factorization
formula for An � 1, where n is a positive integer.

A4 � 1 � 1A � 1 2 1A3 � A2 � A � 1 2

 A3 � 1 � 1A � 1 2 1A2 � A � 1 2

A2 � 1 � 1A � 1 2 1A � 1 2

##

x

x

b

b

x

x

4x1b � x 2
107–112 ■ Factor the expression completely. (This type of ex-
pression arises in calculus in using the “product rule.”) 

107.

108.

109.

110.

111.

112.

113. (a) Show that .

(b) Show that 

(c) Show that 

(d) Factor completely: .

114. Verify Factoring Formulas 4 and 5 by expanding their right-
hand sides.

A P P L I C A T I O N S
115. Volume of Concrete A culvert is constructed out of large

cylindrical shells cast in concrete, as shown in the figure. Us-
ing the formula for the volume of a cylinder given on the in-
side back cover of this book, explain why the volume of the
cylindrical shell is

Factor to show that

Use the “unrolled” diagram to explain why this makes sense
geometrically.

116. Mowing a Field A square field in a certain state park is
mowed around the edges every week. The rest of the field is
kept unmowed to serve as a habitat for birds and small ani-
mals (see the figure). The field measures b feet by b feet, and
the mowed strip is x feet wide.
(a) Explain why the area of the mowed portion is

.b2 � 1b � 2x 2 2

r
R

h h

V � 2p # average radius # height # thickness

V � pR2h � pr 2h

4a2c2 � 1a2 � b2 � c2 2 2

1a2 � b2 2 1c2 � d2 2 � 1ac � bd 2 2 � 1ad � bc 2 2

1a2 � b2 2 2 � 1a2 � b2 2 2 � 4a2b2.

ab � 1
2�1a � b 2 2 � 1a2 � b2 2 �

1
2 x

�1/213x � 4 2 1/2 � 3
2 x

1/213x � 4 2�1/2

1x2 � 3 2�1/3 � 2
3 x

21x2 � 3 2�4/3

1
3 1x � 6 2�2/312x � 3 2 2 � 1x � 6 2 1/312 2 12x � 3 2 12 2

312x � 1 2 212 2 1x � 3 2 1/2 � 12x � 1 2 3112 2 1x � 3 2�1/2

51x2 � 4 2 412x 2 1x � 2 2 4 � 1x2 � 4 2 514 2 1x � 2 2 3
3x214x � 12 2 2 � x312 2 14x � 12 2 14 2

Unless otherwise noted, all content on this page is © Cengage Learning.
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A quotient of two algebraic expressions is called a fractional expression. Here are some
examples:

A rational expression is a fractional expression in which both the numerator and de-
nominator are polynomials. For example, the first three expressions in the above list are
rational expressions, but the fourth is not, since its denominator contains a radical. In this
section we learn how to perform algebraic operations on rational expressions.

▼ The Domain of an Algebraic Expression
In general, an algebraic expression may not be defined for all values of the variable. The do-
main of an algebraic expression is the set of real numbers that the variable is permitted to
have. The table in the margin gives some basic expressions and their domains.

E X A M P L E  1 Finding the Domain of an Expression

Find the domains of the following expressions.

(a) (b) (c)

S O L U T I O N

(a) This polynomial is defined for every x. Thus the domain is the set � of real numbers.

(b) We first factor the denominator:

Since the denominator is zero when x � 2 or 3, the expression is not defined for
these numbers. The domain is .

(c) For the numerator to be defined, we must have x � 0. Also, we cannot divide by
zero, so x � 5.

Thus the domain is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 13 ■

5x 0  x � 0 and x � 56

1x

x � 5

5x 0  x � 2 and x � 36

x

x 2 � 5x � 6
�

x

1x � 2 2 1x � 3 2

1x

x � 5

x

x 2 � 5x � 6
2x2 � 3x � 1

x2x 2 � 1
x 3 � x

x 2 � 5x � 6

y � 2

y2 � 4
2x

x � 1

P.7 RATIONAL EXPRESSIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the domain of an algebraic expression � Simplify rational expressions
� Add, subtract, multiply, and divide rational expressions � Simplify 
compound fractions � Rationalize a denominator or numerator � Avoid 
common errors

Expression Domain

5x 0  x 	 06
11x

5x 0  x � 061x

5x 0  x � 06
1
x

Denominator would be 0 if 
x � 2 or x � 3

Must have x � 0 
to take square root Denominator would 

be 0 if x � 5
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▼ Simplifying Rational Expressions
To simplify rational expressions, we factor both numerator and denominator and use the
following property of fractions:

This allows us to cancel common factors from the numerator and denominator.

E X A M P L E  2 Simplifying Rational Expressions by Cancellation

Simplify:

S O L U T I O N We first factor:

Factor

Cancel common factors

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

▼ Multiplying and Dividing Rational Expressions
To multiply rational expressions, we use the following property of fractions:

This says that to multiply two fractions, we multiply their numerators and multiply their
denominators.

E X A M P L E  3 Multiplying Rational Expressions

Perform the indicated multiplication, and simplify:

S O L U T I O N We first factor:

Factor

Property of fractions

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

Cancel common
factors � 

31x � 3 2

x � 4

 � 
31x � 1 2 1x � 3 2 1x � 4 2

1x � 1 2 1x � 4 2 2

 
x 2 � 2x � 3

x 2 � 8x � 16
# 3x � 12

x � 1
�
1x � 1 2 1x � 3 2

1x � 4 2 2
# 31x � 4 2

x � 1

x 2 � 2x � 3

x 2 � 8x � 16
# 3x � 12

x � 1

 � 
x � 1

x � 2

 
x 2 � 1

x 2 � x � 2
�
1x � 1 2 1x � 1 2

1x � 1 2 1x � 2 2

x 2 � 1

x 2 � x � 2

AC

BC
�

A

B

A

B
# C

D
�

AC

BD

We can’t cancel the x2’s in 

because x2 is not a factor.
x 2 � 1

x 2 � x � 2
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To divide rational expressions, we use the following property of fractions:

This says that to divide a fraction by another fraction, we invert the divisor and multiply.

E X A M P L E  4 Dividing Rational Expressions

Perform the indicated division, and simplify:

S O L U T I O N

Invert divisor

Factor

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

▼ Adding and Subtracting Rational Expressions
To add or subtract rational expressions, we first find a common denominator and then
use the following property of fractions:

Although any common denominator will work, it is best to use the least common de-
nominator (LCD) as explained in Section P.2. The LCD is found by factoring each de-
nominator and taking the product of the distinct factors, using the highest power that ap-
pears in any of the factors.

E X A M P L E  5 Adding and Subtracting Rational Expressions

Perform the indicated operations, and simplify:

(a) (b)

S O L U T I O N

(a) Here the LCD is simply the product .

Add fractions

Combine terms in
numerator � 

x 2 � 2x � 6

1x � 1 2 1x � 2 2

 � 
3x � 6 � x 2 � x

1x � 1 2 1x � 2 2

Write fractions using
LCD 

3

x � 1
�

x

x � 2
�

31x � 2 2

1x � 1 2 1x � 2 2
�

x1x � 1 2

1x � 1 2 1x � 2 2

1x � 1 2 1x � 2 2

1

x 2 � 1
�

2

1x � 1 2 2
3

x � 1
�

x

x � 2

Cancel common
factors

 � 
x � 3

1x � 2 2 1x � 1 2

 � 
1x � 4 2 1x � 2 2 1x � 3 2

1x � 2 2 1x � 2 2 1x � 4 2 1x � 1 2

 
x � 4

x 2 � 4


x 2 � 3x � 4

x 2 � 5x � 6
�

x � 4

x 2 � 4
# x 2 � 5x � 6

x 2 � 3x � 4

x � 4

x 2 � 4


x 2 � 3x � 4

x 2 � 5x � 6

Avoid making the following error:

For instance, if we let A � 2, B � 1,
and C � 1, then we see the error:

Wrong! 1 � 4

 
2

2
� 2 � 2

 
2

1 � 1
�

2

1
�

2

1

A

B � C
�

A

B
�

A

C
A

C
�

B

C
�

A � B

C

and multiply

A

B


C

D
�

A

B
# D

C
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(b) The LCD of and is .

Factor

Distributive Property

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 51 ■

▼ Compound Fractions
A compound fraction is a fraction in which the numerator, the denominator, or both are
themselves fractional expressions.

E X A M P L E  6 Simplifying a Compound Fraction

Simplify:

S O L U T I O N  1 We combine the terms in the numerator into a single fraction. We do
the same in the denominator. Then we invert and multiply.

S O L U T I O N  2 We find the LCD of all the fractions in the expression, then multiply 
numerator and denominator by it. In this example the LCD of all the fractions is xy. 
Thus

Simplify

Factor

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 71 ■

 � 
x1x � y 2

y1x � y 2

 � 
x 2 � xy

xy � y2

Multiply numerator
and denominator by xy 

x
y

� 1

1 �
y

x

�

x
y

� 1

1 �
y

x

 #  
xy

xy

 � 
x1x � y 2

y1x � y 2

 �
x � y

y
# x
x � y

 

x
y

� 1

1 �
y

x

�

x � y

y

x � y

x

x
y

� 1

1 �
y

x

Combine terms in 
numerator

 � 
3 � x

1x � 1 2 1x � 1 2 2

 � 
x � 1 � 2x � 2

1x � 1 2 1x � 1 2 2

Combine fractions 
using LCD

 � 
1x � 1 2 � 21x � 1 2

1x � 1 2 1x � 1 2 2

 
1

x 2 � 1
�

2

1x � 1 2 2
�

1

1x � 1 2 1x � 1 2
�

2

1x � 1 2 2

1x � 1 2 1x � 1 2 21x � 1 2 2x 2 � 1 � 1x � 1 2 1x � 1 2
DIOPHANTUS lived in Alexandria
about 250 A.D. His book Arithmetica is
considered the first book on algebra. In
it he gives methods for finding integer
solutions of algebraic equations. Arith-
metica was read and studied for more
than a thousand years. Fermat (see
page 107) made some of his most im-
portant discoveries while studying this
book. Diophantus’ major contribution is
the use of symbols to stand for the un-
knowns in a problem. Although his
symbolism is not as simple as what we
use today, it was a major advance over
writing everything in words. In 
Diophantus’ notation the equation

x5 � 7x2 � 8x � 5 � 24

is written

�K©å �h �©zM°´iskd

Our modern algebraic notation did not
come into common use until the 17th
century.

c
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The next two examples show situations in calculus that require the ability to work with
fractional expressions.

E X A M P L E  7 Simplifying a Compound Fraction

Simplify:

S O L U T I O N We begin by combining the fractions in the numerator using a common
denominator:

Invert divisor and multiply

Distributive Property

Simplify

Cancel common factors

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 83 ■

E X A M P L E  8 Simplifying a Compound Fraction

Simplify:

S O L U T I O N  1 Factor from the numerator:

S O L U T I O N  2 Since is a fraction, we can clear all 
fractions by multiplying numerator and denominator by :

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 91 ■

 � 
11 � x 2 2 � x2

11 � x 2 2 3/2
�

1

11 � x 2 2 3/2

 
11 � x 2 2 1/2 � x 211 � x 2 2�1/2

1 � x 2 �  
11 � x 2 2 1/2 � x 211 � x 2 2�1/2

1 � x 2
# 11 � x 2 2 1/2

11 � x 2 2 1/2

11 � x 2 2 1/2
11 � x 2 2�1/2 � 1/ 11 � x 2 2 1/2

 � 
11 � x 2 2�1/2

1 � x 2 �
1

11 � x 2 2 3/2

 
11 � x 2 2 1/2 � x 211 � x 2 2�1/2

1 � x 2 �
11 � x 2 2�1/2 3 11 � x 2 2 � x 2 4

1 � x 2

11 � x 2 2�1/2

11 � x 2 2 1/2 � x 211 � x 2 2�1/2

1 � x 2

 � 
�1

a1a � h 2

 � 
�h

a1a � h 2
# 1

h

 � 
a � a � h

a1a � h 2
# 1

h

 � 
a � 1a � h 2

a1a � h 2
# 1

h

Combine fractions in the
numerator 

1

a � h
�

1
a

h
�

a � 1a � h 2

a1a � h 2

h

1

a � h
�

1
a

h

Factor out the power of 1 � x2 with 
the smallest exponent, in this case

.11 � x 2 2�1/2
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▼ Rationalizing the Denominator or the Numerator
If a fraction has a denominator of the form , we may rationalize the denomi-
nator by multiplying numerator and denominator by the conjugate radical .
This is effective because, by Product Formula 1 in Section P.5, the product of the denom-
inator and its conjugate radical does not contain a radical:

E X A M P L E  9 Rationalizing the Denominator

Rationalize the denominator:

S O L U T I O N We multiply both the numerator and the denominator by the conjugate
radical of , which is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 95 ■

E X A M P L E  1 0 Rationalizing the Numerator

Rationalize the numerator:

S O L U T I O N We multiply numerator and denominator by the conjugate radical
:

Cancel common factors

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 101 ■

▼ Avoiding Common Errors
Don’t make the mistake of applying properties of multiplication to the operation of addi-
tion. Many of the common errors in algebra involve doing just that. The following table
states several properties of multiplication and illustrates the error in applying them to 
addition.

 � 
h

h114 � h � 2 2
�

114 � h � 2

 � 
4 � h � 4

h114 � h � 2 2

 � 
114 � h 2 2 � 22

h114 � h � 2 2

Multiply numerator and
denominator by the
conjugate radical

 
14 � h � 2

h
�
14 � h � 2

h
# 14 � h � 214 � h � 2

14 � h � 2

14 � h � 2

h

 � 
1 � 12

1 � 2
�

1 � 12

�1
� 12 � 1

 � 
1 � 12

12 � 112 2 2

Multiply numerator and
denominator by the
conjugate radical

 
1

1 � 12
�

1

1 � 12
# 1 � 12

1 � 12

1 � 121 � 12

1

1 � 12

1A � B 1C 2 1A � B 1C 2 � A2 � B2C

A � B 1C
A � B 1C

Product Formula 1:
1a � b 2 1a � b 2 � a2 � b2

Product Formula 1:
1a � b 2 1a � b 2 � a2 � b2
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To verify that the equations in the right-hand column are wrong, simply substitute
numbers for a and b and calculate each side. For example, if we take and 
in the fourth error, we get different values for the left- and right-hand sides:

Left-hand side Right-hand side

Since , the stated equation is wrong. You should similarly convince yourself of the
error in each of the other equations. (See Exercise 119.)

1 � 1
4

1

a � b
�

1

2 � 2
�

1

4

1
a

�
1

b
�

1

2
�

1

2
� 1

b � 2a � 2

C O N C E P T S
1. Which of the following are rational expressions?

(a) (b) (c)

2. To simplify a rational expression, we cancel factors that are 

common to the and . So the expression 

simplifies to .

3. True or false?

(a) simplifies to .

(b) simplifies to .

4. (a) To multiply two rational expressions, we multiply their

together and multiply their together. 

So is the same as .

(b) To divide two rational expressions, we the 

divisor, then multiply. So is the same as

.

3

x � 5


x

x � 2

2

x � 1
# x

x � 3

3

5

3x2

5x2

3

5

x2 � 3

x2 � 5

1x � 1 2 1x � 2 2

1x � 3 2 1x � 2 2

x 1x2 � 1 2  

x � 3

1x � 1

2x � 3

3x

x2 � 1

5. Consider the expression .

(a) How many terms does this expression have?
(b) Find the least common denominator of all the terms.
(c) Perform the addition and simplify. 

6. True or false?

(a) is the same as .

(b) is the same as .

S K I L L S
7–16 ■ Find the domain of the expression.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.
11x � 1

1x � 3

22x

x � 1

x 2 � 1

x 2 � x � 2

2t 2 � 5

3t � 6

2x � 1

x � 4

x�4 � x�1/23x�2

6x 4 � 5x 3 � 12x�x 2 � 3x � 1
2

x � 2

2x

1

2
�

1
x

1

2 � x

1

2
�

1
x

1
x

�
2

x � 1
�

x

1x � 1 2 2

P. 7  E X E R C I S E S

Correct multiplication property Common error with addition

a�1 � b�1 � 1a � b 2�1a�1 # b�1 � 1a # b 2�1

a � b

a
� b

ab
a

� b

1
a

�
1

b
�

1

a � b

1
a

# 1

b
�

1

a # b

2a2 � b2 � a � b2a2 # b2 � a # b  1a, b � 0 2

1a � b � 1a � 1b1a # b � 1a 1b 1a, b � 0 2

1a � b 2 2 � a2 � b21a # b 2 2 � a2 # b2
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49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63.

64.

65.

66.

67–82 ■ Simplify the compound fractional expression.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82. 1 �
1

1 �
1

1 � x

1 �
1

1 �
1
x

x�1 � y�1

1x � y 2�1

x�2 � y�2

x�1 � y�1

x �
y

x

y
�

y

x

x

y
�

y

x

1

x 2 �
1

y2

x � 3

x � 4
�

x � 2

x � 1

x � 3

x � 2

x � 1
�

x � 3

x � 2

x � 2

1 �
1

c � 1

1 �
1

c � 1

x �
1

x � 2

x �
1

x � 2

x �
y

x

y �
x

y

x �
x

y

y �
y

x

1 �
1

x 2

x �
1

x 2

1 �
1
x

1 �
1
x

1

3 �
2
x

2

1 �
1
x

1

x � 1
�

2

1x � 1 2 2
�

3

x2 � 1

1

x2 � 3x � 2
�

1

x2 � 2x � 3

x

x2 � x � 6
�

1

x � 2
�

2

x � 3

2
x

�
3

x � 1
�

4

x2 � x

x

x2 � x � 2
�

2

x2 � 5x � 4

1

x � 3
�

1

x2 � 9

x

x2 � 4
�

1

x � 2

2

x � 3
�

1

x2 � 7x � 12

1
x

�
1

x2 �
1

x3

1

x2 �
1

x2 � x

2

a2 �
3

ab
�

4

b2u � 1 �
u

u � 1

5

2x � 3
�

3

12x � 3 2 2
x

1x � 1 2 2
�

2

x � 1

x

x � 4
�

3

x � 6

1

x � 1
�

1

x � 2

1

x � 1
�

1

x � 1

1

x � 5
�

2

x � 3
17–30 ■ Simplify the rational expression.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31–38 ■ Perform the multiplication and simplify.

31. 32.

33. 34.

35. 36.

37.

38.

39–46 ■ Perform the division and simplify.

39.

40.

41.

42.

43. 44.

45. 46.

47–66 ■ Perform the addition or subtraction and simplify.

47. 48.
2x � 1

x � 4
� 12 �

x

x � 3

x

y/z
x/y

z

2x 2 � 3x � 2

x 2 � 1
2x 2 � 5x � 2

x 2 � x � 2

x 3

x � 1

x

x 2 � 2x � 1

4y2 � 9

2y2 � 9y � 18


2y2 � y � 3

y2 � 5y � 6

2x2 � 3x � 1

x2 � 2x � 15


x2 � 6x � 5

2x2 � 7x � 3

2x � 1

2x2 � x � 15


6x2 � x � 2

x � 3

x � 3

4x2 � 9


x2 � 7x � 12

2x2 � 7x � 15

x2 � 2xy � y2

x2 � y2
# 2x2 � xy � y2

x2 � xy � 2y2

x2 � 7x � 12

x2 � 3x � 2
# x2 � 5x � 6

x2 � 6x � 9

x2 � x � 6

x2 � 2x
# x3 � x2

x2 � 2x � 3

t � 3

t2 � 9
# t � 3

t2 � 9

x2 � 2x � 3

x2 � 2x � 3
# 3 � x

3 � x

x2 � 2x � 15

x2 � 9
# x � 3

x � 5

x2 � 25

x2 � 16
# x � 4

x � 5

4x

x2 � 4
# x � 2

16x

1 � x2

x3 � 1

2x3 � x2 � 6x

2x2 � 7x � 6

y2 � 3y � 18

2y2 � 5y � 3

y2 � y

y2 � 1

x2 � x � 12

x2 � 5x � 6

x2 � 6x � 8

x2 � 5x � 4

x2 � x � 2

x2 � 1

x � 2

x2 � 4

41x2 � 1 2

121x � 2 2 1x � 1 2

31x � 2 2 1x � 1 2

61x � 1 2 2

14t2 � t

7t

5y2

10y � y2

81x3

18x

12x

6x2
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52 C H A P T E R  P | Prerequisites

107–114 ■ State whether the given equation is true for all values 
of the variables. (Disregard any value that makes a denominator
zero.)

107. 108.

109. 110.

111. 112.

113.

114.

A P P L I C A T I O N S
115. Electrical Resistance If two electrical resistors with resis-

tances R1 and R2 are connected in parallel (see the figure),
then the total resistance R is given by

(a) Simplify the expression for R.
(b) If R1 � 10 ohms and R2 � 20 ohms, what is the total

resistance R?

116. Average Cost A clothing manufacturer finds that the cost
of producing x shirts is 500 � 6x � 0.01x2 dollars.
(a) Explain why the average cost per shirt is given by the

rational expression

(b) Complete the table by calculating the average cost per
shirt for the given values of x.

A �
500 � 6x � 0.01x2

x

R⁄

R¤

R �
1

1

R1
�

1

R2

1 � x � x2

x
�

1
x

� 1 � x

�a

b
� �

a

b

2 a
a

b
b �

2a

2b

x

x � y
�

1

1 � y

x � 1

y � 1
�

x

y

2

4 � x
�

1

2
�

2
x

b

b � c
� 1 �

b

c

16 � a

16
� 1 �

a

16

83–88 ■ Simplify the fractional expression. (Expressions like
these arise in calculus.)

83.

84.

85.

86.

87.

88.

89–94 ■ Simplify the expression. (This type of expression arises
in calculus when using the “quotient rule.”)

89.

90.

91.

92.

93.

94.

95–100 ■ Rationalize the denominator.

95. 96.

97. 98.

99. 100.

101–106 ■ Rationalize the numerator.

101. 102.

103. 104.

105. 106. 2x � 1 � 2x2x2 � 1 � x

1x � 1x � h

h1x1x � h

1r � 12

5

13 � 15

2

1 � 15

3

21x � y 21x � 1y

y13 � 1y

11x � 1

212 � 17

2

3 � 15

1

2 � 13

17 � 3x 2 1/2 � 3
2  
x17 � 3x 2�1/2

7 � 3x

311 � x 2 1/3 � x11 � x 2�2/3

11 � x 2 2/3

11 � x2 2 1/2 � x211 � x2 2�1/2

1 � x2

211 � x 2 1/2 � x11 � x 2�1/2

x � 1

2x1x � 6 2 4 � x214 2 1x � 6 2 3

1x � 6 2 8

31x � 2 2 21x � 3 2 2 � 1x � 2 2 312 2 1x � 3 2

1x � 3 2 4

B1 � a x3 �
1

4x3 b
2

B1 � a
x21 � x2

b
2

1x � h 2 3 � 71x � h 2 � 1x3 � 7x 2

h

1

1x � h 2 2
�

1

x2

h

11x � h
�

11x
h

1

1 � x � h
�

1

1 � x

h

x Average cost

10
20
50

100
200
500

1000

Unless otherwise noted, all content on this page is © Cengage Learning.
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S E C T I O N  P. 8 | Solving Basic Equations 53

119. Algebraic Errors The left-hand column in the table lists
some common algebraic errors. In each case, give an exam-
ple using numbers that show that the formula is not valid. An
example of this type, which shows that a statement is false,
is called a counterexample.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
117. Limiting Behavior of a Rational Expression The 

rational expression

is not defined for x � 3. Complete the tables and determine
what value the expression approaches as x gets closer and
closer to 3. Why is this reasonable? To see why, factor the
numerator of the expression and simplify.

118. Is This Rationalization? In the expression we
would eliminate the radical if we were to square both numer-
ator and denominator. Is this the same thing as rationalizing
the denominator?

2/1x

x2 � 9

x � 3

x

2.80
2.90
2.95
2.99
2.999

x2 � 9
x � 3

x

3.20
3.10
3.05
3.01
3.001

x2 � 9
x � 3

Algebraic error Counterexample

a�1/n �
1

an

am/an � am/n

1a3 � b3 2 1/3 � a � b

a � b

a
� b

2a2 � b2 � a � b

1a � b 2 2 � a2 � b2

1

2
�

1

2
�

1

2 � 2

1
a

�
1

b
�

1

a � b

Equations are the basic mathematical tool for solving real-world problems. In this section
we learn how to solve equations.

An equation is a statement that two mathematical expressions are equal. For example,

is an equation. Most equations that we study in algebra contain variables, which are sym-
bols (usually letters) that stand for numbers. In the equation

the letter x is the variable. We think of x as the “unknown” in the equation, and our goal
is to find the value of x that makes the equation true. The values of the unknown that make
the equation true are called the solutions or roots of the equation, and the process of find-
ing the solutions is called solving the equation.

Two equations with exactly the same solutions are called equivalent equations. To
solve an equation, we try to find a simpler, equivalent equation in which the variable
stands alone on one side of the equal sign. Here are the properties that we use to solve an
equation. (In these properties, A, B, and C stand for any algebraic expressions, and the
symbol 3 means “is equivalent to.”)

4x � 7 � 19

3 � 5 � 8

P.8 SOLVING BASIC EQUATIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve linear equations � Solve power equations � Solve for one 
variable in terms of others

x � 3 is a solution of the equation 
4x � 7 � 19, because substituting 
x � 3 makes the equation true:

✓413 2 � 7 � 19

x � 3
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54 C H A P T E R  P | Prerequisites

These properties require that you perform the same operation on both sides of an equa-
tion when solving it. Thus if we say “add 4” when solving an equation, that is just a short
way of saying “add 4 to each side of the equation.”

▼ Solving Linear Equations
The simplest type of equation is a linear equation, or first-degree equation, which is an
equation in which each term is either a constant or a nonzero multiple of the variable.

Here are some examples that illustrate the difference between linear and nonlinear equa-
tions.

Linear equations Nonlinear equations

E X A M P L E  1 Solving a Linear Equation

Solve the equation 7x � 4 � 3x � 8.

S O L U T I O N We solve this by changing it to an equivalent equation with all terms 
that have the variable x on one side and all constant terms on the other:

Given equation

Add 4

Simplify

Subtract 3x

Simplify

Multiply by 

Simplify x � 3

1
4 14 # 4x � 1

4
# 12

 4x � 12

 7x � 3x � 13x � 12 2 � 3x

 7x � 3x � 12

 17x � 4 2 � 4 � 13x � 8 2 � 4

 7x � 4 � 3x � 8

3
x

� 2x � 1x � 6 �
x

3

1x � 6x � 02x � 1
2 x � 7

x2 � 2x � 84x � 5 � 3

PROPERTIES OF EQUALIT Y

Property Description

1. A � B 3 A � C � B � C Adding the same quantity to both sides of
an equation gives an equivalent equation.

2. A � B 3 CA � CB (C � 0) Multiplying both sides of an equation by
the same nonzero quantity gives an equiv-
alent equation.

LINEAR EQUATIONS

A linear equation in one variable is an equation that is equivalent to one of the form

where a and b are real numbers and x is the variable.

ax � b � 0

Not linear; contains the
reciprocal of the variable

Not linear; contains the
square of the variable

Not linear; contains the
square root of the variable
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C H E C K  Y O U R  A N S W E R

 LHS � RHS  ✓

 � 
1

5
�

1

2
�

7

10

 RHS �
4 � 3

42 � 4 � 2
�

7

10
 LHS �

1

4 � 1
�

1

4 � 2
x � 4:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 21 ■

When a linear equation involves fractions, solving the equation is usually easier if we
first multiply each side by the lowest common denominator (LCD) of the fractions, as we
see in the following examples.

E X A M P L E  2 Solving an Equation That Involves Fractions

Solve the equation .

S O L U T I O N The LCD of the denominators 6, 3, and 4 is 12, so we first multiply each
side of the equation by 12 to clear the denominators:

Multiply by LCD

Distributive Property

Subtract 2x

Divide by 7

The solution is  .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

In the next example we solve an equation that doesn’t look like a linear equation, but
it simplifies to one when we multiply by the LCD.

E X A M P L E  3 An Equation Involving Fractional Expressions

Solve the equation 

S O L U T I O N The LCD of the fractional expressions is
So as long as x � �1 and x � 2, we can multiply both sides of the equation by the LCD
to get

Expand

Simplify

Solve

The solution is x � 4.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 47 ■

 x � 4

 2x � 1 � x � 3

 1x � 2 2 � 1x � 1 2 � x � 3

Mulitiply 
by LCD

 1x � 1 2 1x � 2 2 a
1

x � 1
�

1

x � 2
b � 1x � 1 2 1x � 2 2 a

x � 3

x 
2 � x � 2

b

1x � 12 1x � 2 2 � x2 � x � 2.

1

x � 1
�

1

x � 2
�

x � 3

x 
2 � x � 2

 .

x � 8
7

 
8

7
� x

 8 � 7x

 2x � 8 � 9x

 12 # a x

6
�

2

3
b � 12 # 3

4
 x

x

6
�

2

3
�

3

4
 x

C H E C K  Y O U R  A N S W E R

x � 3:

✓LHS � RHS
 � 17 � 17

 RHS � 313 2 � 8 LHS � 713 2 � 4
Because it is important to CHECK
YOUR ANSWER, we do this in many
of our examples. In these checks, LHS
stands for “left-hand side” and RHS
stands for “right-hand side” of the 
original equation.

x � 3 x � 3
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56 C H A P T E R  P | Prerequisites

It is always important to check your answer, even if you never make a mistake in your
calculations. This is because you sometimes end up with extraneous solutions, which are
potential solutions that do not satisfy the original equation. The next example shows how
this can happen.

E X A M P L E  4 An Equation with No Solution

Solve the equation .

S O L U T I O N First, we multiply each side by the common denominator, which is x � 4:

Multiply by x � 4

Expand

Distributive Property

Simplify

Add 3

Subtract x

But now if we try to substitute x � 4 back into the original equation, we would be divid-
ing by 0, which is impossible. So this equation has no solution.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 49 ■

The first step in the preceding solution, multiplying by x � 4, had the effect of multi-
plying by 0. (Do you see why?) Multiplying each side of an equation by an expression
that contains the variable may introduce extraneous solutions. That is why it is important
to check every answer.

▼ Solving Power Equations
Linear equations have variables only to the first power. Now let’s consider some equations
that involve squares, cubes, and other powers of the variable. Such equations will be stud-
ied more extensively in Sections 1.6 and 1.7. Here we just consider basic equations that
can be simplified into the form Xn � a. Equations of this form are called power equa-
tions and can be solved by taking radicals of both sides of the equation.

Here are some examples of solving power equations:

The equation x5 � 32 has only one real solution: .

The equation x4 � 16 has two real solutions: .

The equation x5 � �32 has only one real solution: .

The equation x4 � �16 has no real solutions because does not exist.24 �16

x � 25 �32 � �2

x � �24 16 � �2

x � 25 32 � 2

 x � 4

 2x � x � 4

 2x � 3 � x � 1

 2x � 8 � 5 � x � 1

 21x � 4 2 � 5 � x � 1

 1x � 4 2 a 2 �
5

x � 4
b � 1x � 4 2 a

x � 1

x � 4
b

2 �
5

x � 4
�

x � 1

x � 4

C H E C K  Y O U R  A N S W E R

x � 4:

Impossible—can’t divide by 0. LHS
and RHS are undefined, so x � 4 is not
a solution. ✗

 RHS �
4 � 1

4 � 4
�

5

0

 LHS � 2 �
5

4 � 4
� 2 �

5

0

SOLVING A POWER EQUATION

The power equation Xn � a has the solution

if n is odd

if n is even and a � 0

If n is even and a � 0, the equation has no real solution.

 X � �1n a

 X � 1n a

“Algebra is a merry science,” Uncle
Jakob would say. “We go hunting for 
a little animal whose name we don’t
know, so we call it x. When we bag our
game we pounce on it and give it its
right name.”

ALBERT EINSTEIN
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E X A M P L E  5 Solving Power Equations

Solve each equation.

(a)

(b)

S O L U T I O N

(a)

Add 5

Take the square root

The solutions are and .

(b) We can take the square root of each side of this equation as well:

Take the square root

Add 4

The solutions are and .

Be sure to check that each answer satisfies the original equation.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 55 AND 61 ■

We will revisit equations like the ones in Example 5 in Section 1.6.

E X A M P L E  6 Solving Power Equations

Find all real solutions for each equation.

(a)

(b)

S O L U T I O N

(a) Since every real number has exactly one real cube root, we can solve this equation
by taking the cube root of each side:

 x � �2

 1x 
3 2 1/3 � 1�8 2 1/3

16x4 � 81

x3 � �8

x � 4 � 15x � 4 � 15

 x � 4 � 15

 x � 4 � �15

1x � 4 2 2 � 5

x � �15x � 15

 x � � 15

 x 
2 � 5

 x 
2 � 5 � 0

1x � 4 2 2 � 5

x2 � 5 � 0

©
 M

ar
y 

Ev
an

s 
Pi

ct
ur

e 
Li

br
ar

y/
Al

am
y

EUCLID (circa 300 B.C.) taught in Alexan-
dria, Egypt. His Elements is the most widely
influential scientific book in history. For 2000
years it was the standard introduction to
geometry in the schools, and for many gen-
erations it was considered the best way to
develop logical reasoning. Abraham Lincoln,
for instance, studied the Elements as a way
to sharpen his mind.The story is told that
King Ptolemy once asked Euclid whether
there was a faster way to learn geometry

than through the Elements. Euclid replied that there is “no royal road to
geometry”—meaning by this that mathematics does not respect wealth

or social status. Euclid was revered in his own time and was referred to by
the title “ The Geometer”or “ The Writer of the Elements.” The greatness of
the Elements stems from its precise, logical, and systematic treatment of
geometry. For dealing with equality, Euclid lists the following rules, which
he calls “common notions.”

1. Things that are equal to the same thing are equal to each other.

2. If equals are added to equals, the sums are equal.

3. If equals are subtracted from equals, the remainders are equal.

4. Things that coincide with one another are equal.

5. The whole is greater than the part.
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(b) Here we must remember that if n is even, then every positive real number has two
real nth roots, a positive one and a negative one:

Divide by 16

Take the fourth root

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 63 AND 65 ■

The next example shows how to solve an equation that involves a fractional power of
the variable.

E X A M P L E  7 Solving an Equation with a Fractional Power

Solve the equation 5x2/3 � 2 � 43.

S O L U T I O N The idea is to first isolate the term with the fractional exponent, then
raise both sides of the equation to the reciprocal of that exponent:

Add 2

Divide by 5

Raise both sides to power

Simplify

The solutions are x � 27 and x � �27.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 75 ■

▼ Solving for One Variable in Terms of Others
Many formulas in the sciences involve several variables, and it is often necessary to ex-
press one of the variables in terms of the others. In the next example we solve for a vari-
able in Newton’s Law of Gravity.

E X A M P L E  8 Solving for One Variable in Terms of Others

Solve for the variable M in the equation

F � G  

mM

r 
2

 x � �27

3
2 x � �93/2

 x 
2/3 � 9

 5x 
2/3 � 45

 5x 
2/3 � 2 � 43

x � � 
3
2

 1x 
4 21/4 � �A81

16B
1/4

 x 
4 � 81

16

58 C H A P T E R  P | Prerequisites

If n is even, the equation
has two solutions,

x � c1/n and x � �c1/n.
x 

n � c 1c 	 0 2

If n is even, the equation xn/m � c
has two solutions, x � cm/n and 
x � �cm/n.

C H E C K  Y O U R  A N S W E R S

 LHS � RHS  ✓ LHS � RHS  ✓

 RHS � 43 RHS � 43

 � 43 � 43

 � 519 2 � 2 � 519 2 � 2

 LHS � 51�27 2 2/3 � 2 LHS � 5127 2 2/3 � 2

x � �27:x � 27:

This is Newton’s Law of Gravity. It
gives the gravitational force F between
two masses m and M that are a distance
r apart. The constant G is the universal
gravitational constant.
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C O N C E P T S
1. Substituting in the equation makes the 

equation true, so the number 3 is a of the equation.

2. To solve an equation, we use the rules of algebra to put the
variable alone on one side. Solve the equation by
using the following steps:

Given equation

Subtract 4

Multiply by 

So the solution is .x �

1
3

3x � 4 � 10

3x � 4 � 10

4x � 2 � 10x � 3

3. Which of the following equations are linear?

(a) (b)

(c)

4. Explain why each of the following equations is not linear.

(a) (b)

(c)

5. True or false?
(a) Adding the same number to each side of an equation

always gives an equivalent equation.

3x2 � 2x � 1 � 0

1x � 2 � xx1x � 1 2 � 6

x � 7 � 5 � 3x

2
x

� 2x � 1
x

2
� 2x � 10

P. 8  E X E R C I S E S

S O L U T I O N Although this equation involves more than one variable, we solve it as
usual by isolating M on one side and treating the other variables as we would numbers:

Factor M from RHS

Multiply by reciprocal of 

Simplify

The solution is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 87 ■

E X A M P L E  9 Solving for One Variable in Terms of Others

The surface area A of the closed rectangular box shown in Figure 1 can be calculated
from the length l, the width „, and the height h according to the formula

Solve for „ in terms of the other variables in this equation.

S O L U T I O N Although this equation involves more than one variable, we solve it as
usual by isolating „ on one side, treating the other variables as we would numbers:

Collect terms involving „

Subtract 2lh

Factor „ from RHS

Divide by 2l � 2h

The solution is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 89 ■

„ �
A � 2lh

2l � 2h

 
A � 2lh

2l � 2h
� „

 A � 2lh � 12l � 2h 2„

 A � 2lh � 2l„ � 2„h

 A � 12l„ � 2„h 2 � 2lh

A � 2l„ � 2„h � 2lh

M �
r 

2F

Gm

 
r 

2F

Gm
� M

Gm

r 
2 a

r 
2

Gm
bF � a

r 
2

Gm
b a

Gm

r 
2 bM

 F � a
Gm

r 
2 bM

h

l

„

F I G U R E  1 A closed rectangular box

Unless otherwise noted, all content on this page is © Cengage Learning.
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33. 34.

35.

36.

37.

38.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

51. 52.

53–76 ■ The given equation involves a power of the variable.
Find all real solutions of the equation.

53. x2 � 49 54. x2 � 18

55. x2 � 24 � 0 56. x2 � 7 � 0

57. 8x2 � 64 � 0 58. 5x2 � 125 � 0

59. x2 � 16 � 0 60. 6x2 � 100 � 0

61. 62.

63. x3 � 27 64. x5 � 32 � 0

65. x4 � 16 � 0 66. 64x6 � 27

67. x4 � 64 � 0 68.

69. 70.

71. 72.

73. 74. x4/3 � 16 � 0

75. 2x5/3 � 64 � 0 76. 6x2/3 � 216 � 0

77–84 ■ Find the solution of the equation rounded to two decimals.

77. 3.02x � 1.48 � 10.92 78. 8.36 � 0.95x � 9.97

79. 2.15x � 4.63 � x � 1.19 80. 3.95 � x � 2.32x � 2.00

81.

82.

83. 84.
1.73x

2.12 � x
� 1.51

0.26x � 1.94

3.03 � 2.44x
� 1.76

2.141x � 4.06 2 � 2.27 � 0.11x

3.161x � 4.63 2 � 4.191x � 7.24 2

23 x � 5

41x � 2 2 5 � 131x � 3 2 3 � 375

1x � 1 2 4 � 16 � 01x � 2 2 4 � 81 � 0

1x � 1 2 3 � 8 � 0

31x � 5 2 2 � 151x � 2 2 2 � 4

1
x

�
2

2x � 1
�

1

2x 
2 � x

3

x � 4
�

1
x

�
6x � 12

x 
2 � 4x

1

x � 3
�

5

x 
2 � 9

�
2

x � 3

x

2x � 4
� 2 �

1

x � 2

1

3 � t
�

4

3 � t
�

15

9 � t 
2 � 0

1
z

�
1

2z
�

1

5z
�

10

z � 1

12x � 5

6x � 3
� 2 �

5
x

3

x � 1
�

1

2
�

1

3x � 3

6

x � 3
�

5

x � 4

2

t � 6
�

3

t � 1

2x � 7

2x � 4
�

2

3

2x � 1

x � 2
�

4

5

2
x

� 5 �
6
x

� 4
1
x

�
4

3x
� 1

1t � 4 2 2 � 1t � 4 2 2 � 32

1x � 1 2 14x � 5 2 � 12x � 3 2 2

x1x � 1 2 � 1x � 3 2 2

1x � 1 2 1x � 2 2 � 1x � 2 2 1x � 3 2

3x �
5x

2
�

x � 1

3
�

1

6
2x �

x

2
�

x � 1

4
� 6x

(b) Multiplying each side of an equation by the same number
always gives an equivalent equation.

(c) Squaring each side of an equation always gives an equiva-
lent equation.

6. To solve the equation , we take the root of 

each side. So the solution is x = .

S K I L L S
7–14 ■ Determine whether the given value is a solution of the
equation.

7. 4x � 7 � 9x � 3

(a) x � �2 (b) x � 2

8. 2 � 5x � 8 � x

(a) x � �1 (b) x � 1

9.

(a) x � 2 (b) x � 4

10.

(a) x � 2 (b) x � 4

11. 2x1/3 � 3 � 1

(a) x � �1 (b) x � 8

12.

(a) x � 4 (b) x � 8

13. 1b � 02

(a) x � 0 (b) x � b

14.

(a) (b)

15–20 ■ Solve the given linear equation.

15. 16.

17. 18.

19. 20.

21–52 ■ The given equation is either linear or equivalent to a 
linear equation. Solve the equation.

21. x � 3 � 2x � 6 22. 4x � 7 � 9x � 13

23. �7„ � 15 � 2„ 24. 5t � 13 � 12 � 5t

25. 26.

27.

28.

29. 30.

31. 32.
2

3
y �

1

2
1y � 3 2 �

y � 1

4
x � 1

3 x � 1
2 x � 5 � 0

r � 2 31 � 312r � 4 2 4 � 614Ay � 1
2B � y � 615 � y 2

51x � 3 2 � 9 � �21x � 2 2 � 1

211 � x 2 � 311 � 2x 2 � 5

z
5

�
3

10
 z � 71

2 y � 2 � 1
3 y

2 � 1
3  
x � �41

2  
x � 7 � 3

4x � 95 � 17 � 2x � 15

12 � 5x � 03x � 7 � 0

x �
1

b
x �

b

2

x2 � bx �
1

4
 b2 � 0

x � a

x � b
�

a

b
  

x 
3/2

x � 6
� x � 8

1
x

�
1

x � 4
� 1

1 � 32 � 13 � x 2 4 � 4x � 16 � x 2

x3 � 125
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(b) How fast would the wind have to blow to generate 
50,000 W of power?

102. Food Consumption The average daily food consumption
F of a herbivorous mammal with body weight x, where both
F and x are measured in pounds, is given approximately by
the equation F � 0.3x3/4. Find the weight x of an elephant
that consumes 300 lb of food per day.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
103. A Family of Equations The equation

is really a family of equations, because for each value of k,
we get a different equation with the unknown x. The letter k
is called a parameter for this family. What value should we
pick for k to make the given value of x a solution of the
resulting equation?

(a) x � 0 (b) x � 1 (c) x � 2

104. Proof  That 0 � 1? The following steps appear to give
equivalent equations, which seem to prove that 1 � 0. 
Find the error.

Given

Multiply by x

Subtract x

Factor

Divide by x � 1

Given x = 1 1 � 0

 x � 0

 x1x � 1 2 � 0

  x2 � x � 0

 x2 � x

 x � 1

3x � k � 5 � kx � k � 1

85–98 ■ Solve the equation for the indicated variable.

85. ; for M 86. ; for T

87. PV � nRT; for R 88. ; for m

89. P � 2l � 2„; for „ 90. ; for R1

91. ; for r 92. ; for r

93. ; for r

94. a2 � b2 � c2; for b

95. ; for i

96. for x

97. ; for x

98. ; for a

A P P L I C A T I O N S
99. Shrinkage in Concrete Beams As concrete dries, it

shrinks; the higher the water content, the greater the shrink-
age. If a concrete beam has a water content of „ kg/m3, then
it will shrink by a factor

where S is the fraction of the original beam length that disap-
pears owing to shrinkage.
(a) A beam 12.025 m long is cast in concrete that contains 

250 kg/m3 water. What is the shrinkage factor S? How
long will the beam be when it has dried?

(b) A beam is 10.014 m long when wet. We want it to shrink
to 10.009 m, so the shrinkage factor should be S �
0.00050. What water content will provide this amount of
shrinkage?

100. Manufacturing Cost A toy maker finds that it costs
C � 450 � 3.75x dollars to manufacture x toy trucks. If
the budget allows $3600 in costs, how many trucks can be
made?

101. Power Produced by a Windmill When the wind blows
with speed √ km/h, a windmill with blade length 150 cm
generates P watts (W) of power according to the formula

.
(a) How fast would the wind have to blow to generate 

10,000 W of power?

P � 15.6 √ 
3

S �
0.032„ � 2.5

10,000

a � 1

b
�

a � 1

b
�

b � 1
a

ax � b

cx � d
� 2

a 
2x � 1a � 1 2 � 1a � 1 2x;

A � P a 1 �
i

100
b

2

V � 4
3 pr 

3

F � G  

mM

r 
2V � 1

3
 pr 

2 h

1

R
�

1

R1
�

1

R 2

F � G  

mM

r 
2

wd � rTHr �
12

M
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Properties of Real Numbers (p. 8)

Commutative: a � b � b � a
ab � ba

Associative:

Distributive:

Absolute Value (p. 13)

Distance between a and b is

Exponents (p. 19)

Radicals (p. 25)

If n is odd, then 

If n is even, then 

Special Product Formulas (p. 34)

Sum and difference of same terms:

1A � B2 1A � B2 � A2 � B2

Square of a sum or difference:

1A � B22 � A2 � 2AB � B2

1A � B22 � A2 � 2AB � B2

Cube of a sum or difference:

1A � B23 � A3 � 3A2B � 3AB2 � B3

1A � B23 � A3 � 3A2B � 3AB2 � B3

am/n � 2n am

2n an � 0 a 0

2n an � a

2m 2n a � 2a

Bn a

b
�
2n a2n b

2n ab � 2n a2n b

2n a � b means bn � a

a
a

b
b

n

�
an

bn

1ab 2 n � anbn

1am 2 n � amn

am

an � am�n

aman � am�n

d1a, b 2 � 0 b � a 0

`
a

b
` �
0 a 0

0 b 0

0 ab 0 � 0 a 0 0 b 0

0 a 0 � e
a if a � 0

�a if a � 0

a1b � c 2 � ab � ac

1ab 2c � a1bc 2
1a � b 2 � c � a � 1b � c 2

Special Factoring Formulas (p. 39)

Difference of squares:

A2 � B2 � 1A � B2 1A � B2

Perfect squares:

A2 � 2AB � B2 � 1A � B22

A2 � 2AB � B2 � 1A � B22

Sum or difference of cubes:

A3 � B3 � 1A � B2 1A2 � AB � B2 2

A3 � B3 � 1A � B2 1A2 � AB � B22

Rational Expressions (p. 44)

We can cancel common factors:

To multiply two fractions, we multiply their numerators together
and their denominators together:

To divide fractions, we invert the divisor and multiply:

To add fractions, we find a common 
denominator:

Properties of Equality (p. 54)

Linear Equations (p. 54)

A linear equation is an equation of the form ax � b � 0

Power Equations (p. 56)

A power equation is an equation of the form . Its solu-
tions are

if n is odd

if n is even

If n is even and a � 0, the equation has no real solution.

X � �1n a

X � 1n a

Xn � a

A � B 3 CA � CB 1C � 0 2

A � B 3 A � C � B � C

A

C
�

B

C
�

A � B

C

A

B


C

D
�

A

B
�

D

C

A

B
�

C

D
�

AC

BD

AC

BC
�

A

B

C H A P T E R  P | R E V I E W
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Section After completing this chapter, you should be able to . . . Review Exercises

P.1 ■ Use an algebra model 1–2

■ Make an algebra model 1–2

P.2 ■ Classify real numbers 3–4

■ Use properties of real numbers 5–8

■ Work with fractions 9–12

■ Graph numbers on a number line 13–20

■ Use the order symbols �, 
, 	, � 17–20

■ Work with set and interval notation 13–24

■ Work with absolute values  25–28, 37–38

■ Find distances on the real line   37–38

P.3 ■ Use exponential notation 29–32, 43–50

■ Simplify expressions using the Laws of Exponents 43–50

■ Write numbers using scientific notation 51–54

P.4 ■ Simplify expressions involving radicals 33–36, 39–42

■ Simplify expressions involving rational exponents  46–49

■ Express radicals using rational exponents 39–42, 47–48

■ Rationalize a denominator and express a quotient of radicals in standard form 95–96

P.5 ■ Add and subtract polynomials 73–79

■ Multiply algebraic expressions 73–79

■ Use the Special Product Formulas 74–79

P.6 ■ Factor out common factors 55–56, 64–65

■ Factor trinomials by trial and error 57–62

■ Use the Special Factoring Formulas 63–67

■ Factor algebraic expressions completely 55–72

■ Factor by grouping terms 68–70

P.7 ■ Find the domain of an algebraic expression 101–104

■ Simplify rational expressions 80–93

■ Add, subtract, multiply, and divide rational expressions 80–93

■ Simplify compound fractions 91–92

■ Rationalize a denominator or numerator 94–100

■ Avoid common errors 105–110

P.8 ■ Solve linear equations 111–122

■ Solve power equations 123–132

■ Solve for one variable in terms of others 133–136

■ L E A R N I N G  O B J E C T I V E S  S U M M A R Y

1–2 ■ Make and use an algebra model to solve the problem.

1. Elena regularly takes a multivitamin and mineral supplement.
She purchases a bottle of 250 tablets and takes two tablets
every day.
(a) Find a formula for the number of tablets T that are left in

the bottle after she has been taking the tablets for x days.
(b) How many tablets are left after 30 days?
(c) How many days will it take for her to run out of tablets?

2. Alonzo's Delivery is having a sale on calzones. Each calzone
costs $2, and there is a $3 delivery charge for phone-in orders.
(a) Find a formula for the total cost C of ordering x calzones

for delivery.
(b) How much would it cost to have 4 calzones delivered?
(c) If you have $15, how many calzones can you order?

■ E X E R C I S E S
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33. 34.

35. 36.

37–38 ■ Express the distance between the given numbers on the
real line using an absolute value. Then evaluate this distance.

37. (a) 3 and 5 (b) 3 and �5

38. (a) 0 and �4 (b) 4 and �4

39–42 ■ Express the radical as a power with a rational exponent.

39. (a) (b) 40. (a) (b)

41. (a) (b) 42. (a) (b)

43–50 ■ Simplify the expression.

43. 12x3y2213x�1y22 44. 1a22�31a3b22 1b324

45. 46.

47. 48.

49. 50.

51. Write the number 78,250,000,000 in scientific notation.

52. Write the number 2.08 � 10�8 in decimal notation.

53. If a � 0.00000293, b � 1.582 � 10�14, and
c � 2.8064 � 1012, use a calculator to approximate 
the number ab/c.

54. If your heart beats 80 times per minute and you live to be 
90 years old, estimate the number of times your heart beats
during your lifetime. State your answer in scientific notation.

55–72 ■ Factor the expression completely.

55. 2x2y � 6xy2 56. 12x2y4 � 3xy5 � 9x3y2

57. x2 � 9x � 18 58. x2 � 3x � 10

59. 3x2 � 2x � 1 60. 6x2 � x � 12

61. 4t2 � 13t � 12 62. x4 � 2x2 � 1

63. 25 � 16t2 64. 2y6 � 32y2

65. a4b2 � ab5 66. x6 � 1

67. 8x3 � y6 68. y3 � 2y2 � y � 2

69. 4x3 � 8x2 � 3x � 6 70. 3x3 � 2x2 � 18x � 12

71. 1x � 122 � 21x � 12 � 1 72. 1a � b22 � 21a � b2 � 15

73–94 ■ Perform the indicated operations.

73. 12x � 12 13x � 22 � 514x � 12

74. 12y � 72 12y � 72

75. 12a2 � b22

76. 11 � x2 12 � x2 � 13 � x2 13 � x2

77. 12x � 123 78. x31x � 622 � x4 1x � 62

79. x2 1x � 22 � x 1x � 222 80.
x3 � 2x2 � 3x

x

a
ab2c�3

2a2b�4 b
�28r1/2s�3

2r�2s4

2x2y423 1x3y 2 2y4

a
r 2s4/3

r 1/3s
b

6x413x 2 2

x3

A28 yB22y3A1xB926 x5

A14 5B323 5725 7423 7

1215023 �125

24 4 24 324
124212

3–4 ■ Determine whether each number is rational or irrational. If
it is rational, determine whether it is a natural number, an integer,
or neither.

3. (a) 16 (b) �16 (c) (d)

(e) (f)

4. (a) �5 (b) (c) (d) 3p

(e) (f) 1020

5–8 ■ State the property of real numbers being used.

5. 3 � 2x � 2x � 3

6. 1a � b2 1a � b2 � 1a � b2 1a � b2

7. A1x � y2 � Ax � Ay

8. 1A � 12 1x � y2 � 1A � 12x � 1A � 12y

9–12 ■ Evaluate each expression. Express your answer as a
fraction in lowest terms.

9. (a) (b)

10. (a) (b)

11. (a) (b)

12. (a) (b)

13–16 ■ Express the interval in terms of inequalities, and then
graph the interval.

13. [�2, 62 14. 10, 10’

15. 1�q, 4’ 16. [�2, q2

17–20 ■ Express the inequality in interval notation, and then
graph the corresponding interval.

17. x � 5 18. x � �3

19. �1 � x 
 5 20. 0 
 x 
 

21–24 ■ The sets A, B, C, and D are defined as follows:

A � 5�1, 0, 1, 2, 36 B � 5 , 1, 46
C � D � 1�1, 14

Find each of the following sets.

21. (a) A 	 B (b) A � B

22. (a) C 	 D (b) C � D

23. (a) A � C (b) B � D

24. (a) A � D (b) B � C

25–36 ■ Evaluate the expression.

25. �7 � 10� 26.

27. �3 � ��9 �� 28. 1 � �1 � �� 1 ��

29. 2�3 � 3�2 30. 21/281/2

31. 216�1/3 32. 642/3

��3
2 � 5�

5x 0  0 � x 
 26

1
2

1
2

30

7
# 12

35

30

7


12

35

15

8


12

5

15

8
# 12

5

7

10
�

11

15

7

10
�

11

15

5

6
�

2

3

5

6
�

2

3

24
16

125�25
6

�8
2

8
3

12116
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105–110 ■ State whether the given equation is true for all values
of the variables. (Disregard any value that makes a denominator 0.)

105. 1x � y23 � x3 � y3 106.

107. 108.

109. 110.

111–132 ■ Find all real solutions of the equation.

111. 3x � 12 � 24 112. 5x � 7 � 42

113. 7x � 6 � 4x � 9 114. 8 � 2x � 14 � x

115. 116.

117.

118.

119. 120.

121. 122.

123. x2 � 144 124. 4x2 � 49

125. x3 � 27 � 0 126. 6x4 � 15 � 0

127. 128.

129. 130. x2/3 � 4 � 0

131. 4x3/4 � 500 � 0 132.

133–136 ■ Solve the equation for the indicated variable.

133. ; solve for x

134. ; solve for y

135. ; solve for t

136. ; solve for rF � k 

q1q2

r 2

J �
1

t
�

1

2t
�

1

3t

V � xy � yz � xz

A �
x � y

2

1x � 2 2 1/5 � 2

13 x � �3

1x � 2 2 2 � 2 � 01x � 1 2 3 � �64

1x � 2 2 2 � 1x � 4 2 2
x � 1

x � 1
�

3x

3x � 6

x

x � 2
� 3 �

1

x � 2

x � 1

x � 1
�

2x � 1

2x � 1

x � 5

2
�

2x � 5

3
�

5

6

21x � 3 2 � 41x � 5 2 � 8 � 5x

2
3 x � 3

5 � 1
5 � 2x1

3 x � 1
2 � 2

1

x � 4
�

1
x

�
1

4
2a2 � a

23 a � b � 23 a � 23 b
12 � y

y
�

12
y

� 1

1 � 1a

1 � a
�

1

1 � 1a

81. 82.

83.

84.

85.

86. 87.

88. 89.

90.

91. 92.

93.

94. (rationalize the numerator)

95–100 ■ Rationalize the denominator, and simplify.

95. 96.

97. 98.

99. 100.

101–104 ■ Find the domain of the algebraic expression.

101. 102.

103. 104.
1x � 3

x2 � 4x � 4

1x

x2 � 3x � 4

2x

x2 � 9

x � 5

x � 10

2x � 12x � 1

x

2 � 2x

14

3 � 22

1223 � 1

326

127

1x � h � 1x

h

31x � h 2 2 � 51x � h 2 � 13x2 � 5x 2

h

1
x

�
1

x � 1

1
x

�
1

x � 1

1
x

�
1

2

x � 2

1

x � 2
�

1

x2 � 4
�

2

x2 � x � 2

1

x � 1
�

2

x2 � 1

2
x

�
1

x � 2
�

3

1x � 2 2 2

1

x � 1
�

x

x2 � 1
x �

1

x � 1

x2 � 2x � 15

x2 � 6x � 5


x2 � x � 12

x2 � 1

x3/ 1x � 1 2

x2/ 1x3 � 1 2

x2 � 2x � 3

x2 � 8x � 16
# 3x � 12

x � 1

t 
3 � 1

t 
2 � 1

x2 � 2x � 3

2x2 � 5x � 3
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C H A P T E R  P T E S T

1. A pizzeria charges $9 for a medium plain cheese pizza plus $1.50 for each extra topping.

(a) Find a formula that models the cost C of a medium pizza with x toppings.

(b) Use your model from part (a) to find the cost of a medium pizza with the following extra
toppings: anchovies, ham, sausage, and pineapple.

2. Determine whether each number is rational or irrational. If it is rational, determine whether it
is a natural number, an integer, or neither.

(a) 5 (b) (c) (d) �1,000,000

3. Let A � 5�2, 0, 1, 3, 56 and B � 50, , 1, 5, 76. Find each of the following sets.

(a) A � B (b) A � B

4. (a) Graph the intervals 3�4, 22 and 30, 34 on a real line.

(b) Find the intersection and the union of the intervals in part (a), and graph each of them on a
real line.

(c) Use an absolute value to express the distance between �4 and 2 on the real line, and then
evaluate this distance. 

5. Evaluate each expression:

(a) �26 (b) 1�226 (c) 2�6 (d)

(e) (f) (g) (h) 81�3/4

6. Write each number in scientific notation.

(a) 186,000,000,000 (b) 0.0000003965

7. Simplify each expression. Write your final answer without negative exponents.

(a) (b)

(c) 13a3b32 14ab222 (d)

(e) (f)

(g)

8. Perform the indicated operations, and simplify.

(a) 31x � 62 � 412x � 52 (b) 1x � 32 14x � 52 (c)

(d) 12x � 322 (e) 1x � 223 (f) x21x � 32 1x � 32

9. Factor each expression completely.

(a) 4x2 � 25 (b) 2x2 � 5x � 12 (c) x3� 3x2 � 4x � 12

(d) x4 � 27x (e) (f) x3y � 4xy

10. Simplify the rational expression.

(a) (b)

(c) (d)

11. Rationalize the denominator, and simplify.

(a) (b)
16

2 � 13

623 4

y

x
�

x

y

1
y

�
1
x

x2

x2 � 4
�

x � 1

x � 2

2x2 � x � 1

x2 � 9
# x � 3

2x � 1

x2 � 3x � 2

x2 � x � 2

12x � y 2 2 � 1012x � y 2 � 25

11a � 1b 2 11a � 1b 2

a
3x3/2y3

x2y�1/2
b

�2
B3 125

x�9248x 4y5

1200 � 132

13x 2y1/2x�2 2 3
a2b

a�1b5

B4 38

216

15 32116
a

3

2
b

�2

710

712

1
2

�9
315
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12. Find all real solutions of each equation.

(a) 4x � 3 � 2x � 7 (b) 8x3 � �125

(c) x2/3 � 64 � 0 (d)

(e)

13. Einstein’s famous equation gives the relationship between energy E and mass m. In
this equation c represents the speed of light. Solve the equation to express c in terms of E
and m.

E � mc2

31x � 1 2 2 � 18 � 0

x

2x � 5
�

x � 3

2x � 1

C H A P T E R  P | Test 67
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F O C U S  O N  M O D E L I N G

Making the Best  Decisions

When you buy a car, subscribe to a cell phone plan, or put an addition on your house, you
need to make decisions. Such decisions are usually difficult because they require you to
choose between several good alternatives. For example, there are many good car models,
but which one has the optimal combination of features for the amount of money you want
to spend? In this Focus we explore how to construct and use algebraic models of real-life
situations to help make the best (or optimal) decisions.

E X A M P L E  1 Buying a Car

Ben wants to buy a new car, and he has narrowed his choices to two models.

Model A sells for $12,500, gets 25 mi/gal, and costs $350 a year for insurance.

Model B sells for $21,000, gets 48 mi/gal, and costs $425 a year for insurance.

Ben drives about 36,000 miles a year, and gas costs about $4.00 a gallon.

(a) Find a formula for the total cost of owning Model A for any number of years.

(b) Find a formula for the total cost of owning Model B for any number of years.

(c) Make a table of the total cost of owning each model from 1 year to 6 years, in 
1-year increments.

(d) If Ben expects to keep the car for 3 years, which model is more economical? What
if he expects to keep it for 5 years?

S O L U T I O N The cost of operating each model depends on the number of years of
ownership. So let

(a) For Model A we have the following:

Let C represent the cost of owning model A for n years. Then

� � �

 C � 12,500 � 5760n

 C � 12,500 � 350n � 5760n

gas cost
insurance

cost
initial cost

cost of
ownership

n � number of years Ben expects to own the car

THINKING ABOUT THE PROBLEM

Model A has a smaller initial price and costs less in insurance per year but is more
costly to operate (uses more gas) than Model B. Model B has a larger initial price
and costs more to insure but is cheaper to operate (uses less gas) than Model A. If
Ben drives a lot, then what he will save in gas with Model B could make up for the
initial cost of buying the car and the higher yearly insurance premiums. So how
many years of driving does it take before the gas savings make up for the initial
higher price? To find out, we must write formulas for the total cost for each car:

The insurance costs and gas costs depend on the number of years Ben drives the car.

cost � price � insurance cost � gas cost

In Words In Algebra

Price of car 12,500
Insurance cost for n years 350n
Cost of gas per year
Cost of gas for n years 5760n

136,000/25 2 � $4.00 � $5760

Unless otherwise noted, all content on this page is © Cengage Learning.
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Making the Best Decision 69

(b) For Model B we have the following:

Let C represent the cost of owning model B for n years. Then

� � �

(c) If Ben keeps the car for 2 years, the cost of ownership can be calculated from the
formulas we found by substituting 2 for n:

The other entries in the table are calculated similarly:

(d) If Ben intends to keep the car 3 years, then Model A is a better buy (see the table),
but if he intends to keep the car 5 years, Model B is the better buy. ■

E X A M P L E  2 Equal Ownership Cost

Find the number of years of ownership for which the cost to Ben (from Example 1) of
owning Model A equals the cost of owning Model B.

S O L U T I O N We equate the cost of owning Model A to that of Model B and solve for n.

Set the two costs equal

Subtract 12,500 and 3425n

Divide by 2335

If Ben keeps the car for about 3.64 years, the cost of owning either model would be the
same. ■

 n � 3.64

 2335n � 8500

 12,500 � 5760n � 21,000 � 3425n

For Model B: C � 21,000 � 342512 2 � 27,850

For Model A: C � 12,500 � 576012 2 � 24,020

 C � 21,000 � 3425n

 C � 21,000 � 425n � 3000n

gas cost
insurance

cost
initial cost

cost of
ownership

In Words In Algebra

Price of car 21,000
Insurance cost for n years 425n
Cost of gas per year
Cost of gas for n years 3000n

136,000/48 2 � $4.00 � $3000

Cost of ownership Cost of ownership 
Years Model A Model B

1 18,260 24,425
2 24,020 27,850
3 29,780 31,275
4 35,540 34,700
5 41,300 38,125
6 47,060 41,550

THINKING ABOUT THE PROBLEM

We see from the table that the cost of owning Model A starts lower but then exceeds
that for Model B. We want to find the value of n for which the two costs are equal.
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70 Focus on Modeling

E X A M P L E  3 Dividing Assets Fairly

When high-tech Company A goes bankrupt, it owes $120 million to Company B and
$480 million to Company C. Unfortunately, Company A has only $300 million in as-
sets. How should the court divide these assets between Companies B and C? Explore
the following methods, and determine which are fair.

(a) Companies B and C divide the assets equally.

(b) The two companies share the losses equally.

(c) The two companies get an amount that is proportional to the amount they are owed.

S O L U T I O N

(a) Under this method, Company B gets $150 million and Company C gets $150 mil-
lion. Because B is owed only $120 million, it will get $30 million more than it is
owed. This doesn’t seem fair to C, which will still lose $330 million.

(b) We want Companies B and C to each lose the same amount. Let x be the amount of
money Company B gets. Then Company C would get the rest . We can
organize the information as follows.

Because we want Companies B and C to lose equal amounts, we must have

Amounts B and C lose are equal

Add x, subtract 180

Divide by 2

Thus Company B gets �30 million dollars. The negative sign means that B must
give up an additional $30 million and pay it to C. So Company C gets all of the
$300 million plus $30 million from B for a total of $330 million. Doing this would
ensure that the two companies lose the same amount (see Check Your Answer). This
method is clearly not fair.

(c) The claims total $120 million � $480 million � $600 million. The assets total 
$300 million. Because Company B is owed $120 million out of the total claim of 
$600 million, it would get

Because Company C is owed 480 million, it would get

This seems like the fairest alternative. ■

480 million

600 million
� 300 million � $240 million

120 million

600 million
� 300 million � $60 million

 x � �30

 2x � �60

 180 � x � 120 � x

1300 � x 2

THINKING ABOUT THE PROBLEM

It might seem fair for Companies B and C to divide the assets equally between
them. Or it might seem fair that they share the loss equally between them. To be
certain of the fairness of each plan, we should calculate how much each company
loses under each plan.

In Words In Algebra

Amount B gets x
Amount C gets 300 � x
Amount B loses 120 � x
Amount C loses 480 � 1300 � x 2 � 180 � x

C H E C K  Y O U R  A N S W E R

B loses 120 � 30 � 150 million.

C loses 480 � 330 � 150 million.

They lose equal amounts. ✓
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P R O B L E M S
1. Renting Versus Buying a Photocopier A certain office can purchase a photocopier for

$5800 with a maintenance fee of $25 a month. On the other hand, they can rent the photo-
copier for $95 a month (including maintenance). If they purchase the photocopier, each copy
would cost 3¢; if they rent, the cost is 6¢ per copy. The office estimates that they make 8000
copies a month.
(a) Find a formula for the cost C of purchasing and using the copier for n months.
(b) Find a formula for the cost C of renting and using the copier for n months.
(c) Make a table of the cost of each method for 1 year to 6 years of use, in 1-year increments.
(d) After how many months of use would the cost be the same for each method?

2. Car Rental A businessman intends to rent a car for a 3-day business trip. The rental is $65
a day and 15¢ per mile (Plan 1) or $90 a day with unlimited mileage (Plan 2). He is not sure
how many miles he will drive but estimates that it will be between 400 and 800 miles.
(a) For each plan, find a formula for the cost C in terms of the number x of miles driven.
(b) Which rental plan is cheaper if the businessman drives 400 miles? 800 miles?
(c) At what mileage do the two plans cost the same?

3. Cost and Revenue A tire company determines that to manufacture a certain type of tire, it
costs $8000 to set up the production process. Each tire that is produced costs $22 in material
and labor. The company sells this tire to wholesale distributors for $49 each.
(a) Find a formula for the total cost C of producing x tires.
(b) Find a formula for the revenue R from selling x tires.
(c) Find a formula for the profit P from selling x tires.
(d) How many tires must the company sell to break even?

4. Enlarging a Field A farmer has a rectangular cow pasture with width 100 ft and length
180 ft. An increase in the number of cows requires the farmer to increase the area of her pas-
ture. She has two options:

Option 1: Increase the length of the field.

Option 2: Increase the width of the field.

It costs $10 per foot to install new fence. Moving the old fence costs $6 per linear foot of
fence to be moved.
(a) For each option, find a formula for A, the area gained, in terms of the cost C.
(b) Complete the table for the area gained in terms of the cost for each option.

(c) If the farmer has $1200 for this project, which option gives her the greatest gain in area
for her money? What if she had $2000 for the project?

Cost Area gain (Option 1) Area gain (Option 2)

$1100 2500 ft2 180 ft2

$1200

$1500

$2000

$2500

$3000

profit � revenue � cost

Unless otherwise noted, all content on this page is © Cengage Learning.
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5. Edging a Planter A woman wants to make a small planter and surround it with edging 
material. She is deciding between two designs.

Design 1: A square planter

Design 2: A circular planter

Edging material costs $3 a foot for the straight variety, which she would use for Design 1,
and $4 a foot for the flexible variety, which she would use for Design 2.
(a) If she decides on a perimeter of 24 ft, which design would give her the larger planting

area?
(b) If she decides to spend $120 on edging material, which design would give her the larger

planting area?

6. Planting Crops A farmer is considering two plans of crop rotation on his 100-acre farm.

Plan A: Plant tomatoes every season.

Plan B: Alternate between soybeans and tomatoes each season.

The revenue from tomatoes is $1600 an acre, and the revenue from soybeans is $1200 an
acre. Tomatoes require fertilizing the land, which costs about $300 an acre. Soybeans do not
require fertilizer; moreover, they add nitrogen to the soil so tomatoes can be planted the fol-
lowing season without fertilizing.
(a) Find a formula for the profit if Plan A is used for n years.
(b) Find a formula for the profit if Plan B is used for 2n years (starting with soybeans).
(c) If the farmer intends to plant these crops for 10 years, which plan is more profitable?

7. Cell Phone Plan Genevieve is mulling over the three cell phone plans shown in the table.

From past experience, Genevieve knows that she will always use more than 500 minutes of
cell phone time every month.
(a) Make a table of values that shows the cost of each plan for 500 to 1100 minutes, in 

100-minute increments.
(b) Find formulas that give Genevieve’s monthly cost for each plan, assuming that she uses 

x minutes per month (where x � 500).
(c) What is the charge from each plan when Genevieve uses 550 minutes? 975 minutes? 

1200 minutes?
(d) Use your formulas from part (b) to determine the number of usage minutes for which:

i(i) Plan A and Plan B give the same cost.
(ii) Plan A and Plan C give the same cost.

8. Profit Sharing To form a new enterprise, Company A invests $1.4 million and Company 
B invests $2.6 million. The enterprise is sold a year later for $6.4 million. Explore the 
following methods of dividing the $6.4 million, and comment on their fairness.
(a) Companies A and B divide the $6.4 million equally.
(b) Companies A and B get their original investment back and share the profit equally.
(c) Each company gets a fraction of the $6.4 million proportional to the amount it invested.

profit � revenue � cost

Minutes included Monthly cost Each additional minute

Plan A 500 $30 $0.50
Plan B 500 $40 $0.30
Plan C 500 $60 $0.10

Unless otherwise noted, all content on this page is © Cengage Learning.
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Planning for the Future Governments and businesses are continually planning
for the future. Will our freeways be able to handle the traffic ten years from
now? How many air-conditioning units should a manufacturer produce for next
summer? What will the average global temperature be 20 or 50 years from
now? Predicting the future is an uncertain task, but we can give reasonable
answers to such questions by examining the relevant available data. A graph 
of the data may reveal long-term trends that we can use to predict future
conditions. For example, available data show a warming trend in global
temperature, and significant global warming could have drastic consequences
for the survival of many species, including the king penguins pictured here.

In this chapter we begin by reviewing the process of graphing two-variable
equations in the coordinate plane. To obtain information from these graphs, we
need to solve equations. So we also study the solutions of quadratic and other
types of equations. In the Focus on Modeling at the end of the chapter, we 
learn how to find linear trends in data and how to use these trends to make
predictions about the future. 
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1.1 The Coordinate Plane

1.2 Graphs of Equations in Two
Variables

1.3 Lines

1.4 Solving Equations Graphically

1.5 Modeling with Equations 

1.6 Solving Quadratic Equations

1.7 Solving Other Types of
Equations

1.8 Solving Inequalities

1.9 Solving Absolute Value
Equations and Inequalities

FOCUS ON MODELING

Fitting Lines to Data

kw
es

t/
Sh

ut
te

rs
to

ck
.c

om

90169_Ch01_073-172.qxd  11/23/11  3:08 PM  Page 73



The coordinate plane is the link between algebra and geometry. In the coordinate plane
we can draw graphs of algebraic equations. The graphs, in turn, allow us to “see” the re-
lationship between the variables in the equation.

▼ The Coordinate Plane
Just as points on a line can be identified with real numbers to form the coordinate line,
points in a plane can be identified with ordered pairs of numbers to form the coordi-
nate plane or Cartesian plane. To do this, we draw two perpendicular real lines that
intersect at 0 on each line. Usually, one line is horizontal with positive direction to
the right and is called the x-axis; the other line is vertical with positive direction 
upward and is called the y-axis. The point of intersection of the x-axis and the y-axis
is the origin O, and the two axes divide the plane into four quadrants, labeled I, II,
III, and IV in Figure 1. (The points on the coordinate axes are not assigned to any
quadrant.)

F I G U R E  1 F I G U R E  2

Any point P in the coordinate plane can be located by a unique ordered pair of num-
bers , as shown in Figure 1. The first number a is called the x-coordinate of P; the
second number b is called the y-coordinate of P. We can think of the coordinates of P as
its “address,” because they specify its location in the plane. Several points are labeled with
their coordinates in Figure 2.

E X A M P L E  1 Graphing Regions in the Coordinate Plane

Describe and sketch the regions given by each set.

(a) (b) (c)

S O L U T I O N

(a) The points whose x-coordinates are 0 or positive lie on the y-axis or to the right of
it, as shown in Figure 3(a).

(b) The set of all points with y-coordinate 1 is a horizontal line one unit above the 
x-axis, as in Figure 3(b).

5 1x,  y 2  0 �1 � y � 165 1x,  y 2  0  y � 165 1x,  y 2  0  x � 06

1a,  b 2

1

1

y

x0

)

)(_2, 2)

(5, 0)

(1, 3)

(2, _4)

(_3, _2)

y

x

P (a, b)

O

b

a

II

III

I

IV

74 C H A P T E R  1 | Equations and Graphs

1.1 THE COORDINATE PLANE

LEARNING OBJECTIVES After completing this section, you will be able to:

Graph points and regions in the coordinate plane � Use the Distance 
Formula � Use the Midpoint Formula

The Cartesian plane is named in honor
of the French mathematician René 
Descartes (1596–1650), although 
another Frenchman, Pierre Fermat
(1601–1665), also invented the princi-
ples of coordinate geometry at the
same time. (See their biographies on
pages 213 and 107.)

Although the notation for a point 
is the same as the notation for an open
interval , the context should make
clear which meaning is intended.

1a,  b 2

1a,  b 2

Unless otherwise noted, all content on this page is © Cengage Learning.
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(c) The given region consists of those points in the plane whose y-coordinates lie be-
tween �1 and 1. Thus the region consists of all points that lie between (but not on)
the horizontal lines y � 1 and y � �1. These lines are shown as broken lines in Fig-
ure 3(c) to indicate that the points on these lines do not lie in the set.

F I G U R E  3

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 9 AND 11 ■

▼ The Distance Formula
We now find a formula for the distance between two points and 
in the plane. Recall from Section P.2 that the distance between points a and b on a num-
ber line is . So from Figure 4 we see that the distance between the
points and on a horizontal line must be , and the distance be-
tween and on a vertical line must be .

Since triangle ABC is a right triangle, the Pythagorean Theorem gives

E X A M P L E  2 Finding the Distance Between Two Points

Find the distance between the points and .B14, �1 2A12, 5 2

d1A, B 2 � 2 0 x2 � x1 0
2 � 0 y2 � y1 0

2 � 21x2 � x1 2
2 � 1y2 � y1 2

2

0 y2 � y1 0C1x2,  y1 2B1x2,  y2 2
0 x2 � x1 0C1x2,  y1 2A1x1,  y1 2

d1a, b 2 � 0 b � a 0

B1x2,  y2 2A1x1,  y1 2d1A, B 2

y

x0

(a)  x≥0

y

x0

(b)  y=1

y

x0

y=1

y=_1

(c)  _1<y <1

S E C T I O N  1 . 1 | The Coordinate Plane 75

| y¤-y⁄ |

| x¤-x⁄ |
A(x⁄, y⁄)

B(x¤, y¤)

d (A, B)

C(x¤, y⁄)

y

x0 x⁄ x

y⁄

y¤

F I G U R E  4

Coordinates as Addresses
The coordinates of a point in the xy-
plane uniquely determine its location.
We can think of the coordinates as the
“address” of the point. In Salt Lake City,
Utah, the addresses of most buildings
are in fact expressed as coordinates.
The city is divided into quadrants with
Main Street as the vertical (north-
south) axis and S. Temple Street as the
horizontal (east-west) axis. An address
such as

1760 W 2100 S

indicates a location 17.6 blocks west 
of Main Street and 21 blocks south of 
S. Temple Street. (This is the address of
the main post office in Salt Lake City.)
With this logical system it is possible
for someone who is unfamiliar with the
city to locate any address immediately,
as easily as one locates a point in the
coordinate plane.

S. Temple St.

9th South St.

13th South St.

17th South St.

21st South St.

Post Office
1760 W 2100 S

500 North St.

7th E
ast St.

M
ain St.

300 W
est St.

900 W
est St.

1700 W
est St.

4th South St.

Jordan R
iver

DISTANCE FORMUL A

The distance between the points and in the plane is

d1A, B 2 � 21x2 � x1 2
2 � 1y2 � y1 2

2

B1x2,  y2 2A1x1,  y1 2
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S O L U T I O N Using the Distance Formula, we have

See Figure 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27(b) ■

E X A M P L E  3 Applying the Distance Formula

Which of the points or is closer to the point ?

S O L U T I O N By the Distance Formula we have

This shows that , so P is closer to A (see Figure 6).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

▼ The Midpoint Formula
Now let’s find the coordinates of the midpoint M of the line segment that joins the
point to the point . In Figure 7, notice that triangles APM and MQB are
congruent because and the corresponding angles are equal.

It follows that , so

Solving for x, we get 2x � x1 � x2, so . Similarly, .y �
y1 � y2

2
x �

x1 � x2

2

x � x1 � x2 � x

d1A, P 2 � d1M, Q 2

y

x0

x-x⁄

x¤-xA(x⁄, y⁄)

M(x, y)

B(x¤, y¤)

P

Q

Midpoint

d1A, M 2 � d1M, B 2
B1x2,  y2 2A1x1,  y1 2
1x,  y 2

d1P, A 2 � d1Q, A 2

d1Q, A 2 � 215 � 8 2 2 � 13 � 9 2 2 � 21�3 2 2 � 1�6 2 2 � 145

d1P, A 2 � 215 � 1 2 2 � 33 � 1�2 2 4 2 � 242 � 52 � 141

A15,  3 2Q18,  9 2P11,  �2 2

 � 24 � 36 � 240 � 6.32

 � 222 � 1�6 2 2

 d1A, B 2 � 214 � 2 2 2 � 1�1 � 5 2 2
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A(2, 5)

B(4, _1)

d(A, B)Å6.32

5

y

x0 1

1

2 3 4

2
3
4
5

_1

F I G U R E  5

y

x0

2

4 8

4

6

8

_2

Q(8, 9)

P(1, _2)

A(5, 3)

F I G U R E  6

F I G U R E  7

MIDPOINT FORMUL A

The midpoint of the line segment from to is

a
x1 � x2

2
, 

y1 � y2

2
b

B1x2,  y2 2A1x1,  y1 2
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E X A M P L E  4 Finding the Midpoint

Find the midpoint of the line segment that joins and .

S O L U T I O N By the Midpoint Formula the midpoint is

See Figure 8.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27(c) ■

E X A M P L E  5 Applying the Midpoint Formula

Show that the quadrilateral with vertices , , , and is a paral-
lelogram by proving that its two diagonals bisect each other.

S O L U T I O N If the two diagonals have the same midpoint, then they must bisect each
other. The midpoint of the diagonal PR is

and the midpoint of the diagonal QS is

so each diagonal bisects the other, as shown in Figure 9. (A theorem from elementary
geometry states that the quadrilateral is therefore a parallelogram.)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

a
4 � 2

2
, 

4 � 7

2
b � a3, 

11

2
b

a
1 � 5

2
, 

2 � 9

2
b � a3, 

11

2
b

S12,  7 2R15,  9 2Q14,  4 2P11,  2 2

a
�2 � 4

2
, 

1 � 5

2
b � 11, 3 2

14, 5 21�2, 1 2
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y

x0

1

1

(1, 3)

(4, 5)

(_2, 1)

F I G U R E  8

P

Q

R

S

y

x0 4

4

8

F I G U R E  9

1 . 1  E X E R C I S E S

C O N C E P T S
1. The point that is 2 units to the left of the y-axis and 4 units 

above the x-axis has coordinates 1 , 2.

2. If x is positive and y is negative, then the point (x, y) is in 

Quadrant .

3. The distance between the points 1a, b2 and 1c, d 2 is 

. So the distance between 11, 22 and 17, 102

is .

4. The point midway between 1a, b2 and 1c, d 2 is . 

So the point midway between 11, 22 and 17, 102 is . 

S K I L L S

5–6 ■ Refer to the following figure.

5. Find the coordinates of the points shown.

6. List the points that lie in Quadrants I and III.

7–8 ■ Plot the given points in a coordinate plane.

7. , , ,

8. , , , 1�2.5, �3.5 212.6, �1.3 212, 0 21�5, 0 2

A12, 
2
3B1�1, �2 21�1, 0 210, 5 2

y

x0

B
A

C

D

E

G

F

H

1

1
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9–22 ■ Sketch the region given by the set.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20.

21.

22.

23–26 ■ A pair of points is graphed. (a) Find the distance be-
tween them. (b) Find the midpoint of the segment that joins them.

23. 24.

25. 26.

27–36 ■ A pair of points is given. (a) Plot the points in a coor-
dinate plane. (b) Find the distance between them. (c) Find the mid-
point of the segment that joins them.

27. , 28. ,

29. , 30. ,

31. , 32. ,

33. , 34. ,

35. , 36. ,

37. Draw the rectangle with vertices , , ,
and on a coordinate plane. Find the area of the 
rectangle.

38. Draw the parallelogram with vertices , , ,
and on a coordinate plane. Find the area of the 
parallelogram.

39. Plot the points , , , and on a 
coordinate plane. Draw the segments AB, BC, CD, and DA.
What kind of quadrilateral is ABCD, and what is its area?

D12,  3 2C14,  3 2B15,  0 2A11,  0 2

D17,  6 2
C13,  6 2B15,  2 2A11,  2 2

D15,  �3 2
C11,  �3 2B15,  3 2A11, 3 2

10,  6 215, 0 21�3, �4 213, 4 2

17, 1 212, 13 2111, 6 217, 3 2

1�1, � 3 21�1,  6 21�1,  3 216,  �2 2

19,  9 21�1,  �1 214,  18 21�3,  �6 2

110,  0 21�2,  5 216,  16 210,  8 2

0

y

x

1

10

y

x1

2

0

y

x1

1

0

y

x1

1

5 1x, y 2  0  �3 � x � 3 and �1 � y � 16

5 1x, y 2  0  �1 � x � 1 and �2 � y � 26

5 1x, y 2  0  �1 � x � 1 and y � 46

5 1x, y 2  0  x � 2 and y � 16

5 1x, y 2  0  �2 � x � 2 and y � 36

5 1x, y 2  0  x � 1 and y � 36

5 1x, y 2  0  xy � 065 1x, y 2  0  xy � 06

5 1x, y 2  0  0 � y � 365 1x, y 2  0  �1 � x � 16

5 1x, y 2  0  x � �365 1x, y 2  0  y � 56

5 1x, y 2  0  x � 065 1x, y 2  0  y � 06
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40. Plot the points , , and on a coordinate
plane. Where must the point S be located so that the quadrilat-
eral PQRS is a square? Find the area of this square.

41. Which of the points and is closer to the
origin?

42. Which of the points and is closer to the
point ?

43. Which of the points and is closer to the point
?

44. (a) Show that the points and are the same 
distance from the origin.

(b) Show that the points and are the same 
distance from the origin.

45. Show that the triangle with vertices , , and
is isosceles.

46. Find the area of the triangle shown in the figure.

47. Refer to triangle ABC in the figure.
(a) Show that triangle ABC is a right triangle by using the 

converse of the Pythagorean Theorem (see page 253).
(b) Find the area of triangle ABC.

48. Show that the triangle with vertices , ,
and is a right triangle by using the converse of the 
Pythagorean Theorem. Find the area of the triangle.

49. Show that the points , , , and 
are the vertices of a square.

50. Show that the points , , and are
collinear by showing that .

51. Find a point on the y-axis that is equidistant from the points
and .

52. Find the lengths of the medians of the triangle with vertices
, , and . (A median is a line segment

from a vertex to the midpoint of the opposite side.)
C18,  2 2B13,  6 2A11,  0 2

11,  1 215,  �5 2

d1A, B 2 � d1B, C 2 � d1A, C 2
C15,  15 2B13,  11 2A1�1,  3 2

D1�5,  3 2C11,  0 2B14,  6 2A1�2,  9 2

C12,  �2 2
B111,  �3 2A16,  �7 2

y

x0 2

2

4 6_2_4

_2
B

A

C

y

x0 2

2

4 6 8

4

_2

_2

C

BA

C1�4,  3 2
B1�3,  �1 2A10,  2 2

1b,  a 21a,  b 2

13,  7 217,  3 2

R1�1,  �1 2
Q1�1,  3 2P13,  1 2

E1�2,  1 2
D13,  0 2C1�6,  3 2

B1�5,  8 2A16,  7 2

R1�5,  1 2Q10,  6 2P15,  1 2
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53. Find the point that is one-fourth of the distance from the point
to the point along the segment PQ.

54. Plot the points and on a coordinate plane.
Which (if either) of the points and lies on
the perpendicular bisector of the segment PQ?

55. Plot the points , , and on a coordi-
nate plane. Where should the point S be located so that the
figure PQRS is a parallelogram?

56. If is the midpoint of the line segment AB, and if A has
coordinates , find the coordinates of B.

57. (a) Sketch the parallelogram with vertices ,
, , and .

(b) Find the midpoints of the diagonals of this parallelogram.
(c) From part (b), show that the diagonals bisect each other.

58. The point M in the figure is the midpoint of the line segment AB.
Show that M is equidistant from the vertices of triangle ABC.

A P P L I C A T I O N S
59. Distances in a City A city has streets that run north and

south and avenues that run east and west, all equally spaced.
Streets and avenues are numbered sequentially, as shown in
the figure. The walking distance between points A and B is 
7 blocks—that is, 3 blocks east and 4 blocks north. To find the
straight-line distances d, we must use the Distance Formula.
(a) Find the straight-line distance (in blocks) between A and B.
(b) Find the walking distance and the straight-line distance

between the corner of 4th St. and 2nd Ave. and the corner
of 11th St. and 26th Ave.

(c) What must be true about the points P and Q if the walking
distance between P and Q equals the straight-line distance
between P and Q?

5th Ave.

4th Ave.

3rd Ave.

2nd Ave.

1st Ave.

1s
t S

t.

2n
d

 S
t.

3r
d

 S
t.

4t
h

 S
t.

B

A

d

3 blocks

4 
b

lo
ck

s

N

S
EW

y

xC(0, 0) A(a, 0)

M

B(0, b)

D11, 4 2C17,  7 2B14,  2 2
A1�2,  �1 2

12,  3 2
M16,  8 2

R14,  2 2Q11,  1 2P1�1,  �4 2

B16, 7 2A15, �7 2
Q112, �1 2P1�2, 1 2

Q17, 5 2P1�1, 3 2
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60. Halfway Point Two friends live in the city described in
Exercise 59, one at the corner of 3rd St. and 7th Ave. and the
other at the corner of 27th St. and 17th Ave. They frequently
meet at a coffee shop halfway between their homes.
(a) At what intersection is the coffee shop located?
(b) How far must each of them walk to get to the coffee shop?

61. Pressure and Depth The graph shows the pressure experi-
enced by an ocean diver at two different depths. Find and 
interpret the midpoint of the line segment shown in the graph.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
62. Shifting the Coordinate Plane Suppose that each point in the

coordinate plane is shifted 3 units to the right and 2 units upward.
(a) The point is shifted to what new point?
(b) The point is shifted to what new point?
(c) What point is shifted to ?
(d) Triangle ABC in the figure has been shifted to triangle

A	B	C	. Find the coordinates of the points A	, B	, and C	.

63. Reflecting in the Coordinate Plane Suppose that the 
y-axis acts as a mirror that reflects each point to the right 
of it into a point to the left of it.
(a) The point is reflected to what point?
(b) The point is reflected to what point?
(c) What point is reflected to ?
(d) Triangle ABC in the figure is reflected to triangle A	B	C	.

Find the coordinates of the points A	, B	, and C	.

A'

B'

C '

0

y

x

A(3, 3)

C(1, _4)

B(6, 1)

1�4,  �1 2
1a, b 2
13,  7 2

A'

B'
C '

0

y

x
A(_5, _1)

C(2, 1)

B(_3, 2)

13,  4 2
1a, b 2
15,  3 2

y

x330
Depth (ft)

Pr
es

su
re

 (
lb

/in
2 )

30

99

60

90
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An equation in two variables, such as y � x2 � 1, expresses a relationship between two
quantities. A point satisfies the equation if it makes the equation true when the values
for x and y are substituted into the equation. For example, the point satisfies the equa-
tion y � x2 � 1 because 10 � 32 � 1, but the point does not, because 3 
 12 � 1.

▼ Graphing Equations by Plotting Points
The graph of an equation is a curve, so to graph an equation, we plot as many points as
we can, then connect them by a smooth curve.

E X A M P L E  1 Sketching a Graph by Plotting Points

Sketch the graph of the equation 2x � y � 3.

S O L U T I O N We first solve the given equation for y to get

This helps us to calculate the y-coordinates in the following table:

Of course, there are infinitely many points on the graph, and it is impossible to plot all
of them. But the more points we plot, the better we can imagine what the graph repre-
sented by the equation looks like. We plot the points that we found in Figure 1; they ap-

y � 2x � 3

11,  3 2
13,  10 2

1x,  y 2

64. Completing a Line Segment Plot the points and
on a coordinate plane. If M is the midpoint of the line

segment AB, find the coordinates of B. Write a brief description
of the steps you took to find B and your reasons for taking them.

65. Completing a Parallelogram Plot the points ,
Q , and on a coordinate plane. Where should the
point S be located so that the figure PQRS is a parallelogram?
Write a brief description of the steps you took and your rea-
sons for taking them.

R15, 3 212, 2 2
P10, 3 2

A12,  3 2
M16,  8 2
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Visualizing Data

In this project we discover how graphing can help us find 
hidden patterns in data. You can find the project at the book
companion website: www.stewartmath.com

❍ DISCOVERY
PROJECT

THE GRAPH OF AN EQUATION

The graph of an equation in x and y is the set of all points in the coordi-
nate plane that satisfy the equation.

1x,  y 2

Fundamental Principle 
of Analytic Geometry

A point lies on the graph of an
equation if and only if its coordinates
satisfy the equation.

1x,  y 2

x y � 2x � 3 11x, y22

�1 �5
0 �3
1 �1
2 1
3 3
4 5 14,  5 2

13,  3 2
12,  1 2
11,  �1 2
10,  �3 2
1�1,  �5 2

y

x0 4

y=2x-3

4

F I G U R E  1

1.2 GRAPHS OF EQUATIONS IN TWO VARIABLES

LEARNING OBJECTIVES After completing this section, you will be able to:

Graph equations � Find intercepts � Find equations of circles � Graph 
circles in a coordinate plane � Determine symmetry properties of an equation
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pear to lie on a line. So we complete the graph by joining the points by a line. (In Sec-
tion 1.3 we verify that the graph of an equation of this type is indeed a line.)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

E X A M P L E  2 Sketching a Graph by Plotting Points

Sketch the graph of the equation y � x2 � 2.

S O L U T I O N We find some of the points that satisfy the equation in the table below. In
Figure 2 we plot these points and then connect them by a smooth curve. A curve with
this shape is called a parabola.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 21 ■

E X A M P L E  3 Graphing an Absolute Value Equation

Sketch the graph of the equation y � .

S O L U T I O N We make a table of values:

In Figure 3 we plot these points and use them to sketch the graph of the equation.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

We can use a graphing calculator to graph equations. A graphing calculator draws the
graph of an equation by plotting points, just as we would do by hand. 

E X A M P L E  4 Graphing an Equation with a Graphing 
Calculator

Use a graphing calculator to graph the following equation in the viewing rectangle
by :

S O L U T I O N The graph is shown in Figure 4.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 43 ■

y �
1

1 � x 2

��1, 2���5, 5�

0 x 0
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x y � x2 � 2 11x, y22

�3 7
�2 2
�1 �1

0 �2
1 �1
2 2
3 7 13,  7 2

12,  2 2
11,  �1 2
10,  �2 2
1�1,  �1 2
1�2,  2 2
1�3,  7 2

A detailed discussion of parabolas and
their geometric properties is presented
in Chapter 7.

y

x_ 0

y=≈-2

4

4

4

F I G U R E  2

x y � 11x, y22

�3 3
�2 2
�1 1

0 0
1 1
2 2
3 3 13,  3 2

12,  2 2
11,  1 2
10,  0 2
1�1,  1 2
1�2,  2 2
1�3,  3 2

0 x 0

y

x_ 0

y=| x |2

4

4 42_2

F I G U R E  3

See Appendix B, Graphing with a
Graphing Calculator, for general guide-
lines on using a graphing calculator. See
Appendix C, Using the TI-83/84 
Graphing Calculator, for specific 
graphing instructions.

2

_1

_5 5

F I G U R E  4 Graph of y �
1

1 � x 2
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▼ Intercepts
The x-coordinates of the points where a graph intersects the x-axis are called the 
x-intercepts of the graph and are obtained by setting y � 0 in the equation of the
graph. The y-coordinates of the points where a graph intersects the y-axis are called 
the y-intercepts of the graph and are obtained by setting x � 0 in the equation of the
graph.

E X A M P L E  5 Finding Intercepts

Find the x- and y-intercepts of the graph of the equation y � x2 � 2.

S O L U T I O N To find the x-intercepts, we set y � 0 and solve for x. Thus

Set y � 0

Add 2 to each side

Take the square root

The x-intercepts are and .
To find the y-intercepts, we set x � 0 and solve for y. Thus

Set x � 0

The y-intercept is �2.
The graph of this equation was sketched in Example 2. It is repeated in Figure 5 with

the x- and y-intercepts labeled.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 47 ■

E X A M P L E  6 Finding Intercepts

Find the x- and y-intercepts of the graph of the following equation. 

S O L U T I O N To find the x-intercepts, we set and solve for x:y � 0

x 2

9
�

y2

4
� 1

 y � �2

 y � 02 � 2

�1212

 x � �12

 x2 � 2

 0 � x2 � 2
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DEFINITION OF INTERCEPTS

Intercepts How to find them Where they are on the graph

x-intercepts:

The x-coordinates of points where the Set y � 0 and 
graph of an equation intersects the x-axis solve for x

y-intercepts:

The y-coordinates of points where the Set x � 0 and 
graph of an equation intersects the y-axis solve for y

y

x0

y

x0

y

x2_2 0

_2

2

y=≈-2

y-intercept

x-intercepts

F I G U R E  5
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Set 

Multiply by 9

Solve for x

So the x-intercepts are 3 and . To find the y-intercepts we set and solve for y:

Set 

Multiply by 4

Solve for y

So the y-intercepts are 2 and . A graph of the equation is shown in Figure 6. The shape
of the graph is an ellipse. Ellipses are studied in more detail in Section 7.2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

E X A M P L E  7 Finding Intercepts Graphically

Consider the equation .

(a) Graph the equation in the viewing rectangle by . 

(b) Find the x- and y-intercepts from the graph.

(c) Verify your answers to part (b) algebraically.

S O L U T I O N   

(a) The graph is shown in Figure 7. 

(b) From the graph we see that there are three x-intercepts: , , and 1. There is one 
y-intercept: . 

(c) Setting in the equation we get , so is a y-intercept. Setting 
in the equation, we get , so is an x-intercept. We can similarly verify that 

, and 1 are x-intercepts:

Set 

Set 

Set 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 59 ■

▼ Circles
So far, we have discussed how to find the graph of an equation in x and y. The converse prob-
lem is to find an equation of a graph, that is, an equation that represents a given curve in the
xy-plane. Such an equation is satisfied by the coordinates of the points on the curve and by
no other point. This is the other half of the fundamental principle of analytic geometry as
formulated by Descartes and Fermat. The idea is that if a geometric curve can be represented
by an algebraic equation, then the rules of algebra can be used to analyze the curve.

As an example of this type of problem, let’s find the equation of a circle with 
radius r and center . By definition, the circle is the set of all points whose
distance from the center is r (see Figure 8). Thus P is on the circle if and only if

. From the Distance Formula we have

Square each side

This is the desired equation.

 1x � h 2 2 � 1y � k 2 2 � r 2

21x � h 2 2 � 1y � k 2 2 � r

d1P, C 2 � r
C1h, k 2

P1x, y 21h, k 2

x � 1 y � 11 2 3 � 311 2 2 � 11 2 � 3 � 0

x � �1 y � 1�1 2 3 � 31�1 2 2 � 1�1 2 � 3 � 0

x � �3 y � 1�3 2 3 � 31�3 2 2 � 1�3 2 � 3 � 0

�1
�3y � 0

x � �3�3y � �3x � 0

�3
�1�3

� � 5, 5���5, 3�
y � x3 � 3x 2 � x � 3

�2

 y � �2

 y2 � 4

x � 0 
y2

4
� 1

x � 0�3

 x � �3

 x 2 � 9

y � 0 
x 2

9
� 1
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r

y

x0

C(h, k)

P(x, y)

F I G U R E  8

F I G U R E  7 Graph of
y � x 3 � 3x 2 � x � 3

5

_5

_5 3

F I G U R E  6 Graph of 
x 2

9
�

y2

4
� 1

y-intercepts

x-intercepts

y

x0

1

1
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E X A M P L E  8 Graphing a Circle

Graph each equation.

(a) x2 � y2 � 25 (b)

S O L U T I O N

(a) Rewriting the equation as x2 � y2 � 52, we see that this is an equation of the 
circle of radius 5 centered at the origin. Its graph is shown in Figure 9.

(b) Rewriting the equation as , we see that this is an 
equation of the circle of radius 5 centered at . Its graph is shown in 
Figure 10.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 65 AND 67 ■

E X A M P L E  9 Finding an Equation of a Circle

(a) Find an equation of the circle with radius 3 and center .

(b) Find an equation of the circle that has the points and as the 
endpoints of a diameter.

S O L U T I O N

(a) Using the equation of a circle with r � 3, h � 2, and k � �5, we obtain

The graph is shown in Figure 11.

(b) We first observe that the center is the midpoint of the diameter PQ, so by the 
Midpoint Formula the center is

a
1 � 5

2
, 

8 � 6

2
b � 13, 1 2

1x � 2 2 2 � 1y � 5 2 2 � 9

Q15,  �6 2P11,  8 2

12,  �5 2

12, �1 2
1x � 2 2 2 � 1y � 1 2 2 � 52

1x � 2 2 2 � 1y � 1 2 2 � 25

84 C H A P T E R  1 | Equations and Graphs

EQUATION OF A CIRCLE

An equation of the circle with center and radius r is

This is called the standard form for the equation of the circle. If the center of
the circle is the origin , then the equation is

x2 � y2 � r 2

10, 0 2

1x � h 2 2 � 1y � k 2 2 � r 2

1h, k 2

5

5

y

x

≈+¥=25

0
(2, _1)

y

x

(x-2)™+(y+1)™=25

0

F I G U R E  9 F I G U R E  1 0

F I G U R E  1 1

(x-2)™+(y+5)™=9

y

x20

(2, _5)

_2
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The radius r is the distance from P to the center, so by the Distance Formula

Therefore the equation of the circle is

The graph is shown in Figure 12.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 71 AND 75 ■

Let’s expand the equation of the circle in the preceding example.

Standard form

Expand the squares

Subtract 10 to get expanded form

Suppose we are given the equation of a circle in expanded form. Then to find its center
and radius, we must put the equation back in standard form. That means that we must re-
verse the steps in the preceding calculation, and to do that we need to know what to add
to an expression like x2 � 6x to make it a perfect square—that is, we need to “complete
the square.” To complete the square, we must add the square of half the coefficient of x.
For example, to complete the square for , we add the square of half of :

In general, to make a perfect square, add .

E X A M P L E  1 0 Identifying an Equation of a Circle

Show that the equation x2 � y2 � 2x � 6y � 7 � 0 represents a circle, and find the
center and radius of the circle.

S O L U T I O N We first group the x-terms and y-terms. Then we complete the square
within each grouping. That is, we complete the square for x2 � 2x by adding

and we complete the square for y2 � 6y by adding :

Group terms

Complete the square by
adding 1 and 9 to each side

Factor and simplify

Comparing this equation with the standard equation of a circle, we see that h � �1,
k � 3, and , so the given equation represents a circle with center and
radius .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 81 ■

▼ Symmetry
Figure 13 shows the graph of y � x2. Notice that the part of the graph to the left of the 
y-axis is the mirror image of the part to the right of the y-axis. The reason is 
that if the point is on the graph, then so is , and these points are reflections
of each other about the y-axis. In this situation we say that the graph is symmetric with
respect to the y-axis. Similarly, we say that a graph is symmetric with respect to the 
x-axis if whenever the point is on the graph, then so is . A graph is sym-
metric with respect to the origin if whenever is on the graph, so is .1�x, �y 21x, y 2

1x, �y 21x, y 2

1�x, y 21x, y 2

13
1�1,  3 2r � 13

 1x � 1 2 2 � 1 y � 3 2 2 � 3

1x 2 � 2x � 1 2 � 1 y2 � 6y � 9 2 � �7 � 1 � 9

 1x 2 � 2x 2 � 1 y2 � 6y 2 � �7

3 12 # 1�6 2 4 2 � 9A12 # 2B2 � 1,

1b/2 2 2X2 � bX

x 2 � 6x � A12  1�6 2 B 2 � x 2 � 6x � 9 � 1x � 3 2 2

�6x 2 � 6x

 x2 � 6x � y2 � 2y � 43

x2 � 6x � 9 � y2 � 2y � 1 � 53

 1x � 3 2 2 � 1y � 1 2 2 � 53

1x � 3 2 2 � 1y � 1 2 2 � 53

r 2 � 13 � 1 2 2 � 11 � 8 2 2 � 22 � 1�7 2 2 � 53

S E C T I O N  1 . 2 | Graphs of Equations in Two Variables 85

(x-3)™+(y-1)™=53

P(1, 8)

Q(5, _6)

(3, 1)

y

x0

F I G U R E  1 2

Completing the square is used in many
contexts in algebra. In Section 1.6 we
use completing the square to solve 
quadratic equations.

(x, y)(_x, y)

y

x10

1

y=≈

F I G U R E  1 3

We must add the same numbers to
each side to maintain equality.
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The remaining examples in this section show how symmetry helps us to sketch the
graphs of equations.

E X A M P L E  1 1 Using Symmetry to Sketch a Graph

Test the equation x � y2 for symmetry, and sketch the graph.

S O L U T I O N If y is replaced by �y in the equation x � y2, we get

Replace y by �y

Simplify

so the equation is equivalent to the original one. Therefore the graph is symmetric about
the x-axis. But changing x to �x gives the equation �x � y2, which is not the same as
the original equation, so the graph is not symmetric about the y-axis.

We use the symmetry about the x-axis to sketch the graph by first plotting points just
for y � 0 and then reflecting the graph in the x-axis, as shown in Figure 14.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 93 AND 99 ■

x � y2

x � 1�y 2 2

86 C H A P T E R  1 | Equations and Graphs

DEFINITION OF SYMMETRY

Type of How to test an equation What the graph looks like 
symmetry for symmetry (figures in this section) Geometric meaning

Symmetry with respect Replace y by �y. The Graph is unchanged 
to the x-axis resulting equation is when reflected in the 

equivalent to the original x-axis
one.

Symmetry with respect Replace x by �x. The Graph is unchanged 
to the y-axis resulting equation is when reflected in the 

equivalent to the original y-axis
one.

Symmetry with respect Replace x by �x and y by Graph is unchanged 
to the origin �y. The resulting equation when rotated 180�

is equivalent to the about the origin
original one.

(Figures 6, 9, 15)

(x, y)

(x, _y)

y

x0

(x, y)(_x, y)

y

x0

(x, y)

(_x, _y)

y

x
0

(Figures 6, 9, 14, 15)

(Figures 2, 3, 5, 9, 13, 15)

y x � y2 11x, y22

0 0
1 1
2 4
3 9 19,  3 2

14,  2 2
11,  1 2
10,  0 2

y

x4

x=¥

(9, 3)

(0, 0)

4 (4, 2)
(1, 1)

F I G U R E  1 4
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(b) If a graph is symmetric with respect to the y-axis and 

1a, b2 is on the graph, then 1 , 2 is also on the
graph.

(c) If a graph is symmetric about the origin and 1a, b2 is on 

the graph, then 1 , 2 is also on the graph.

6. The graph of an equation is shown below.

(a) The x-intercept(s) are , and the y-intercept(s) are

.

(b) The graph is symmetric about the (x-axis/
y-axis/origin).

S K I L L S
7–12 ■ Determine whether the given points are on the graph of
the equation.

7. ; , ,

8. ; , ,

9. x � 2y � 1 � 0;

10. y1x 
2 � 1 2 � 1; 11, 1 2 , A1, 12B, A�1, 12B

10, 0 2 , 11, 0 2 , 1�1, �1 2

10, 1 21�3, 2 212, 1 2y � 21 � x

11, �1 214, 0 210, 3 2y � 3 � 4x

C O N C E P T S
1. If the point (2, 3) is on the graph of an equation in x and y,

then the equation is satisfied when we replace x by

and y by . Is the point 12, 32 on the graph
of the equation 2y � x � 1? Complete the table, and sketch a
graph.

2. To find the x-intercept(s) of the graph of an equation, we

set equal to 0 and solve for . So the 

x-intercept of 2y � x � 1 is .

3. To find the y-intercept(s) of the graph of an equation, we

set equal to 0 and solve for . So the 

y-intercept of 2y � x � 1 is .

4. The graph of the equation 1x � 122 � 1y � 222 � 9 is a circle 

with center ( , 2 and radius .

5. (a) If a graph is symmetric with respect to the x-axis and 

1a, b) is on the graph, then 1 , 2 is also on the
graph.

S E C T I O N  1 . 2 | Graphs of Equations in Two Variables 87

E X A M P L E  1 2 Testing an Equation for Symmetry

Test the equation y � x3 � 9x for symmetry.

S O L U T I O N If we replace x by �x and y by �y in the equation, we get

Replace x by –x and y by –y

Simplify

Multiply by –1

so the equation is equivalent to the original one. This means that the graph is symmet-
ric with respect to the origin. 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 95 ■

E X A M P L E  1 3 A Circle That Has All Three Types of Symmetry

Test the equation of the circle x2 � y2 � 4 for symmetry.

S O L U T I O N The equation x2 � y2 � 4 is equivalent to the original one when x is re-
placed by �x and y is replaced by �y, since and , so the circle
exhibits all three types of symmetry. It is symmetric with respect to the x-axis, the 
y-axis, and the origin, as shown in Figure 15.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 97 ■

1�y 2 2 � y 
21�x 2 2 � x 

2

 y � x3 � 9x

�y � �x3 � 9x

�y � 1�x 2 3 � 91�x 2

≈+¥=4

(x, y)

(x, _y)

(_x, y)

(_x, _y)

2

2

y

0 x

F I G U R E  1 5

1 . 2  E X E R C I S E S

x y 11x, y22

�2
�1
0
1

2

y

x0 1

1

y

x0

1

1
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57. 58.

59–64 ■ An equation is given. (a) Use a graphing calculator to
graph the equation in the given viewing rectangle. (b) Find the 
x- and y-intercepts from the graph. (c) Verify your answers to 
part (b) algebraically (from the equation).

59. ; by 

60. ; by

61. ; by

62. ; by

63. ; by

64. ; by

65–70 ■ Find the center and radius of the circle, and sketch its
graph.

65. x2 � y2 � 9 66. x2 � y2 � 5

67. (x � 3)2 � y2 � 16 68. x2 � (y � 2)2 � 4

69. (x � 3)2 � (y � 4)2 � 25 70. (x � 1)2 � (y � 2)2 � 36

71–78 ■ Find an equation of the circle that satisfies the given 
conditions.

71. Center ; radius 3

72. Center ; radius 8

73. Center at the origin; passes through 

74. Center ; passes through 

75. Endpoints of a diameter are and 

76. Endpoints of a diameter are and 

77. Center ; tangent to the x-axis

78. Circle lies in the first quadrant, tangent to both x- and y-axes;
radius 5

79–80 ■ Find the equation of the circle shown in the figure.

79. 80. y

x0

2

2_2

y

x0

2

2_2

17,  �3 2

Q17, �5 2P1�1, 3 2

Q15,  9 2P1�1,  1 2

1�4, �6 21�1, 5 2

14,  7 2

1�1,  �4 2

12,  �1 2

��5, 3���5, 5�y � 23 1 � x 2

��2, 2���5, 5�y � 23 x

��2, 2���5, 5�y �
x

x 2 � 1

��3, 1���5, 5�y � �
2

x 2 � 1

��3, 3���2, 3�y � x4 � 2x 3

��1, 1���2, 2�y � x3 � x 2

y

x0
2

2

y

x0
1

1

x2 � y3 � x2y2 � 64x4 � y2 � xy � 1611. ; , ,

12. x2 � y2 � 1;

13–38 ■ Make a table of values, and sketch the graph of the
equation.

13. y � �x 14. y � 2x

15. 16.

17. 2x � y � 6 18. x � y � 3

19. y � 1 � x2 20. y � x2 � 2

21. 22.

23. 24.

25. x � y2 � 4 26. xy � 2

27. 28.

29. 30.

31. 32.

33. 34.

35. x � y3 36. y � x3 � 1

37. y � x4 38. y � 16 � x4

39–44 ■ Use a graphing calculator to graph the equation in the
given viewing rectangle.

39. ; by 

40. ; by 

41. ; by 

42. ; by 

43. ; by 

44. ; by 

45–54 ■ Find the x- and y-intercepts of the graph of the equation.

45. y � x � 3 46. 3x � 5y � 5

47. y � x2 � 9 48. x2 � y2 � 4

49. y � 2xy � 2x � 1 50. x2 � xy � y � 1

51. 52. xy � 5

53. 54.

55–58 ■ An equation and its graph are given. Find the x- and 
y-intercepts.

55. 56.

y

x0

1

1

y

x0

1

1

x2

9
�

y2

4
� 1y � 4x � x2

4x 2 � 9y2 � 3625x 2 � 4y2 � 100

y � 1x � 1

��50, 100���4, 6�y � x 4 � 4x 3

��0.2, 0.2���50, 50�y �
x

x 2 � 25

��2, 6���20, 20�y � 24 256 � x 2

��1, 20���1, 10�y � 212x � 17

��50, 100���100, 50�y � 0.03x 2 � 1.7x � 3

��2000, 2000���100, 150�y � 0.01x 3 � x 2 � 5

y � 0 4 � x 0y � 4 � 0 x 0

x � 0 y 0y � � 0 x 0

y � �24 � x2y � 24 � x2

y � 2 � 2xy � 1x

4y � �x 29y � x 2

y � 3 � 2x 2y � 2x 2 � 1

y � �2x � 1y � x � 3

10, 1 2 , a
112

, 
112
b , a

13

2
, 

1

2
b

1 � 2, 3 212, �1 210, 1 2x 2 � 2xy � y2 � 1
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(b) For which years in this period did the inflation rate 
exceed 6%?

(c) Did the inflation rate generally increase or decrease in
the years from 1980 to 1985? What about from 1987 to
1992?

(d) Estimate the highest and lowest inflation rates in this
time period to the nearest percent.

104. Orbit of a Satellite A satellite is in orbit around the
moon. A coordinate plane containing the orbit is set up with
the center of the moon at the origin, as shown in the graph 
below, with distances measured in megameters (Mm).
The equation of the satellite’s orbit is

(a) From the graph, determine the closest to and the farthest
from the center of the moon that the satellite gets.

(b) There are two points in the orbit with y-coordinates 2. 
Find the x-coordinates of these points, and determine
their distances to the center of the moon.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
105. Circle, Point, or Empty Set? Complete the squares in the

general equation x 2 � ax � y 2 � by � c � 0, and simplify
the result as much as possible. Under what conditions on
the coefficients a, b, and c does this equation represent a
circle? A single point? The empty set? In the case in which
the equation does represent a circle, find its center and
radius.

2

y

x2

1x � 3 2 2

25
�

y2

16
� 1

2

4

6

8

10

12

14

16

0
19751970 19851980 19951990 20052000

A
nn

ua
l i

nf
la

tio
n 

ra
te

 (
%

)
Year

81–88 ■ Show that the equation represents a circle, and find the
center and radius of the circle.

81. x2 � y2 � 2x � 4y � 1 � 0

82. x2 � y2 � 2x � 2y � 2

83. x2 � y2 � 4x � 10y � 13 � 0

84. x2 � y2 � 6y � 2 � 0

85. x2 � y2 � x � 0

86. x2 � y2 � 2x � y � 1 � 0

87.

88.

89–92 ■ Sketch the graph of the equation.

89. x2 � y2 � 4x � 10y � 21

90. 4x2 � 4y2 � 2x � 0

91. x2 � y2 � 6x � 12y � 45 � 0

92. x2 � y2 � 16x � 12y � 200 � 0

93–88 ■ Test the equation for symmetry.

93. y � x4 � x2 94. x � y4 � y2

95. y � x3 � 10x 96.

97. x4y4 � x2y2 � 1 98. x2y2 � xy � 1

99–102 ■ Complete the graph using the given symmetry property.

99. Symmetric with respect 100. Symmetric with respect 
to the y-axis to the x-axis

101. Symmetric with respect 102. Symmetric with respect 
to the origin to the origin

A P P L I C A T I O N S
103. U.S. Inflation Rates The following graph shows the an-

nual inflation rate in the United States from 1975 to 2003.
(a) Estimate the inflation rates in 1980, 1991, and 1999 to

the nearest percent.

y= 1
x£

y

x0

y= x
1+≈

y

x0

¥-≈=1

y

x0

y= 1
1+≈

y

x0

y � x2 � 0 x 0

x2 � y2 � 1
2 x � 2y � 1

16 � 0

x2 � y2 � 1
2 x � 1

2 y � 1
8
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107. Making a Graph Symmetric The graph shown in the
figure is not symmetric about the x-axis, the y-axis, or the
origin. Add more line segments to the graph so that it ex-
hibits the indicated symmetry. In each case, add as little as
possible.
(a) Symmetry about the x-axis
(b) Symmetry about the y-axis
(c) Symmetry about the origin

y

x0

1

1

106. Do the Circles Intersect?
(a) Find the radius of each circle in the pair and the distance

between their centers; then use this information to deter-
mine whether the circles intersect.

(i)

(ii)

(iii)

(b) How can you tell, just by knowing the radii of two cir-
cles and the distance between their centers, whether the
circles intersect? Write a short paragraph describing how
you would decide this, and draw graphs to illustrate your
answer.

1x � 2 2 2 � 1y � 2 2 2 � 25

1x � 3 2 2 � 1y � 1 2 2 � 1;

1x � 5 2 2 � 1y � 14 2 2 � 9

x2 � 1y � 2 2 2 � 4;

1x � 6 2 2 � 1y � 4 2 2 � 16

1x � 2 2 2 � 1y � 1 2 2 � 9;

90 C H A P T E R  1 | Equations and Graphs

In this section we find equations for straight lines lying in a coordinate plane. The equations
will depend on how the line is inclined, so we begin by discussing the concept of slope.

▼ The Slope of a Line
We first need a way to measure the “steepness” of a line, or how quickly it rises (or falls)
as we move from left to right. We define run to be the distance we move to the right and
rise to be the corresponding distance that the line rises (or falls). The slope of a line is the
ratio of rise to run:

Figure 1 shows situations in which slope is important. Carpenters use the term pitch for
the slope of a roof or a staircase; the term grade is used for the slope of a road.

slope �
rise
run

1.3 LINES

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the slope of a line � Find the equation of a line given a point and 
the slope � Find the equation of a line given the slope and y-intercept
� Find equations of horizontal and vertical lines � Graph equations of lines
� Find equations for parallel and perpendicular lines � Make a linear
model: interpret slope as rate of change

Slope of a ramp Pitch of a roof Grade of a road

Slope= 1
12

Slope=1
3

Slope= 8
100

100

8
1

3
1

12

F I G U R E  1

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_Ch01_073-172.qxd  11/23/11  3:08 PM  Page 90



If a line lies in a coordinate plane, then the run is the change in the x-coordinate and
the rise is the corresponding change in the y-coordinate between any two points on the
line (see Figure 2). This gives us the following definition of slope.

The slope is independent of which two points are chosen on the line. We can see that
this is true from the similar triangles in Figure 3:

F I G U R E  3

Figure 4 shows several lines labeled with their slopes. Notice that lines with positive
slope slant upward to the right, whereas lines with negative slope slant downward to the
right. The steepest lines are those for which the absolute value of the slope is the largest;
a horizontal line has slope zero.

y

x0

A'(x'⁄, y'⁄) y'¤-y'⁄

x'¤-x'⁄

A(x⁄, y⁄)
y¤-y⁄ (rise)

x¤-x⁄ (run)

B(x¤, y¤)

B'(x'¤, y'¤)

y2 � y1

x2 � x1
�

yœ
2 � yœ

1

xœ
2 � xœ

1

0

1

2

Rise:

Run

0

1

2

Rise:

Run

change in
y-coordinate
(negative)

change in
y-coordinate
(positive)

y

x x

y
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SLOPE OF A LINE

The slope m of a nonvertical line that passes through the points and
is

The slope of a vertical line is not defined.

m �
rise
run

�
y2 � y1

x2 � x1

B1x2, y2 2
A1x1, y1 2

F I G U R E  2
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E X A M P L E  1 Finding the Slope of a Line Through Two Points

Find the slope of the line that passes through the points and .

S O L U T I O N Since any two different points determine a line, only one line passes
through these two points. From the definition the slope is

This says that for every 3 units we move to the right, the line rises 2 units. The line is
drawn in Figure 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 9 ■

▼ Point-Slope Form of the Equation of a Line
Now let’s find the equation of the line that passes through a given point and has
slope m. A point with x 
 x1 lies on this line if and only if the slope of the line
through P1 and P is equal to m (see Figure 6), that is,

This equation can be rewritten in the form ; note that the equation is
also satisfied when x � x1 and y � y1. Therefore it is an equation of the given line. It is
called the point-slope form of the equation of a line.

E X A M P L E  2 Finding the Equation of a Line with Given Point
and Slope

(a) Find an equation of the line through with slope .

(b) Sketch the line.

� 
1
211,  �3 2

y � y1 � m1x � x1 2

y � y1

x � x1
� m

P1x,  y 2
P1x1,  y1 2

m �
y2 � y1

x2 � x1
�

5 � 1

8 � 2
�

4

6
�

2

3

Q18,  5 2P12,  1 2

m=0

m=1m=2m=5

m=1
2

m=_1m=_2m=_5

m=_ 1
2

y

x
0
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F I G U R E  4 Lines with various slopes

x

y

(

Q

P 2, 1

(8, 5)

)

F I G U R E  5

Run x – x⁄

Rise
y – y⁄

0 x

y

P⁄(x⁄, y⁄)

P(x, y)

F I G U R E  6

POINT-SLOPE FORM OF THE EQUATION OF A LINE

An equation of the line that passes through the point and has slope m is

y � y1 � m1x � x1 2

1x1, y1 2
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S O L U T I O N

(a) Using the point-slope form with , and y1 � �3, we obtain an 
equation of the line as

Slope 

Multiply by 2

Rearrange

(b) The fact that the slope is tells us that when we move to the right 2 units, the 
line drops 1 unit. This enables us to sketch the line in Figure 7.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 23 ■

E X A M P L E  3 Finding the Equation of a Line Through 
Two Given Points

Find an equation of the line through the points and .

S O L U T I O N The slope of the line is

Using the point-slope form with x1 � �1 and y1 � 2, we obtain

Slope 

Multiply by 2

Rearrange

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27 ■

▼ Slope-Intercept Form of the Equation of a Line
Suppose a nonvertical line has slope m and y-intercept b (see Figure 8). This means that
the line intersects the y-axis at the point , so the point-slope form of the equation of
the line, with x � 0 and y � b, becomes

This simplifies to y � mx � b, which is called the slope-intercept form of the equation
of a line.

E X A M P L E  4 Lines in Slope-Intercept Form

(a) Find the equation of the line with slope 3 and y-intercept �2.

(b) Find the slope and y-intercept of the line 3y � 2x �1.

y � b � m1x � 0 2

10,  b 2

 3x � 2y � 1 � 0

 2y � 4 � �3x � 3

m � �3
2, point 1�1, 2 2 y � 2 � �3

2 1x � 1 2

m �
�4 � 2

3 � 1�1 2
� � 

6

4
� � 

3

2

13,  �4 21�1,  2 2

�1
2

 x � 2y � 5 � 0

 2y � 6 � �x � 1

m � �1
2, point 11, �3 2 y � 3 � �1

2 1x � 1 2

m � �1
2, x1 � 1

S E C T I O N  1 . 3 | Lines 93

0 x

y

(1, _3)

3

1

Run=2

Rise=_1

F I G U R E  7

We can use either point, or
, in the point-slope equation.

We will end up with the same final
answer.

13,  �4 2
1�1,  2 2

(0, b)

y=mx+b

0 x

y

F I G U R E  8

SLOPE-INTERCEPT FORM OF THE EQUATION OF A LINE

An equation of the line that has slope m and y-intercept b is

y � mx � b
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S O L U T I O N

(a) Since m � 3 and b � �2, from the slope-intercept form of the equation of a line 
we get

(b) We first write the equation in the form y � mx � b:

Add 2x

Divide by 3

From the slope-intercept form of the equation of a line, we see that the slope is
and the y-intercept is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 21 AND 61 ■

▼ Vertical and Horizontal Lines
If a line is horizontal, its slope is m � 0, so its equation is y � b, where b is the 
y-intercept (see Figure 9). A vertical line does not have a slope, but we can write its equa-
tion as x � a, where a is the x-intercept, because the line consists of all points whose 
x-coordinate is a.

E X A M P L E  5 Vertical and Horizontal Lines

(a) An equation for the vertical line through (3, 5) is x � 3.

(b) The graph of the equation x � 3 is a vertical line with x-intercept 3.

(c) An equation for the horizontal line through (8, �2) is y � �2.

(d) The graph of the equation y � �2 is a horizontal line with y-intercept �2.

The lines are graphed in Figure 10.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 33, 35, 65, AND 67 ■

▼ General Equation of a Line
A linear equation is an equation of the form

where A, B, and C are constants and A and B are not both 0. The equation of a line is a
linear equation:

■ A nonvertical line has the equation y � mx � b or �mx � y � b � 0, which is a 
linear equation with A � �m, B � 1, and C � �b.

■ A vertical line has the equation x � a or x � a � 0, which is a linear equation
with A � 1, B � 0, and C � �a.

Ax � By � C � 0

b � 1
3m � 2

3

 y � 2
3 x � 1

3

 3y � 2x � 1

 3y � 2x � 1

y � 3x � 2

94 C H A P T E R  1 | Equations and Graphs

y � 2
3 x � 1

3

Slope y-intercept

b y=b

0

x=a

(a, b)

a x

y

F I G U R E  9

VERTIC AL AND HORIZONTAL LINES

An equation of the vertical line through is x � a. The slope of a vertical
line is undefined.

An equation of the horizontal line through is y � b. The slope of a horizon-
tal line is 0.

1a,  b 2

1a,  b 2

y

x2

x=3

0

2

4_2

y=_2

F I G U R E  1 0
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Conversely, the graph of a linear equation is a line:

■ If B 
 0, the equation becomes

Divide by B

and this is the slope-intercept form of the equation of a line (with m � �A/B and 
b � �C/B).

■ If B � 0, the equation becomes

Set B = 0

or x � �C/A, which represents a vertical line.

We have proved the following:

E X A M P L E  6 Graphing a Linear Equation

Sketch the graph of the equation 2x � 3y � 12 � 0.

S O L U T I O N  1 Since the equation is linear, its graph is a line. To draw the graph, it is
enough to find any two points on the line. The intercepts are the easiest points to find.

With these points we can sketch the graph in Figure 11.

S O L U T I O N  2 We write the equation in slope-intercept form:

Add 12

Subtract 2x

Divide by –3

This equation is in the form y � mx � b, so the slope is and the y-intercept is 
b � �4. To sketch the graph, we plot the y-intercept and then move 3 units to the right
and 2 units up as shown in Figure 12.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 69 ■

▼ Parallel and Perpendicular Lines
Since slope measures the steepness of a line, it seems reasonable that parallel lines should
have the same slope. In fact, we can prove this.

m � 2
3

 y � 2
3 x � 4

 �3y � �2x � 12

 2x � 3y � 12

 2x � 3y � 12 � 0

y-intercept: Substitute x � 0, to get �3y � 12 � 0, so y � �4

x-intercept: Substitute y � 0, to get 2x � 12 � 0, so x � 6

Ax � C � 0

y � � 

A

B
 x �

C

B

S E C T I O N  1 . 3 | Lines 95

GENERAL EQUATION OF A LINE

The graph of every linear equation

(A, B not both zero)

is a line. Conversely, every line is the graph of a linear equation.

Ax � By � C � 0

F I G U R E  1 1

y

x

2x-3y-12=0

0

(0, _4)

(6, 0)1

1

2x-3y-12=0

y

x0

(0, _4)

1

1

3

2

F I G U R E  1 2

PARALLEL LINES

Two nonvertical lines are parallel if and only if they have the same slope.
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P R O O F Let the lines l1 and l2 in Figure 13 have slopes m1 and m2. If the lines
are parallel, then the right triangles ABC and DEF are similar, so

Conversely, if the slopes are equal, then the triangles will be similar, so �BAC ��EDF
and the lines are parallel. ■

E X A M P L E  7 Finding the Equation of a Line Parallel 
to a Given Line

Find an equation of the line through the point that is parallel to the line
.

S O L U T I O N First we write the equation of the given line in slope-intercept form:

Subtract 4x + 5

Divide by 6

So the line has slope . Since the required line is parallel to the given line,
it also has slope . From the point-slope form of the equation of a line,
we get

Slope m = , point 

Multiply by 3

Rearrange

Thus the equation of the required line is 2x � 3y � 16 � 0.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

The condition for perpendicular lines is not as obvious as that for parallel lines.

P R O O F In Figure 14 we show two lines intersecting at the origin. (If the lines inter-
sect at some other point, we consider lines parallel to these that intersect at the origin.
These lines have the same slopes as the original lines.)

If the lines l1 and l2 have slopes m1 and m2, then their equations are y � m1x and 
y � m2x. Notice that lies on l1 and lies on l2. By the Pythagorean
Theorem and its converse (see page 253), OA � OB if and only if

3d1O, A 2 4 2 � 3d1O, B 2 4 2 � 3d1A, B 2 4 2

B11,  m2 2A11,  m1 2

 2x � 3y � 16 � 0

 3y � 6 � �2x � 10

15,  2 2�2
3 y � 2 � �2

3 1x � 5 2

m � � 
2
3

m � � 
2
3

 y � �2
3 x � 5

6

 6y � �4x � 5

 4x � 6y � 5 � 0

4x � 6y � 5 � 0
15,  2 2

m1 �
d1B, C 2

d1A, C 2
�

d1E, F 2

d1D, F 2
� m2
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l¤

l⁄

y

x

D F

E

A
C

B

F I G U R E  1 3

PERPENDICUL AR LINES

Two lines with slopes m1 and m2 are perpendicular if and only if ,
that is, their slopes are negative reciprocals:

Also, a horizontal line (slope 0) is perpendicular to a vertical line (no slope).

m2 � � 

1
m1

m1m2 � �1

y

x

A(1, m⁄)

B(1, m¤)

l⁄l¤

O

F I G U R E  1 4
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By the Distance Formula this becomes

■

E X A M P L E  8 Perpendicular Lines

Show that the points , and are the vertices of a right triangle.

S O L U T I O N The slopes of the lines containing PR and QR are, respectively,

Since m1m2 � �1, these lines are perpendicular, so PQR is a right triangle. It is
sketched in Figure 15.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 83 ■

E X A M P L E  9 Finding an Equation of a Line Perpendicular 
to a Given Line

Find an equation of the line that is perpendicular to the line and
passes through the origin.

S O L U T I O N In Example 7 we found that the slope of the line 4x � 6y � 5 � 0 is 
. Thus the slope of a perpendicular line is the negative reciprocal, that is, . Since the

required line passes through , the point-slope form gives

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

E X A M P L E  1 0 Graphing a Family of Lines

Use a graphing calculator to graph the family of lines

for b � �2, �1, 0, 1, 2. What property do the lines share?

y � 0.5x � b

 y � 3
2 x

 y � 0 � 3
2 1x � 0 2

10,  0 2

3
2� 

2
3

4x � 6y � 5 � 0

m1 �
5 � 3

11 � 3
�

1

4
  and  m2 �

5 � 17

11 � 8
� �4

R111,  5 2P13,  3 2 , Q18,  17 2

 m1m2 � �1

 2 � �2m1m2

 2 � m2
1 � m2

2 � m2
2 � 2m1m2 � m2

1

 112 � m2
1 2 � 112 � m2

2 2 � 11 � 1 2 2 � 1m2 � m1 2
2
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y

x0

3
5

17

3 8 11

R

Q

P

F I G U R E  1 5

Changing Words, Sound, and Pictures into Numbers
Pictures, sound, and text are routinely transmitted from one place to
another via the Internet, fax machines, or modems. How can such
things be transmitted through telephone wires? The key to doing this
is to change them into numbers or bits (the digits 0 or 1). It’s easy to
see how to change text to numbers. For example, we could use the 
correspondence A � 00000001, B � 00000010, C � 00000011,
D � 00000100, E � 00000101, and so on. The word “BED” then be-
comes 000000100000010100000100. By reading the digits in groups 
of eight, it is possible to translate this number back to the word “BED.”

Changing sound to bits is more complicated. A sound wave 
can be graphed on an oscilloscope or a computer. The graph is 
then broken down mathematically into simpler components 

corresponding to the different frequencies of the original sound.
(A branch of mathematics called Fourier analysis is used here.) 
The intensity  of each component is a number, and the original 
sound can be reconstructed from these numbers. For example,
music is stored on a CD as a sequence of bits; it may look like
101010001010010100101010 1000001011110101000101011. . . .
(One second of music requires 1.5 million bits!) The CD player recon-
structs the music from the numbers on the CD.

Changing pictures into numbers involves expressing the color and
brightness of each dot (or pixel) as a number. This is done very
efficiently by using a branch of mathematics called wavelet theory. The
FBI uses wavelets as a compact way to store the millions of fingerprints
they need on file.

M AT H E M AT I C S  I N  T H E  M O D E R N  W O R L D
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S O L U T I O N We use a graphing calculator to graph the lines in the viewing rectangle
by . The graphs are shown in Figure 16. The lines all have the same

slope, so they are parallel.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 51 ■

▼ Modeling with Linear Equations: Slope as Rate of Change
When a line is used to model the relationship between two quantities, the slope of the line
is the rate of change of one quantity with respect to the other. For example, the graph in
Figure 17(a) gives the amount of gas in a tank that is being filled. The slope between the
indicated points is

The slope is the rate at which the tank is being filled, 2 gallons per minute. In Figure 17(b)
the tank is being drained at the rate of 0.03 gallon per minute, and the slope is �0.03.

F I G U R E  1 7

The next two examples give other situations in which the slope of a line is a rate of
change.

E X A M P L E  1 1 Slope as Rate of Change

A dam is built on a river to create a reservoir. The water level „ in the reservoir is given
by the equation

„ � 4.5t � 28

0

9

6

3

18

15

12

2 4
Time (min)

V
ol

um
e 

of
 g

as
 (

ga
l)

6 8 91 3 5 7

y

x

6 gal

3 min

0

9

6

3

18

15

12

Time (min)

V
ol

um
e 

of
 g

as
 (

ga
l)

20 100 200

y

x

_3 gal

100 min

(a) Tank filled at 2 gal/min
Slope of line is 2

(b) Tank drained at 0.03 gal/min
Slope of line is _0.03

m �
6 gallons

3 minutes
� 2 gal/min

3�6,  6 43�6,  6 4
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6

_6

_6 6

F I G U R E  1 6 y � 0.5x � b

See Appendix B, Graphing with a
Graphing Calculator, for guidelines 
on using a graphing calculator. See 
Appendix C, Using the TI-83/84 
Graphing Calculator, for specific
graphing instructions.
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where t is the number of years since the dam was constructed and „ is measured 
in feet.

(a) Sketch a graph of this equation.

(b) What do the slope and „-intercept of this graph represent?

S O L U T I O N

(a) This equation is linear, so its graph is a line. Since two points determine a line, we
plot two points that lie on the graph and draw a line through them.

.

.

The line that is determined by these points is shown in Figure 18.

(b) The slope is m � 4.5; it represents the rate of change of water level with respect
to time. This means that the water level increases 4.5 ft per year. The „-intercept
is 28 and occurs when t � 0, so it represents the water level when the dam was
constructed.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 95 ■

E X A M P L E  1 2 Fitting a Line to Data

As dry air moves upward, it expands and cools. The table in the margin shows the air
temperature at various heights above the ground on a particular day. 

(a) Plot the points given in the table. Do the points appear to lie along a line? Prove
your answer. 

(b) Find the equation of the line that fits the data, and graph the line.

(c) Use the equation you found in part (b) to estimate the temperature 2.5 km above
the ground.

(d) What does the slope of the line represent?

S O L U T I O N

(a) The plot in Figure 19(a) shows that the points appear to lie along a line. To verify
this, we check that the slope between any two points in the data is the same. The
slope between the points and is . Similarly, the slope between

and is also . You can check that the slope between any two points
in the table is . Thus the points lie along a line. �10

�1012, 0 211, 10 2
�1011, 10 210, 20 2

When t � 2, then „ � 4.512 2 � 28 � 37, so 12,  37 2  is on the line

When t � 0, then „ � 4.510 2 � 28 � 28, so 10,  28 2  is on the line

S E C T I O N  1 . 3 | Lines 99

„

t0

10

1

„=4.5t+28

F I G U R E  1 8

T

h0

10

1

T

h0

10

1

T=_10h+20

(a) Plot of data (b) Line that fits the data

F I G U R E  1 9

h 11km22 T 11°C22

0 20
1 10
2 0
3 �10
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11. 12.

13. 14.

15. Find the slopes of the lines l1, l2, l3, and l4 in the figure 
below.

16. (a) Sketch lines through with slopes 1, 0, , 2,
and �1.

(b) Sketch lines through with slopes , and 3.

17–20 ■ Find an equation for the line whose graph is sketched.

17. 18.

x

y

0 2_3

3

0 1 3 5
_2

1

3

x

y

1
3, 

1
2, � 

1
310,  0 2

1
210,  0 2

l‹

l¤l⁄

l›

x

y

0

_2

_2 2

1

P1�1,   �4 2 , Q16,  0 2P11,  �3 2 , Q1�1,  6 2

P12,  �5 2 , Q1�4,  3 2P12,  4 2 , Q14,  3 2C O N C E P T S
1. We find the “steepness,” or slope, of a line passing through two 

points by dividing the difference in the -coordinates of

these points by the difference in the -coordinates. So 
the line passing through the points 10, 12 and 12, 52 has slope 

.

2. A line has the equation .

(a) This line has slope .

(b) Any line parallel to this line has slope .

(c) Any line perpendicular to this line has slope .

3. The point-slope form of the equation of the line with slope 

3 passing through the point 11, 22 is .

4. The slope of a horizontal line is . The equation 

of the horizontal line passing through 12, 32 is .

5. The slope of a vertical line is . The equation of 

the vertical line passing through 12, 32 is .

6. For the linear equation , the x-intercept is 

and the y-intercept is . The equation in 

slope-intercept form is .

S K I L L S
7–14 ■ Find the slope of the line through P and Q.

7. , 8. ,

9. , 10. , Q110, 3 2P11, �1 2Q15, 2 2P1�1, 4 2

Q1�3, 0 2P10, 1 2Q10, 4 2P13, 0 2

y �

2x � 3y � 12 � 0

y � 3x � 2
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(b) To find the equation of the line, we use the slope-intercept form. Let h represent the
height, and let T represent the temperature. The slope of the line is , and the 
T-intercept is 20. So the equation of the line is 

A graph of the line together with a plot of the given data is shown in Figure 19(b).

(c) To estimate the temperature 2.5 km above the ground, we replace h by 2.5:

So the temperature is °C at 2.5 km above the ground.

(d) The slope is . The slope represents the rate of change of tempera-
ture with respect to height above the ground. So the temperature decreases 10°C for
each kilometer of height. 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 81 AND 103 ■

m � �10°C/km

�5

T � �1012.5 2 � 20 � �5

T � �10h � 20

�10

1 . 3  E X E R C I S E S
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50. (a) Sketch the line with slope �2 that passes through the
point .

(b) Find an equation for this line.

51–54 ■ Use a graphing device to graph the given family of lines
in the same viewing rectangle. What do the lines have in common?

51. y � �2x � b for b � 0, �1, �3, �6

52. y � mx � 3 for m � 0, �0.25, �0.75, �1.5

53. for m � 0, �0.25, �0.75, �1.5

54. for m � 0, �0.5, �1, �2, �6

55–68 ■ Find the slope and y-intercept of the line, and draw 
its graph.

55. 56.

57. 58.

59. x � 3y � 0 60. 2x � 5y � 0

61. 4x � 5y � 10 62. 3x � 4y � 12

63. �3x � 5y � 30 � 0 64.

65. y � 4 66. x � �5

67. x � 3 68. y � �2

69–74 ■ Find the x- and y-intercepts of the line, and draw its
graph.

69. 70.

71. 72.

73. 74.

75–80 ■ The equations of two lines are given. Determine whether
the lines are parallel, perpendicular, or neither.

75. ;

76. ;

77. ;

78. ;

79. ;

80. ;

81–82 ■ A table is given. (a) Plot the points in the table.  Do the
points appear to lie along a line? Prove your answer. (b) Find the
equation of the line that fits the data, and graph the line.

81. 82.

83. Use slopes to show that , and
are vertices of a parallelogram.

84. Use slopes to show that , and 
are vertices of a right triangle.

C1�9,  8 2A1�3,  �1 2 , B13,  3 2

D1�1,  7 2
A11,  1 2 , B17,  4 2 , C15,  10 2

2y � 6x � 16y � 2x � 5

9y � 21x � 17x � 3y � 2

3y � 2x � 7 � 02x � 3y � 10

4x � 3y � 5�3x � 4y � 4

2x � 4y � 1y � 1
2  
x � 4

2y � 4x � 5 � 0y � 2x � 3

y � �4x � 10y � 6x � 4

1
3  
x � 1

5  
y � 2 � 01

2  
x � 1

3   
y � 1 � 0

6x � 7y � 42 � 05x � 2y � 10 � 0

1
2 x � 1

3 y � 1 � 0

1
2  
x � y � 4�2x � y � 7

y � 2
3  
x � 2y � 3 � x

y � 2 � m1x � 3 2

y � m1x � 3 2

14,  �1 2
19. 20.

21–48 ■ Find an equation of the line that satisfies the given 
conditions.

21. Slope 3; y-intercept �2

22. Slope ; y-intercept 4

23. Through ; slope 5

24. Through ; slope �1

25. Through ; slope 

26. Through ; slope 

27. Through and 

28. Through and 

29. Through and 

30. Through and 

31. x-intercept 1; y-intercept �3

32. x-intercept �8; y-intercept 6

33. Through ; slope 0

34. Through ; slope undefined

35. Through ; slope undefined

36. Through ; slope 0

37. Through ; parallel to the line 

38. Through ; perpendicular to the line 

39. Through ; parallel to the x-axis

40. Through ; parallel to the y-axis

41. Through ; parallel to the line x � 2y � 6

42. y-intercept 6; parallel to the line 2x � 3y � 4 � 0

43. Through ; parallel to the line x � 5

44. Through ; perpendicular to the line y � 1

45. Through ; perpendicular to the line 
2x � 5y � 8 � 0

46. Through ; perpendicular to the line 4x � 8y � 1

47. Through ; parallel to the line passing through 
and 

48. Through ; perpendicular to the line passing
through and 

49. (a) Sketch the line with slope that passes through the point
.

(b) Find an equation for this line.
1�2,  1 2

3
2

15,  �1 211,  1 2
1�2,  �11 2

1�2,  1 2
12,  5 211,  7 2

A12,  � 
2
3B

1�1,  �2 2

12,  6 2

1�1,  2 2

11,  �6 2

14,  5 2

14,  5 2

y � �1
2  
x � 71�3, 2 2

y � 3x � 511, 2 2

15,  1 2

12,  �1 2

1�1,  4 2

11,  3 2

14, 7 211, 7 2

1�1, �3 21�2, 5 2

14,  3 21�1,  �2 2

11,  6 212,  1 2

� 
7
21�3,  �5 2

2
311,  7 2

1�2,  4 2

12,  3 2

2
5

_ x

y

0 14

_3

1
x

y

0 1 3

_3

1
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x y

0 10
2 16
4 22
6 28

x y

0 100
5 80

10 60
15 40
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92. Global Warming Some scientists believe that the average
surface temperature of the world has been rising steadily. The
average surface temperature can be modeled by

T � 0.02t � 15.0

where T is temperature in �C and t is years since 1950.
(a) What do the slope and T-intercept represent?
(b) Use the equation to predict the average global surface 

temperature in 2050.

93. Drug Dosages If the recommended adult dosage for a drug
is D (in mg), then to determine the appropriate dosage c for a
child of age a, pharmacists use the equation

Suppose the dosage for an adult is 200 mg.
(a) Find the slope. What does it represent?
(b) What is the dosage for a newborn?

94. Flea Market The manager of a weekend flea market knows
from past experience that if she charges x dollars for a rental
space at the flea market, then the number y of spaces she can
rent is given by the equation y � 200 � 4x.
(a) Sketch a graph of this linear equation. (Remember that

the rental charge per space and the number of spaces
rented must both be nonnegative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of
the graph represent?

95. Production Cost A small-appliance manufacturer finds that
if he produces x toaster ovens in a month, his production cost
is given by the equation

(where y is measured in dollars).
(a) Sketch a graph of this linear equation.
(b) What do the slope and y-intercept of the graph represent?

96. Temperature Scales The relationship between the 
Fahrenheit (F) and Celsius (C ) temperature scales is given 
by the equation .
(a) Complete the table to compare the two scales at the given

values.
(b) Find the temperature at which the scales agree. 

[Hint: Suppose that a is the temperature at which the
scales agree. Set F � a and C � a. Then solve for a.]

97. Crickets and Temperature Biologists have observed that
the chirping rate of crickets of a certain species is related to
temperature, and the relationship appears to be very nearly 
linear. A cricket produces 120 chirps per minute at 70�F and
168 chirps per minute at 80�F.

F � 9
5 C � 32

y � 6x � 3000

c � 0.0417D1a � 1 2

85. Use slopes to show that , and
are vertices of a rectangle.

86. Use slopes to determine whether the given points are collinear
(lie on a line).

(a)

(b)

87. Find an equation of the perpendicular bisector of the line 
segment joining the points and .

88. Find the area of the triangle formed by the coordinate axes and
the line

89. (a) Show that if the x- and y-intercepts of a line are nonzero
numbers a and b, then the equation of the line can be 
written in the form

This is called the two-intercept form of the equation of 
a line.

(b) Use part (a) to find an equation of the line whose 
x-intercept is 6 and whose y-intercept is �8.

90. (a) Find an equation for the line tangent to the circle 
x2 � y2 � 25 at the point . (See the figure.)

(b) At what other point on the circle will a tangent line be 
parallel to the tangent line in part (a)?

A P P L I C A T I O N S
91. Grade of a Road West of Albuquerque, New Mexico,

Route 40 eastbound is straight and makes a steep descent to-
ward the city. The highway has a 6% grade, which means that
its slope is . Driving on this road, you notice from eleva-
tion signs that you have descended a distance of 1000 ft. What
is the change in your horizontal distance?

6% grade

1000 ft

� 
6

100

(3, _4)

0 x

y

13,  �4 2

x

a
�

y

b
� 1

2y � 3x � 6 � 0

B17,  �2 2A11,  4 2

1�1,  3 2 , 11,  7 2 , 14,  15 2

11,  1 2 , 13,   9 2 , 16,  21 2

D10,  6 2
A11,  1 2 , B111,  3 2 , C110,  8 2
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C F

�30�
�20�
�10�

0�
50�
68�
86�
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(a) Find a linear equation that relates C and d.
(b) Use part (a) to predict the cost of driving 1500 mi per

month.
(c) Draw the graph of the linear equation. What does the

slope of the line represent?
(d) What does the y-intercept of the graph represent?
(e) Why is a linear relationship a suitable model for this 

situation?

102. Manufacturing Cost The manager of a furniture factory
finds that it costs $2200 to manufacture 100 chairs in one day
and $4800 to produce 300 chairs in one day.
(a) Assuming that the relationship between cost and the

number of chairs produced is linear, find an equation that
expresses this relationship. Then graph the equation.

(b) What is the slope of the line in part (a), and what does it
represent?

(c) What is the y-intercept of this line, and what does it 
represent?

103. Boiling Point Most high-altitude hikers know that cooking
takes longer at higher elevations. This is because the atmo-
spheric pressure decreases as the elevation increases, causing
water to boil at a lower temperature. The table below gives
data for the boiling point of water at different elevations
above sea level. 
(a) Plot the points in the table.  Do the points appear to lie

along a line? Prove your answer.
(b) Find the equation of the line that fits the data, and graph

the line.
(c) Use the equation you found in part (b) to estimate the

boiling point at the peak of Mount Kilimanjaro,
19,340 ft above sea level.

(d) What does the slope of the line represent?

104. Salary A woman is hired as CEO of a small company and
is offered a salary of $150,000 for the first year. In addition,
she is promised regular salary increases. The table below
shows her potential salary (in thousands of dollars) for the
first few years that she works for the company.
(a) Plot the points in the table.  Do the points appear to lie

along a line? Prove your answer.
(b) Find the equation of the line that fits the data, and graph

the line.
(c) Use the equation you found in part (b) to determine her

potential salary for year 9.
(d) What does the slope of the line represent?

(a) Find the linear equation that relates the temperature t and
the number of chirps per minute n.

(b) If the crickets are chirping at 150 chirps per minute,
estimate the temperature.

98. Depreciation A small business buys a computer for $4000.
After 4 years the value of the computer is expected to be $200.
For accounting purposes the business uses linear depreciation
to assess the value of the computer at a given time. This means
that if V is the value of the computer at time t, then a linear
equation is used to relate V and t.
(a) Find a linear equation that relates V and t.
(b) Sketch a graph of this linear equation.
(c) What do the slope and V-intercept of the graph 

represent?
(d) Find the depreciated value of the computer 3 years from

the date of purchase.

99. Pressure and Depth At the surface of the ocean the water
pressure is the same as the air pressure above the water,
15 lb/in2. Below the surface the water pressure increases by
4.34 lb/in2 for every 10 ft of descent.
(a) Find an equation for the relationship between pressure

and depth below the ocean surface.
(b) Sketch a graph of this linear equation.
(c) What do the slope and y-intercept of the graph represent?
(d) At what depth is the pressure 100 lb/in2?

100. Distance, Speed, and Time Jason and Debbie leave 
Detroit at 2:00 P.M. and drive at a constant speed, traveling
west on I-90. They pass Ann Arbor, 40 mi from Detroit, at
2:50 P.M.
(a) Express the distance traveled in terms of the time

elapsed.
(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it represent?

101. Cost of Driving The monthly cost of driving a car depends
on the number of miles driven. Lynn found that in May her driv-
ing cost was $380 for 480 mi and in June her cost was $460 for
800 mi. Assume that there is a linear relationship between the
monthly cost C of driving a car and the distance driven d.
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h 11� 1000 ft22 T 11°F22

0 212.0
1 210.2
2 208.4
3 206.6
4 204.8

Year t Salary S 11� $100022

0 150
1 160
2 170
3 180
4 190
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106. Collinear Points Suppose you are given the coordinates of
three points in the plane and you want to see whether they lie
on the same line. How can you do this using slopes? Using the
Distance Formula? Can you think of another method?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
105. What Does the Slope Mean? Suppose that the graph of

the outdoor temperature over a certain period of time is a
line. How is the weather changing if the slope of the line is
positive? If it is negative? If it is zero?

104 C H A P T E R  1 | Equations and Graphs

In Section P.8 we learned how to solve one-variable equations algebraically. Let's solve
the equation 

To solve this equation algebraically, we view x as an unknown and then use the rules of
algebra to isolate it on one side of the equation. For this equation we add 5 and then di-
vide by 3 to obtain the solution . To solve this equation graphically, we view x as a
variable and sketch the graph of the equation 

Different values for x give different values for y. Our goal is to find the value of x for
which . So the solution is the x-intercept of the graph. From the graph in Figure 1
we see that when so the solution is 

The two methods for solving equations are summarized below.
x � 1.7.x � 1.7,y � 0

y � 0

y � 3x � 5

x � 5
3

0 � 3x � 5

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve Equations Graphically

GET READY Prepare for this section by reviewing how to solve equations (Section P.8)

and how to graph with a graphing calculator (Appendix B and Appendix C).

y=3x-5

y

x0 2

1

1

F I G U R E  1

SOLVING AN EQUATION

Algebraic Method Graphical Method

Use the rules of algebra to isolate Move all terms to one side, and set the 
the unknown x on one side of the result equal to y. Sketch the graph 
equation. to find the value of x where y � 0.

Example: Example:

Add x

Divide by 3 Set y � 6 � 3x and graph.

The solution is x � 2.

From the graph, the solution is x � 2.

y=6-3x

y

x0 2

2

1

 x � 2

 0 � 6 � 3x 3x � 6

 2x � 6 � x 2x � 6 � x

1.4 SOLVING EQUATIONS GRAPHICALLY
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The advantage of the algebraic method is that it gives exact answers. Also, the process of
unraveling the equation to arrive at the answer helps us to understand the algebraic structure
of the equation. On the other hand, for many equations it is difficult or impossible to isolate x.

The graphical method gives a numerical approximation to the answer. This is an advan-
tage when a numerical answer is desired. (For example, an engineer might find an answer
expressed as x � 2.6 more immediately useful than ) Also, graphing an equation
helps us to visualize how the solution is related to other values of the variable.

▼ Solving Equations Graphically
To solve a one-variable equation graphically, we need to use a graphing calculator. We use
the calculator to get a graph of the corresponding two-variable equation. The following
examples illustrate the method.   

E X A M P L E  1 Solving an Equation Algebraically and Graphically

Solve the equation algebraically and graphically: x2 � 7 � 0

S O L U T I O N  1 : Algebraic

We isolate x2 on one side of the equal sign and take square roots.

Add 7

Take square roots

The solutions are and 

S O L U T I O N  2 : Graphical

We graph the equation and determine the x-intercepts from the graph. From
Figure 2 we see that the graph crosses the x-axis at and 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

E X A M P L E  2 Another Graphical Method

Solve the equation algebraically and graphically: 5 � 3x � 8x � 20

S O L U T I O N  1 : Algebraic

Subtract 5

Subtract 8x

Divide by –11 and simplify x �
�25

�11
� 2 

3
11

 �11x � �25

 �3x � 8x � 25

 5 � 3x � 8x � 20

x � �2.6.x � 2.6
y � x 2 � 7

x � �27x � 27

 x � �27

 x 2 � 7

 x 2 � 7 � 0

x � 17.
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The Discovery Project referenced on
page 297 describes a numerical method
for solving equations.

8

_8

_3.5 3.5

y=≈-7

F I G U R E  2

A L A N T U R I N G (1912–1954) was at the
center of two pivotal events of the 20th
century: World War II and the invention
of computers. At the age of 23 Turing
made his mark on mathematics by solv-
ing an important problem in the founda-
tions of mathematics that had been
posed by David Hilbert at the 1928 Inter-
national Congress of Mathematicians
(see page 502). In this research he in-
vented a theoretical machine, now
called a Turing machine, which was the
inspiration for modern digital comput-
ers. During World War II Turing was in
charge of the British effort to decipher
secret German codes. His complete suc-
cess in this endeavor played a decisive
role in the Allies’victory.To carry out the
numerous logical steps that are required
to break a coded message,Turing devel-
oped decision procedures similar to
modern computer programs. After the
war he helped to develop the first elec-
tronic computers in Britain. He also did
pioneering work on artificial intelligence
and computer models of biological
processes. At the age of 42 Turing died of
poisoning after eating an apple that had
mysteriously been laced with cyanide.
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S O L U T I O N  2 : Graphical

We could move all terms to one side of the equal sign, set the result equal to y, and graph
the resulting equation. But to avoid all this algebra, we graph two equations instead:

The solution of the original equation will be the value of x that makes y1 equal to y2;
that is, the solution is the x-coordinate of the intersection point of the two graphs. Using
the feature or the intersect command on a graphing calculator, we see from 
Figure 3 that the solution is x � 2.27.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 3 ■

In the next example we use the graphical method to solve an equation that is extremely
difficult to solve algebraically.

E X A M P L E  3 Solving an Equation in an Interval

Solve the equation

in the interval .

S O L U T I O N We are asked to find all solutions x that satisfy 1 � x � 6, so we will graph
the equation in a viewing rectangle for which the x-values are restricted to this interval:

Subtract

Figure 4 shows the graph of the equation in the viewing 
rectangle 31, 64 by 3�5, 54. There are two x-intercepts in this viewing rectangle; zooming
in, we see that the solutions are x � 2.18 and x � 3.72.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

(a) (b)

5

_5

1 6

Zero
X=3.7200502   Y=0

5

_5

1 6

Zero
X=2.1767162   Y=0

y � x3 � 6x2 � 9x � 1x

1x x3 � 6x2 � 9x � 1x � 0

 x3 � 6x2 � 9x � 1x

31,  6 4

x3 � 6x2 � 9x � 1x

TRACE

y1 � 5 � 3x  and  y2 � 8x � 20

106 C H A P T E R  1 | Equations and Graphs

10

_25

_1 3
y⁄=5-3x

y¤=8x-20
Intersection
X=2.2727723   Y=-1.818182

F I G U R E  3

We can also use the zero command 
to find the solutions, as shown in 
Figures 4(a) and 4(b).

F I G U R E  4
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The equation in Example 3 actually has four solutions. You are asked to find the other
two in Exercise 32.

E X A M P L E  4 Intensity of Light

Two light sources are 10 m apart. One is three times as intense as the other. The light
intensity L (in lux) at a point x meters from the weaker source is given by

(See Figure 5.) Find the points at which the light intensity is 4 lux.

S O L U T I O N We need to solve the equation

The graphs of

are shown in Figure 6. Zooming in (or using the intersect command), we find two
solutions, x � 1.67431 and x � 7.1927193. So the light intensity is 4 lux at the points
that are 1.67 m and 7.19 m from the weaker source.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

y1 � 4  and  y2 �
10

x2 �
30

110 � x 2 2

4 �
10

x2 �
30

110 � x 2 2

L �
10

x2 �
30

110 � x 2 2
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P I E R R E  D E  F E R M AT (1601–1665)
was a French lawyer who became
interested in mathematics at the
age of 30. Because of his job as a
magistrate, Fermat had little time to
write complete proofs of his discov-
eries and often wrote them in the
margin of whatever book he was
reading at the time. After his death,
his copy of Diophantus’ Arithmetica
(see page 47) was found to contain

a particularly tantalizing comment. Where Diophantus discusses the so-
lutions of x 2 � y2 � z2 Ófor example, x � 3, y � 4, and z � 5Ô, Fermat

states in the margin that for n � 3 there are no natural number solu-
tions to the equation x n � y n � z n. In other words, it’s impossible for a
cube to equal the sum of two cubes, a fourth power to equal the sum
of two fourth powers, and so on. Fermat writes “I have discovered a
truly wonderful proof for this but the margin is too small to contain it.”
All the other margin comments in Fermat’s copy of Arithmetica have
been proved. This one, however, remained unproved, and it came to be
known as “Fermat’s Last Theorem.”

In 1994, Andrew Wiles of Princeton University announced a proof of
Fermat’s Last Theorem, an astounding 350 years after it was conjec-
tured. His proof is one of the most widely reported mathematical re-
sults in the popular press.

F I G U R E  5

F I G U R E  6
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1 . 4  E X E R C I S E S

C O N C E P T S
1. A graph of is shown in the figure below. 

(a) The solutions of the equation 

are the -intercepts of the graph of
.

(b) Use the graph to find the solutions of the equation
.

2. The figure shows the graphs of y � 5x � x2 and y � 4. Use the
graphs to find the solutions of the equation 5x � x2 � 4.

S K I L L S
3–14 ■ Solve the equation both algebraically and graphically.

3. x � 4 � 5x � 12 4.

5. 6.

7. x2 � 32 � 0 8. x3 � 16 � 0

9. x2 � 9 � 0 10. x2 � 3 � 2x

11. 16x4 � 625 12. 2x5 � 243 � 0

13. 14.

15–26 ■ Solve the equation graphically in the given interval.
State each answer rounded to two decimals.

15. x2 � 7x � 12 � 0; 30, 64

16. x2 � 0.75x � 0.125 � 0; 3�2, 24

17. x3 � 6x2 � 11x � 6 � 0; 3 �1, 44

18. 16x3 � 16x2 � x � 1; 3�2, 24

19. ; [2, 5]25 � x � 1 � x � 2

61x � 2 2 5 � 641x � 5 2 4 � 80 � 0

4

x � 2
�

6

2x
�

5

2x � 4

2
x

�
1

2x
� 7

1
2 x � 3 � 6 � 2x

654321-1

y

7
6
5
4
3
2
1

-1
-2

x

y=5x-x2

y=4

4321-1-2

y
8
6
4
2

-2
-4
-6
-8

x

 

y=x4-3x3-x2+3x

x 4 � 3x 3 � x 2 � 3x � 0

y � x 4 � 3x 3 � x 2 � 3x

x 4 � 3x 3 � x 2 � 3x � 0

y � x 4 � 3x 3 � x 2 � 3x

20. ; [1, 4]

21. ; 3�1, 54 22. ; 3�1, 54

23. ; [2, 11]

24. ; 

25. x1/3 � x � 0; 3 �3, 34 26. x1/2 � x1/3 � x � 0; 3�1, 54

27–30 ■ Find all real solutions of the equation, rounded to two
decimals.

27. x3 � 2x2 � x � 1 � 0 28. x4 � 16 � x3

29. 30. x4 � 8x2 � 2 � 0

31. In Example 2 we solved the equation by
drawing graphs of two equations. Solve the equation by drawing
a graph of only one equation (as in Example 1). Compare your
answer to the one obtained in Example 2.

32. In Example 3 we found two solutions of the equation
, the solutions that lie between 1 and 6.

Find two more solutions, rounded to two decimals.

A P P L I C A T I O N S
33. Estimating Profit An appliance manufacturer estimates that

the profit y (in dollars) generated by producing x cooktops per
month is given by the equation

where 0 � x � 450.
(a) Graph the equation.
(b) How many cooktops must be produced to begin generating

a profit?

34. How Far Can You See? If you stand on a ship in a calm sea,
then your height x (in feet) above sea level is related to the far-
thest distance y (in miles) that you can see by the equation

(a) Graph the equation for 0 � x � 100.
(b) How high up do you have to be to be able to see 10 mi?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
35. Algebraic and Graphical Solution Methods Write a short

essay comparing the algebraic and graphical methods for solv-
ing equations. Make up your own examples to illustrate the ad-
vantages and disadvantages of each method.

x

y � B1.5x � a
x

5280
b

2

y � 10x � 0.5x2 � 0.001x3 � 5000

x3 � 6x2 � 9x � 1x

5 � 3x � 8x � 20

x1x � 1 2 1x � 2 2 � 1
6 x

� � 1, �0.25�
1

x 3 �
4

x 2 �
4
x

� 0

x � 52x � 6 � 0

1 � 1x � 21 � x2x � 1x � 1 � 0

2x � 2x � 1 � 8
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Many problems in the sciences, economics, finance, medicine, and numerous other fields
can be translated into algebra problems; this is one reason that algebra is so useful. In this
section we use equations as mathematical models to solve real-life problems.

▼ Making and Using Models
We will use the following guidelines to help us set up equations that model situations de-
scribed in words. To show how the guidelines can help you to set up equations, we note
them as we work each example in this section.

The following example illustrates how these guidelines are used to translate a “word
problem” into the language of algebra.

E X A M P L E  1 Renting a Car

A car rental company charges $30 a day and 15¢ a mile for renting a car. Helen rents a
car for two days, and her bill comes to $108. How many miles did she drive?

S O L U T I O N  1 : Algebraic

Identify the variable. We are asked to find the number of miles Helen has driven. So
we let

Translate from words to algebra. Now we translate all the information given in the
problem into the language of algebra:

x � number of miles driven

S E C T I O N  1 . 5 | Modeling with Equations 109

1.5 MODELING WITH EQUATIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Make equations that model real-world situations � Solve problems about
interest � Solve problems about areas and lengths � Solve problems about
mixtures and concentrations � Solve problems about the time needed to do
a job � Solve problems about distance, speed, and time

GUIDELINES FOR MODELING WITH EQUATIONS

1. Identify the Variable. Identify the quantity that the problem asks you to find.
This quantity can usually be determined by a careful reading of the question
that is posed at the end of the problem. Then introduce notation for the vari-
able (call it x or some other letter).

2. Translate from Words to Algebra. Read each sentence in the problem again,
and express all the quantities mentioned in the problem in terms of the variable
you defined in Step 1. To organize this information, it is sometimes helpful to
draw a diagram or make a table.

3. Set Up the Model. Find the crucial fact in the problem that gives a relation-
ship between the expressions you listed in Step 2. Set up an equation (or
model) that expresses this relationship.

4. Solve the Equation and Check Your Answer. Solve the equation, check your an-
swer, and express it as a sentence that answers the question posed in the problem.
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In Words In Algebra

Number of miles driven x
Mileage cost (at $0.15 per mile) 0.15x
Daily cost (at $30 per day) 21302

Set up the model. Now we set up the model:

� �

Solve. Now we solve for x:

Subtract 60

Divide by 0.15

Calculator

Helen drove her rental car 320 miles.

S O L U T I O N  2 : Graphical

Let x be as in Solution 1, and let y be the rental cost for driving x miles over two days.
So

We want to find the value of x for which The graphs of and
are shown in Figure 1. From the figure we see that the graphs intersect where
So Helen drove her rental car 320 miles.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 21 ■

In the examples and exercises that follow, we construct equations that model problems
in many different real-life situations. We will solve the equations that arise algebraically,
but of course they can be solved graphically as well.

▼ Problems About Interest
When you borrow money from a bank or when a bank “borrows” your money by keep-
ing it for you in a savings account, the borrower in each case must pay for the privi-
lege of using the money. The fee that is paid is called interest. The most basic type of
interest is simple interest, which is just an annual percentage of the total amount bor-
rowed or deposited. The amount of a loan or deposit is called the principal P. The an-
nual percentage paid for the use of this money is the interest rate r. We will use the
variable t to stand for the number of years that the money is on deposit and the vari-
able I to stand for the total interest earned. The following simple interest formula
gives the amount of interest I earned when a principal P is deposited for t years at an
interest rate r. 

When using this formula, remember to convert r from a percentage to a decimal. For ex-
ample, in decimal form, 5% is 0.05. So at an interest rate of 5%, the interest paid on a
$1000 deposit over a 3-year period is I � Prt � 100010.05 2 13 2 � $150.

I � Prt

x � 320.
y � 108

y � 0.15x � 60y � 108.

y � 0.15x � 60

 x � 320

 x �
48

0.15

 0.15x � 48

0.15x � 2130 2 � 108

total costdaily costmileage cost

110 C H A P T E R  1 | Equations and Graphs

C H E C K  Y O U R  A N S W E R

✓ � 108

 � 0.151320 2 � 2130 2

total cost � mileage cost � daily cost

150

400

y¤=108

y⁄=0.15x+60

0

F I G U R E  1

Unless otherwise noted, all content on this page is © Cengage Learning.
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E X A M P L E  2 Interest on an Investment

Mary inherits $100,000 and invests it in two certificates of deposit. One certificate pays
6% and the other pays % simple interest annually. If Mary’s total interest is $5025 per
year, how much money is invested at each rate?

S O L U T I O N Identify the variable. The problem asks for the amount she has invested
at each rate. So we let

Translate from words to algebra. Since Mary’s total inheritance is $100,000, it fol-
lows that she invested 100,000 � x at %. We translate all the information given into
the language of algebra:

In Words In Algebra

Amount invested at 6% x
Amount invested at % 100,000 � x
Interest earned at 6% 0.06x
Interest earned at  %

Set up the model. We use the fact that Mary’s total interest is $5025 to set up the model:

� interest at % �

Solve. Now we solve for x:

Multiply

Combine the x-terms

Subtract 4500

Divide by 0.015

So Mary has invested $35,000 at 6% and the remaining $65,000 at %.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

▼ Problems About Area or Length
When we use algebra to model a physical situation, we must sometimes use basic formu-
las from geometry. For example, we may need a formula for an area or a perimeter, or the
formula that relates the sides of similar triangles, or the Pythagorean Theorem. Most of
these formulas are listed in the inside back cover of this book. The next two examples use
these geometric formulas to solve some real-world problems.

E X A M P L E  3 Dimensions of a Garden

A square garden has a walkway 3 ft wide around its outer edge, as shown in Figure 2 on
following page. If the area of the entire garden, including the walkway, is 18,000 ft2,
what are the dimensions of the planted area?

4 
1
2

 x �
525

0.015
� 35,000

 0.015x � 525

 0.015x � 4500 � 5025

 0.06x � 4500 � 0.045x � 5025

 0.06x � 0.0451100,000 � x 2 � 5025

total interest4 
1
2interest at 6%

0.0451100,000 � x 24 
1
2

4 
1
2

4 
1
2

x � the amount invested at 6%

41
2
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B H A S K A R A (born 1114) was an Indian
mathematician, astronomer, and as-
trologer. Among his many accomplish-
ments was an ingenious proof of the
Pythagorean Theorem. (See Focus 
on Problem Solving 5, Problem 12,
at the book companion website
www.stewartmath.com.) His impor-
tant mathematical book Lilavati [The
Beautiful] consists of algebra problems
posed in the form of stories to his
daughter Lilavati. Many of the prob-
lems begin “Oh beautiful maiden, sup-
pose . . .” The story is told that using as-
trology, Bhaskara had determined that
great misfortune would befall his
daughter if she married at any time
other than at a certain hour of a certain
day. On her wedding day, as she was
anxiously watching the water clock, a
pearl fell unnoticed from her head-
dress. It stopped the flow of water in
the clock, causing her to miss the 
opportune moment for marriage.
Bhaskara’s Lilavati was written to 
console her.

C H E C K  Y O U R  A N S W E R

✓ � $2100 � $2925 � $5025

 total interest � 6% of $35,000 � 4 
1
2% of $65,000
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S O L U T I O N Identify the variable. We are asked to find the length and width of the
planted area. So we let

Translate from words to algebra. Next, translate the information from Figure 2 into
the language of algebra:

In Words In Algebra

Length of planted area x

Length of entire garden x � 6

Area of entire garden 1x � 622

Set up the model. We now set up the model:

Solve. Now we solve for x:

Take square roots

Subtract 6

The planted area of the garden is about 128 ft by 128 ft.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 43 ■

E X A M P L E  4 Determining the Height of a Building 
Using Similar Triangles

A man who is 6 ft tall wishes to find the height of a certain four-story building. He mea-
sures its shadow and finds it to be 28 ft long, while his own shadow is ft long. How
tall is the building?

S O L U T I O N Identify the variable. The problem asks for the height of the building. 
So let

Translate from words to algebra. We use the fact that the triangles in Figure 3 on the
next page are similar. Recall that for any pair of similar triangles the ratios of correspond-
ing sides are equal. Now we translate these observations into the language of algebra:

In Words In Algebra

Height of building h

Ratio of height to base in large triangle 

Ratio of height to base in small triangle

Set up the model. Since the large and small triangles are similar, we get the equation

�

 
h

28
�

6

3.5

ratio of height to
base in small triangle

ratio of height to
base in large triangle

6
3.5

h
28

h � the height of the building

31
2

 x � 128

 x � 118,000 � 6

 x � 6 � 118,000

 1x � 6 2 2 � 18,000

 area of entire garden � 18,000 ft2

x � the length of the planted area
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x

3 ft

3 ft

F I G U R E  2

Unless otherwise noted, all content on this page is © Cengage Learning.
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Solve. Now we solve for h:

Multiply by 28

So the building is 48 ft tall.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

▼ Problems About Mixtures
Many real-world problems involve mixing different types of substances. For example,
construction workers may mix cement, gravel, and sand; fruit juice from concentrate may
involve mixing different types of juices. Problems involving mixtures and concentrations
make use of the fact that if an amount x of a substance is dissolved in a solution with vol-
ume V, then the concentration C of the substance is given by

So if 10 g of sugar is dissolved in 5 L of water, then the sugar concentration is C � 10/5 
� 2 g/L. Solving a mixture problem usually requires us to analyze the amount x of the
substance that is in the solution. When we solve for x in this equation, we see that x � CV.
Note that in many mixture problems the concentration C is expressed as a percentage, as
in the next example.

E X A M P L E  5 Mixtures and Concentration

A manufacturer of soft drinks advertises its orange soda as “naturally flavored,” al-
though it contains only 5% orange juice. A new federal regulation stipulates that to
be called “natural,” a drink must contain at least 10% fruit juice. How much pure or-
ange juice must this manufacturer add to 900 gal of orange soda to conform to the
new regulation?

S O L U T I O N Identify the variable. The problem asks for the amount of pure orange
juice to be added. So let

Translate from words to algebra. In any problem of this type—in which two different
substances are to be mixed—drawing a diagram helps us to organize the given informa-
tion (see Figure 4).

x � the amount 1in gallons 2  of pure orange juice to be added

C �
x

V

 h �
6 # 28

3.5
� 48
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F I G U R E  3

h

3    ft1
2

28 ft

6 ft

Unless otherwise noted, all content on this page is © Cengage Learning.
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We now translate the information in the figure into the language of algebra:

In Words In Algebra

Amount of orange juice to be added x
Amount of the mixture
Amount of orange juice in the first vat
Amount of orange juice in the second vat
Amount of orange juice in the mixture

Set up the model. To set up the model, we use the fact that the total amount of orange
juice in the mixture is equal to the orange juice in the first two vats:

� �

From Figure 4

Solve. Now we solve for x:

Distributive Property

Subtract 0.1x and 45

Divide by 0.9

The manufacturer should add 50 gal of pure orange juice to the soda.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 47 ■

▼ Problems About the Time Needed to Do a Job
When solving a problem that involves determining how long it takes several workers to
complete a job, we use the fact that if a person or machine takes H time units to complete
the task, then in one time unit the fraction of the task that has been completed is 1/H. For

 x �
45

0.9
� 50

 0.9x � 45

 45 � x � 90 � 0.1x

 45 � x � 0.11900 � x 2

amount of
orange juice
in mixture

amount of
orange juice
in second vat

amount of 
orange juice
in first vat

0.101900 � x 2
1 # x � x
0.051900 2 � 45
900 � x
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� �
100% juice5% juice

10% juice

Volume

Amount of
orange juice

900 gallons

5% of 900 gallons
=45 gallons

 x gallons

 100% of x gallons
=x gallons 

900+x gallons

10% of 900+x gallons
=0.1(900+x) gallons 

F I G U R E  4

C H E C K  Y O U R  A N S W E R

Amounts are equal. ✓

 amount of juice after mixing � 10% of 950 gal � 95 gal

 � 45 gal � 50 gal � 95 gal

 amount of juice before mixing � 5% of 900 gal � 50 gal pure juice

Unless otherwise noted, all content on this page is © Cengage Learning.
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example, if a worker takes 5 hours to mow a lawn, then in 1 hour the worker will mow 1/5
of the lawn.

E X A M P L E  6 Time Needed to Do a Job

Because of an anticipated heavy rainstorm, the water level in a reservoir must be low-
ered by 1 ft. Opening spillway A lowers the level by this amount in 4 hours, whereas
opening the smaller spillway B does the job in 6 hours. How long will it take to lower
the water level by 1 ft if both spillways are opened?

S O L U T I O N Identify the variable. We are asked to find the time needed to lower the
level by 1 ft if both spillways are open. So let

Translate from words to algebra. Finding an equation relating x to the other quantities
in this problem is not easy. Certainly x is not simply 4 � 6, because that would mean
that together the two spillways require longer to lower the water level than either spill-
way alone. Instead, we look at the fraction of the job that can be done in 1 hour by each
spillway.

In Words In Algebra

Time it takes to lower level 1 ft with A and B together x h

Distance A lowers level in 1 h ft

Distance B lowers level in 1 h ft

Distance A and B together lower levels in 1 h ft

Set up the model. Now we set up the model:

� �

Solve. Now we solve for x:

Multiply by the LCD, 12x

Add

Divide by 5

It will take hours, or 2 h 24 min, to lower the water level by 1 ft if both spillways are
open.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 55 ■

▼ Problems About Distance, Rate, and Time
The next example deals with distance, rate (speed), and time. The formula to keep in mind
here is

where the rate is either the constant speed or average speed of a moving object. For ex-
ample, driving at 60 mi/h for 4 hours takes you a distance of 60 # 4 � 240 mi.

distance � rate  time

2 
2
5

 x �
12

5

 5x � 12

 3x � 2x � 12

 
1

4
�

1

6
�

1
x

fraction done by bothfraction done by Bfraction done by A

1
x

1
6

1
4

 by 1 ft if both spillways are open
 x � the time (in hours) it takes to lower the water level
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E X A M P L E  7 Distance, Speed, and Time

Bill left his house at 2:00 P.M. and rode his bicycle down Main Street at a speed of 
12 mi/h. When his friend Mary arrived at his house at 2:10 P.M., Bill’s mother told her
the direction in which Bill had gone, and Mary cycled after him at a speed of 16 mi/h.
At what time did Mary catch up with Bill?

S O L U T I O N Identify the variable. We are asked to find the time that it took Mary to
catch up with Bill. Let

Translate from words to algebra. In problems involving motion, it is often helpful 
to organize the information in a table, using the formula distance � rate  time. First
we fill in the “Speed” column in the table, since we are told the speeds at which Mary
and Bill cycled. Then we fill in the “Time” column. (Because Bill had a 10-minute,
or -hour head start, he cycled for hours.) Finally, we multiply these columns to
calculate the entries in the “Distance” column.

Set up the model. At the instant when Mary caught up with Bill, they had both cycled
the same distance. We use this fact to set up the model for this problem:

�

From table

Solve. Now we solve for t:

Distributive Property

Subtract 12t

Divide by 4

Mary caught up with Bill after cycling for half an hour, that is, at 2:40 P.M.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 59 ■

 t � 1
2

 4t � 2

 16t � 12t � 2

 16t � 12At � 1
6B

distance traveled by Billdistance traveled by Mary

t � 1
6

1
6

t � the time 1in hours 2  it took Mary to catch up with Bill
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Distance (mi) Speed (mi/h) Time (h)

Mary 16t 16 t
Bill 12 t � 1

612At � 1
6B

C H E C K  Y O U R  A N S W E R

Bill traveled for so

Distances are equal. ✓

 distance Mary traveled � 16 mi/h  1
2 h � 8 mi

 distance Bill traveled � 12 mi/h  2
3 h � 8 mi

1
2 � 1

6 � 2
3 h,

1 . 5  E X E R C I S E S

C O N C E P T S
1. Explain in your own words what it means for an equation to

model a real-world situation, and give an example.

2. In the formula I = Prt for simple interest, P stands for 

, r for , and t for .
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A P P L I C A T I O N S
21. Renting a Truck A rental company charges $65 a day and 

20 cents a mile for renting a truck. Michael rents a truck for 3 days,
and his bill comes to $275. How many miles did he drive? 

22. Cell Phone Costs A cell phone company charges a monthly
fee of $10 for the first 1000 text messages and 10 cents for
each additional text message. Miriam’s bill for text messages
for the month of June is $38.50. How many text messages did
she send that month?

23. Average Linh has obtained scores of 82, 75, and 71 on her
midterm algebra exams. If the final exam counts twice as much
as a midterm, what score must she make on her final exam to get
an average score of 80? (Assume that the maximum possible
score on each test is 100.)

24. Average In a class of 25 students, the average score is 84.
Six students in the class each received a maximum score of
100, and three students each received a score of 60. What is
the average score of the remaining students?

25. Investments Phyllis invested $12,000, a portion earning a
simple interest rate of % per year and the rest earning a rate of
4% per year. After 1 year the total interest earned on these invest-
ments was $525. How much money did she invest at each rate?

26. Investments If Ben invests $4000 at 4% interest per year,
how much additional money must he invest at % annual in-
terest to ensure that the interest he receives each year is %
of the total amount invested?

27. Investments What annual rate of interest would you have
to earn on an investment of $3500 to ensure receiving $262.50
interest after 1 year?

28. Investments Jack invests $1000 at a certain annual interest
rate, and he invests another $2000 at an annual rate that is
one-half percent higher. If he receives a total of $190 interest
in 1 year, at what rate is the $1000 invested?

29. Salaries An executive in an engineering firm earns a
monthly salary plus a Christmas bonus of $8500. If she earns a
total of $97,300 per year, what is her monthly salary?

30. Salaries A woman earns 15% more than her husband. 
Together they make $69,875 per year. What is the husband’s
annual salary?

31. Overtime Pay Helen earns $7.50 an hour at her job, but if
she works more than 35 hours in a week, she is paid times
her regular salary for the overtime hours worked. One week
her gross pay was $352.50. How many overtime hours did she
work that week?

32. Labor Costs A plumber and his assistant work together to
replace the pipes in an old house. The plumber charges $45 an
hour for his own labor and $25 an hour for his assistant’s labor.
The plumber works twice as long as his assistant on this job,
and the labor charge on the final bill is $4025. How long did
the plumber and his assistant work on this job?

33. A Riddle A movie star, unwilling to give his age, posed the
following riddle to a gossip columnist: “Seven years ago, I
was eleven times as old as my daughter. Now I am four times
as old as she is.” How old is the movie star?

1 
1
2

4 
1
2

5 
1
2

4 
1
2

3. Give a formula for the area of the geometric figure.

(a) A square of side x: A = .

(b) A rectangle of length l and width „: A = .

(c) A circle of radius r: A = .

4. Balsamic vinegar contains 5% acetic acid, so a 32-oz bottle 

of balsamic vinegar contains ounces of acetic acid. 

5. A painter paints a wall in x hours, so the fraction of the wall 

that she paints in 1 hour is .

6. The formula d � rt models the distance d traveled by an ob-
ject moving at the constant rate r in time t. Find formulas for
the following quantities.

r � t �

S K I L L S
7–20 ■ Express the given quantity in terms of the indicated variable.

7. The sum of three consecutive integers; n � first integer of
the three

8. The sum of three consecutive integers; n � middle integer of
the three

9. The sum of three consecutive even integers; n � first integer
of the three

10. The sum of the squares of two consecutive integers; n � first
integer of the two

11. The average of three test scores if the first two scores are 
78 and 82; s � third test score

12. The average of four quiz scores if each of the first three scores
is 8; q � fourth quiz score

13. The interest obtained after one year on an investment at 
simple interest per year; x � number of dollars invested

14. The total rent paid for an apartment if the rent is $795 a
month; n � number of months

15. The area (in ft2) of a rectangle that is five times as long as it is
wide; „ � width of the rectangle (in ft)

16. The perimeter (in cm) of a rectangle that is 4 cm longer than it
is wide; „ � width of the rectangle (in cm)

17. The time (in hours) it takes to travel a given distance at 
55 mi/h; d � given distance (in mi)

18. The distance (in mi) that a car travels in 45 min; s � speed
of the car (in mi/h)

19. The concentration (in oz/gal) of salt in a mixture of 3 gal of
brine containing 25 oz of salt to which some pure water has
been added; x � volume of pure water added (in gal)

20. The value (in cents) of the change in a purse that contains
twice as many nickels as pennies, four more dimes than 
nickels, and as many quarters as dimes and nickels combined;
p � number of pennies

21
2%
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43. Framing a Painting Ali paints with watercolors on a sheet
of paper 20 in. wide by 15 in. high. He then places this sheet
on a mat so that a uniformly wide strip of the mat shows all
around the picture. The perimeter of the mat is 102 in. How
wide is the strip of the mat showing around the picture?

44. Dimensions of a Poster A poster has a rectangular printed
area 100 cm by 140 cm and a blank strip of uniform width
around the edges. The perimeter of the poster is 1 times the
perimeter of the printed area. What is the width of the blank
strip?

45. Length of a Shadow A man is walking away from 
a lamppost with a light source 6 m above the ground. The man
is 2 m tall. How long is the man’s shadow when he is 10 m
from the lamppost? [Hint: Use similar triangles.]

46. Height of a Tree A woodcutter determines the height of a
tall tree by first measuring a smaller one 125 ft away, then
moving so that his eyes are in the line of sight along the tops
of the trees and measuring how far he is standing from the

6 m

2 m

x10 m

100 cm

140 cm

x

x

1
2

.

.x

20 in

15 in

34. Career Home Runs During his major league career, Hank
Aaron hit 41 more home runs than Babe Ruth hit during his
career. Together they hit 1469 home runs. How many home
runs did Babe Ruth hit?

35. Value of Coins A change purse contains an equal number
of pennies, nickels, and dimes. The total value of the coins is
$1.44. How many coins of each type does the purse contain?

36. Value of Coins Mary has $3.00 in nickels, dimes, and quar-
ters. If she has twice as many dimes as quarters and five more
nickels than dimes, how many coins of each type does she
have?

37. Length of a Garden A rectangular garden is 25 ft wide. If
its area is 1125 ft2, what is the length of the garden?

38. Width of a Pasture A pasture is twice as long as it is wide.
Its area is 115,200 ft 2. How wide is the pasture?

39. Dimensions of a Lot A square plot of land has a 
building 60 ft long and 40 ft wide at one corner. The rest of 
the land outside the building forms a parking lot. If the parking
lot has area 12,000 ft2, what are the dimensions of the entire
plot of land?

40. Dimensions of a Lot A half-acre building lot is five times
as long as it is wide. What are its dimensions? 
[Note: 1 acre � 43,560 ft2.]

41. Geometry Find the length y in the figure if the shaded area
is 120 in2.

42. Geometry Find the length x in the figure if the shaded area
is 144 cm2.

x

x

6 cm
10 cm

area=144 cm2

y

area=120 in2

yy

25 ft
x ft
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55. Sharing a Job Candy and Tim share a paper route. It takes
Candy 70 min to deliver all the papers, and it takes Tim 80 min.
How long does it take the two when they work together?

56. Sharing a Job Stan and Hilda can mow the lawn in 
40 min if they work together. If Hilda works twice as fast as
Stan, how long does it take Stan to mow the lawn alone?

57. Sharing a Job Betty and Karen have been hired to paint the
houses in a new development. Working together, the women
can paint a house in two-thirds the time that it takes Karen
working alone. Betty takes 6 h to paint a house alone. How
long does it take Karen to paint a house working alone?

58. Sharing a Job Next-door neighbors Bob and Jim use hoses
from both houses to fill Bob’s swimming pool. They know that
it takes 18 h using both hoses. They also know that Bob’s
hose, used alone, takes 20% less time than Jim’s hose alone.
How much time is required to fill the pool by each hose 
alone?

59. Distance, Speed, and Time Wendy took a trip from Dav-
enport to Omaha, a distance of 300 mi. She traveled part of
the way by bus, which arrived at the train station just in time
for Wendy to complete her journey by train. The bus averaged
40 mi/h, and the train averaged 60 mi/h. The entire trip took
5 h. How long did Wendy spend on the train?

60. Distance, Speed, and Time Two cyclists, 90 mi apart, start
riding toward each other at the same time. One cycles twice as
fast as the other. If they meet 2 h later, at what average speed
is each cyclist traveling?

61. Distance, Speed, and Time A pilot flew a jet from Mon-
treal to Los Angeles, a distance of 2500 mi. On the return trip,
the average speed was 20% faster than the outbound speed.
The round-trip took 9 h 10 min. What was the speed from
Montreal to Los Angeles?

62. Distance, Speed, and Time A woman driving a car 
14 ft long is passing a truck 30 ft long. The truck is traveling
at 50 mi/h. How fast must the woman drive her car so that she
can pass the truck completely in 6 s, from the position shown
in figure (a) to the position shown in figure (b)? [Hint: Use
feet and seconds instead of miles and hours.]

50 mi/h

(a)

50 mi/h

(b)

1
2

small tree (see the figure). Suppose the small tree is 20 ft tall,
the man is 25 ft from the small tree, and his eye level is 5 ft
above the ground. How tall is the taller tree?

47. Mixture Problem What quantity of a 60% acid solution
must be mixed with a 30% solution to produce 300 mL of a
50% solution?

48. Mixture Problem What quantity of pure acid must be
added to 300 mL of a 50% acid solution to produce a 60%
acid solution?

49. Mixture Problem A jeweler has five rings, each weighing
18 g, made of an alloy of 10% silver and 90% gold. She decides
to melt down the rings and add enough silver to reduce the gold
content to 75%. How much silver should she add?

50. Mixture Problem A pot contains 6 L of brine at a concen-
tration of 120 g/L. How much of the water should be boiled
off to increase the concentration to 200 g/L?

51. Mixture Problem The radiator in a car is filled with a solu-
tion of 60% antifreeze and 40% water. The manufacturer of
the antifreeze suggests that for summer driving, optimal cool-
ing of the engine is obtained with only 50% antifreeze. If the
capacity of the radiator is 3.6 L, how much coolant should be
drained and replaced with water to reduce the antifreeze con-
centration to the recommended level?

52. Mixture Problem A health clinic uses a solution of bleach
to sterilize petri dishes in which cultures are grown. The steril-
ization tank contains 100 gal of a solution of 2% ordinary
household bleach mixed with pure distilled water. New re-
search indicates that the concentration of bleach should be 5%
for complete sterilization. How much of the solution should be
drained and replaced with bleach to increase the bleach con-
tent to the recommended level?

53. Mixture Problem A bottle contains 750 mL of fruit 
punch with a concentration of 50% pure fruit juice. Jill drinks
100 mL of the punch and then refills the bottle with an equal
amount of a cheaper brand of punch. If the concentration of
juice in the bottle is now reduced to 48%, what was the con-
centration in the punch that Jill added?

54. Mixture Problem A merchant blends tea that sells for
$3.00 a pound with tea that sells for $2.75 a pound to 
produce 80 lb of a mixture that sells for $2.90 a pound. How
many pounds of each type of tea does the merchant use in the
blend?

25 ft 125 ft

5 ft

20 ft
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67. Dimensions of a Structure A storage bin for corn consists
of a cylindrical section made of wire mesh, surmounted by a
conical tin roof, as shown in the figure. The height of the roof
is one-third the height of the entire structure. If the total vol-
ume of the structure is 1400p ft 3 and its radius is 10 ft, what
is its height? [Hint: Use the volume formulas listed on the
inside back cover of this book.]

68. An Ancient Chinese Problem This problem is taken from
a Chinese mathematics textbook called Chui-chang suan-shu,
or Nine Chapters on the Mathematical Art, which was written
about 250 B.C.

A 10-ft-long stem of bamboo is broken in such a way that
its tip touches the ground 3 ft from the base of the stem,
as shown in the figure. What is the height of the break?

[Hint: Use the Pythagorean Theorem.]

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
69. Historical Research Read the biographical notes on 

Euclid (page 57), Pythagoras (page 253), and Archimedes 
(page 529). Choose one of these mathematicians, and find out
more about him from the library or on the Internet. Write a
short essay on your findings. Include both biographical infor-
mation and a description of the mathematics for which he is 
famous.

3 ft

h

10 ft

h

1
3

63. Law of the Lever The figure shows a lever system, similar
to a seesaw that you might find in a children’s playground. For
the system to balance, the product of the weight and its dis-
tance from the fulcrum must be the same on each side; 
that is,

This equation is called the law of the lever and was first dis-
covered by Archimedes (see page 529).

A woman and her son are playing on a seesaw. The boy is
at one end, 8 ft from the fulcrum. If the son weighs 100 lb and
the mother weighs 125 lb, where should the woman sit so that
the seesaw is balanced?

64. Law of the Lever A plank 30 ft long rests on top of a 
flat-roofed building, with 5 ft of the plank projecting over 
the edge, as shown in the figure. A worker weighing 240 lb
sits on one end of the plank. What is the largest weight that
can be hung on the projecting end of the plank if it is to 
remain in balance? (Use the law of the lever stated in 
Exercise 63.)

65. Dimensions of a Lot A rectangular parcel of land is 
50 ft wide. The length of a diagonal between opposite corners
is 10 ft more than the length of the parcel. What is the length
of the parcel?

66. Dimensions of a Track A running track has the shape
shown in the figure, with straight sides and semicircular ends.
If the length of the track is 440 yd and the two straight parts
are each 110 yd long, what is the radius of the semicircular
parts (to the nearest yard)?

110 yd

r

5 ft

„⁄
„¤

x⁄ x¤

„1x1 � „2 
x

 2

120 C H A P T E R  1 | Equations and Graphs

Equations Through the Ages

In this project we investigate equations that were created and
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In Section P.8 we learned how to solve linear equations, which are first-degree equations
such as or . In this section we learn how to solve quadratic equa-
tions, which are second-degree equations such as or We
will also see that many real-life problems can be modeled by using quadratic equations.

▼ Solving Quadratic Equations by Factoring
Some quadratic equations can be solved by factoring and using the following basic prop-
erty of real numbers.

This means that if we can factor the left-hand side of a quadratic (or other) equation, then
we can solve it by setting each factor equal to 0 in turn. This method works only when the
right-hand side of the equation is 0.

E X A M P L E  1 Solving a Quadratic Equation by Factoring

Solve the equation x2 � 5x � 24.

S O L U T I O N We must first rewrite the equation so that the right-hand side is 0:

Given equation

Subtract 24

Factor

Zero-Product Property

Solve

The solutions are x � 3 and x � �8.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

Do you see why one side of the equation must be 0 in Example 1? Factoring the equa-
tion as does not help us find the solutions, since 24 can be factored in
infinitely many ways, such as , and so on.6 # 4, 12 # 48, A�2

5B # 1�60 2
x1x � 5 2 � 24

 x � 3    x � �8

 x � 3 � 0  or   x � 8 � 0

 1x � 3 2 1x � 8 2 � 0

 x2 � 5x � 24 � 0

 x2 � 5x � 24

2x2 � 3 � 5x.x2 � 2x � 3 � 0
4 � 3x � 22x � 1 � 5
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1.6 SOLVING QUADRATIC EQUATIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve quadratic equations by factoring � Solve quadratic equations by 
completing the square � Solve quadratic equations by using the Quadratic 
Formula � Model with quadratic equations

QUADRATIC EQUATIONS

A quadratic equation is an equation of the form

where a, b, and c are real numbers with a 
 0.

ax2 � bx � c � 0

Quadratic Equations

 12  x 2 � 1
3  x � 1

6 � 0

 3x � 10 � 4x 2

 x 2 � 2x � 8 � 0

ZERO-PRODUCT PROPERT Y

AB � 0  if and only if  A � 0 or B � 0

Linear Equations

 2 � 3x � 1
2 � 3

4 x

 6x � 8 � 21

 4x � �7

C H E C K  Y O U R  A N S W E R S

:

✓

:

✓1�8 2 2 � 51�8 2 � 64 � 40 � 24

x � �8

13 22 � 513 2 � 9 � 15 � 24

x � 3
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▼ Solving Quadratic Equations by Completing the Square
As we saw in Section P.8, Example 5(b), if a quadratic equation is of the form

, then we can solve it by taking the square root of each side. In an equation of
this form, the left-hand side is a perfect square: the square of a linear expression in x. So if
a quadratic equation does not factor readily, then we can solve it by completing the square.

To complete the square, we add a constant to a quadratic expression to make it a per-
fect square. For example, to make

a perfect square, we must add . Then

is a perfect square. The table gives some more examples of completing the square.

E X A M P L E  2 Solving Quadratic Equations by Completing 
the Square

Solve each equation.

(a)

(b)

S O L U T I O N

(a) Given equation

Subtract 13

Complete the square: add 

Perfect square

Take square root

Add 4 x � 4 � 13

 x � 4 � � 13

 1x � 4 2 2 � 3

a
�8

2
b

2

� 16 x 
2 � 8x � 16 � �13 � 16

 x 
2 � 8x � �13

 x 
2 � 8x � 13 � 0

3x2 � 12x � 6 � 0

x2 � 8x � 13 � 0

x 
2 � 6x � 9 � 1x � 3 2 2

A62B
2

� 9

x 
2 � 6x

1x � a 2 2 � c
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COMPLETING THE SQUARE

To make a perfect square, add , the square of half the coefficient 
of x. This gives the perfect square

x2 � bx � a
b

2
b

2

� a x �
b

2
b

2

a
b

2
b

2

x2 � bx

Completing the Square
The area of the blue region is

Add a small square of area to
“complete” the square.

1b/2 2 2

x 2 � 2 a
b

2
b x � x 2 � bx

x

x

b
2

b
2

Expression Add Complete the square

x 
2 � 13x �

3

4
� a x �

13

2
b

2

a� 

13

2
b

2

�
3

4
x 

2 � 13x

x 
2 � 3x �

9

4
� a x �

3

2
b

2

a
3

2
b

2

�
9

4
x2 � 3x

x 
2 � 12x � 36 � 1x � 6 2 2a� 

12

2
b

2

� 36x2 � 12x

x 
2 � 8x � 16 � 1x � 4 2 2a

8

2
b

2

� 16x2 � 8x
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(b) After subtracting 6 from each side of the equation, we must factor the coefficient of
x2 (the 3) from the left side to put the equation in the correct form for completing
the square:

Given equation

Subtract 6

Factor 3 from LHS

Now we complete the square by adding inside the parentheses. Since
everything inside the parentheses is multiplied by 3, this means that we are actually
adding to the left side of the equation. Thus we must add 12 to the right
side as well:

Complete the square: add 4

Perfect square

Divide by 3

Take square root

Add 2

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 19 AND 27 ■

▼ The Quadratic Formula
We can use the technique of completing the square to derive a formula for the roots of the
general quadratic equation 

P R O O F First, we divide each side of the equation by a and move the constant to the
right side, giving

Divide by a

We now complete the square by adding to each side of the equation:

Complete the square: Add 

Perfect square

Take square root

Subtract 
■

b

2a
 x �

�b � 2b2 � 4ac

2a

 x �
b

2a
� � 

2b2 � 4ac

2a

 a x �
b

2a
b

2

�
�4ac � b2

4a2

a
b

2a
b

2

 x2 �
b
a

 x � a
b

2a
b

2

� � 

c
a

� a
b

2a
b

2

1b/2a 2 2

x2 �
b
a

 x � � 

c
a

ax2 � bx � c � 0.

 x � 2 � 12

 x � 2 � �12

 1x � 2 2 2 � 2

 31x � 2 2 2 � 6

 31x 2 � 4x � 4 2 � �6 � 3 # 4

3 # 4 � 12

1�2 2 2 � 4

 31x 2 � 4x 2 � �6

 3x 2 � 12x � �6

 3x 2 � 12x � 6 � 0
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When completing the square,
make sure the coefficient of x2 is 1. If
it isn’t, you must factor this coefficient
from both terms that contain x:

Then complete the square inside the
parentheses. Remember that the term
added inside the parentheses is multi-
plied by a.

ax 2 � bx � a a x 2 �
b

a
 x b

THE QUADRATIC FORMUL A

The roots of the quadratic equation ax2 � bx � c � 0, where a 
 0, are

x �
�b � 2b2 � 4ac

2a
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The Quadratic Formula could be used to solve the equations in Examples 1 and 2. You
should carry out the details of these calculations.

E X A M P L E  3 Using the Quadratic Formula

Find all real solutions of each equation.

(a) 3x2 � 5x � 1 � 0 (b) 4x2 � 12x � 9 � 0 (c) x2 � 2x � 2 � 0

S O L U T I O N

(a) In this quadratic equation a � 3, b � �5, and c � �1:

By the Quadratic Formula,

If approximations are desired, we can use a calculator to obtain

(b) Using the Quadratic Formula with a � 4, b � 12, and c � 9 gives

This equation has only one solution, .

(c) Using the Quadratic Formula with a � 1, b � 2, and c � 2 gives

Since the square of any real number is nonnegative, is undefined in the real
number system. The equation has no real solution.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 33, 39, AND 45 ■

In Section 3.5 we study the complex number system, in which the square roots of neg-
ative numbers do exist. The equation in Example 3(c) does have solutions in the complex
number system.

1�1

x �
�2 � 222 � 4 # 2

2
�

�2 � 1�4

2
�

�2 � 21�1

2
� �1 � 1�1

x � � 
3
2

x �
�12 � 2112 2 2 � 4 # 4 # 9

2 # 4
�

�12 � 0

8
� � 

3

2

x �
5 � 137

6
� 1.8471  and  x �

5 � 137

6
� �0.1805

x �
�1�5 2 � 21�5 2 2 � 413 2 1�1 2

213 2
�

5 � 137

6

c � �1a � 3

3x2 � 5x � 1 � 0

b � �5
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Another Method

 x � � 
3
2

 2x � 3 � 0
 12x � 3 2 2 � 0

 4x 2 � 12x � 9 � 0

Li
br

ar
y 

of
 C

on
gr

es
s

F R A N Ç O I S  V I È T E (1540–1603) had a
successful political career before tak-
ing up mathematics late in life. He be-
came one of the most famous French
mathematicians of the 16th century.
Viète introduced a new level of ab-
straction in algebra by using letters to
stand for known quantities in an equa-
tion. Before Viète’s time, each equation
had to be solved on its own. For in-
stance, the quadratic equations

 5x2 � 6x � 4 � 0

 3x2 � 2x � 8 � 0

had to be solved separately by completing the square. Viète’s idea
was to consider all quadratic equations at once by writing

where a, b, and c are known quantities. Thus he made it possible to
write a formula (in this case, the Quadratic Formula) involving a, b,
and c that can be used to solve all such equations in one fell swoop.

Viète’s mathematical genius proved quite valuable during a war
between France and Spain. To communicate with their troops, the
Spaniards used a complicated code that Viète managed to deci-
pher. Unaware of Viète’s accomplishment, the Spanish king, Philip II,
protested to the Pope, claiming that the French were using witch-
craft to read his messages.

ax2 � bx � c � 0
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▼ The Discriminant
The quantity b2 � 4ac that appears under the square root sign in the Quadratic Formula
is called the discriminant of the equation and is given the symbol D.
If D � 0, then is undefined, and the quadratic equation has no real solution,
as in Example 3(c). If D � 0, then the equation has only one real solution, as in Example
3(b). Finally, if D � 0, then the equation has two distinct real solutions, as in Example
3(a). The following box summarizes these observations.

E X A M P L E  4 Using the Discriminant

Use the discriminant to determine how many real solutions each equation has.

(a) x2 � 4x � 1 � 0 (b) 4x2 � 12x � 9 � 0 (c)

S O L U T I O N

(a) The discriminant is , so the equation has two dis-
tinct real solutions.

(b) The discriminant is , so the equation has exactly one
real solution.

(c) The discriminant is , so the equation has no real 
solution.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 63, 65, AND 67 ■

In the next example we solve quadratic equations graphically. The graphs visually
demonstrate why such equations can have one real solution, two real solutions, or no real
solution.

E X A M P L E  5 Solving a Quadratic Equation Algebraically 
and Graphically

Solve the quadratic equations algebraically and graphically.

(a) x2 � 4x � 2 � 0 (b) x2 � 4x � 4 � 0 (c) x2 � 4x � 6 � 0

S O L U T I O N  1 : Algebraic

We use the Quadratic Formula to solve each equation.

(a)

There are two solutions, and .

(b)

There is just one solution, x � 2.

x �
�1�4 2 � 21�4 22 � 4 # 1 # 4

2
�

4 � 10

2
� 2

x � 2 � 12x � 2 � 12

x �
�1�4 2 � 21�4 2 2 � 4 # 1 # 2

2
�

4 � 18

2
� 2 � 12

D � 1�2 2 2 � 4A13B4 � � 
4
3 � 0

D � 1�12 2 2 � 4 # 4 # 9 � 0

D � 42 � 411 2 1�1 2 � 20 � 0

1
3 x2 � 2x � 4 � 0

2b2 � 4ac
ax2 � bx � c � 0
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THE DISCRIMINANT

The discriminant of the quadratic equation is 
D � b2 � 4ac.

1. If D � 0, then the equation has two distinct real solutions.

2. If D � 0, then the equation has exactly one real solution.

3. If D � 0, then the equation has no real solution.

ax2 � bx � c � 0  1a 
 0 2

The Quadratic Formula is discussed on
page 123.

D � 8 � 0. Two real solutions.

D � 0. One real solution.
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(c)

There is no real solution.

S O L U T I O N  2 : Graphical

We graph the equations y � x2 � 4x � 2, y � x2 � 4x � 4, and y � x2 � 4x � 6 in
Figure 1. By determining the x-intercepts of the graphs, we find the following solutions.

(a) x � 0.6 and x � 3.4

(b) x � 2

(c) There is no x-intercept, so the equation has no solution.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 71, 73, AND 75 ■

▼ Modeling with Quadratic Equations
Let’s look at some real-life problems that can be modeled by quadratic equations. The
principles discussed in Section 1.5 for setting up equations as models are useful here as
well.

E X A M P L E  6 Dimensions of a Building Lot

A rectangular building lot is 8 ft longer than it is wide and has an area of 2900 ft2. Find
the dimensions of the lot.

S O L U T I O N Identify the variable. We are asked to find the width and length of the
lot. So let

Translate from words to algebra. Then we translate the information given in the
problem into the language of algebra (see Figure 2):

In Words In Algebra

Width of lot
Length of lot

Set up the model. Now we set up the model:

 �

 „ 1„ � 8 2 � 2900

area
of lot

length
of lot

width
of lot

„ � 8
„

„ � width of lot

x �
�1�4 2 � 21�4 2 2 � 4 # 1 # 6

2
�

4 � 1�8

2
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10

_5

_1 5

(a) y=≈-4x+2 (b) y=≈-4x+4 (c) y=≈-4x+6

10

_5

_1 5

10

_5

_1 5

F I G U R E  1

„

„+8

F I G U R E  2

Unless otherwise noted, all content on this page is © Cengage Learning.

D � �8. No real solution.

90169_Ch01_073-172.qxd  11/23/11  3:09 PM  Page 126



Solve. Now we solve for „.

Expand

Subtract 2900

Factor

Zero-Product Property

Since the width of the lot must be a positive number, we conclude that „ � 50 ft. The
length of the lot is „ � 8 � 50 � 8 � 58 ft.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 81 ■

E X A M P L E  7 A Distance-Speed-Time Problem

A jet flew from New York to Los Angeles, a distance of 4200 km. The speed for the re-
turn trip was 100 km/h faster than the outbound speed. If the total trip took 13 hours,
what was the jet’s speed from New York to Los Angeles?

S O L U T I O N Identify the variable. We are asked for the speed of the jet from New
York to Los Angeles. So let

Then

Translate from words to algebra. Now we organize the information in a table. We fill
in the “Distance” column first, since we know that the cities are 4200 km apart. Then
we fill in the “Speed” column, since we have expressed both speeds (rates) in terms of
the variable s. Finally, we calculate the entries for the “Time” column, using

Set up the model. The total trip took 13 hours, so we have the model

� �

Solve. Multiplying by the common denominator, , we get

 0 � 13s2 � 7100s � 420,000

 8400s � 420,000 � 13s2 � 1300s

 42001s � 100 2 � 4200s � 13s1s � 100 2

s1s � 100 2

 
4200

s
�

4200

s � 100
� 13

total
time

time from
L.A. to N.Y.

time from
N.Y. to L.A.

time �
distance

rate

 s � 100 � speed from Los Angeles to New York

 s � speed from New York to Los Angeles

„ � 50  or  „ � �58

 1„ � 50 2 1„ � 58 2 � 0

 „2 � 8„ � 2900 � 0

 „2 � 8„ � 2900
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Distance (km) Speed (km/h) Time (h)

N.Y. to L.A. 4200 s

L.A. to N.Y. 4200 s � 100
4200

s � 100

4200
s
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Although this equation does factor, with numbers this large it is probably quicker to use
the Quadratic Formula and a calculator:

Since s represents speed, we reject the negative answer and conclude that the jet’s speed
from New York to Los Angeles was 600 km/h.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 91 ■

E X A M P L E  8 The Path of a Projectile

An object thrown or fired straight upward at an initial speed of √0 ft/s will reach a
height of h feet after t seconds, where h and t are related by the formula

Suppose that a bullet is shot straight upward with an initial speed of 800 ft/s. Its path is
shown in Figure 3.

(a) When does the bullet fall back to ground level?

(b) When does it reach a height of 6400 ft?

(c) When does it reach a height of 2 mi?

(d) How high is the highest point the bullet reaches?

S O L U T I O N Since the initial speed in this case is √0 � 800 ft/s, the formula is

(a) Ground level corresponds to h � 0, so we must solve the equation

Set h � 0

Factor

Thus t � 0 or t � 50. This means the bullet starts at ground level and re-
turns to ground level after 50 s.

(b) Setting h � 6400 gives the equation

Set h � 6400

All terms to LHS

Divide by 16

Factor

Solve

The bullet reaches 6400 ft after 10 s (on its ascent) and again after 40 s (on its 
descent to earth).

(c) Two miles is 2 � 5280 � 10,560 ft:

Set h � 10,560

All terms to LHS

Divide by 16

The discriminant of this equation is , which is 
negative. Thus the equation has no real solution. The bullet never reaches a height 
of 2 mi.

D � 1�50 2 2 � 41660 2 � �140

 t 2 � 50t � 660 � 0

 16t 2 � 800t � 10,560 � 0

 10,560 � �16t 2 � 800t

t � 10  or  t � 40

 1t � 10 2 1t � 40 2 � 0

 t 
2 � 50t � 400 � 0

 16t 
2 � 800t � 6400 � 0

 6400 � �16t 
2 � 800t

1t � 0 2

 0 � �16t1t � 50 2

 0 � �16t 
2 � 800t

h � �16t 
2 � 800t

h � �16t 
2 � √0t

 s � 600  or  s �
�1400

26
� �53.8

 � 
7100 � 8500

26

 s �
7100 � 21�7100 2 2 � 4113 2 1�420,000 2

2113 2
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This formula depends on the fact that
acceleration due to gravity is constant
near the earth’s surface. Here we 
neglect the effect of air resistance.

h

descent

ascent

F I G U R E  3

6400 ft

2 mi
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(d) Each height that the bullet reaches is attained twice: once on its ascent and once on
its descent. The only exception is the highest point of its path, which is reached
only once. This means that for the highest value of h, the following equation has
only one solution for t:

All terms to LHS

This in turn means that the discriminant D of the equation is 0, so

The maximum height reached is 10,000 ft.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 97 ■

 h � 10,000

 640,000 � 64h � 0

 D � 1�800 2 2 � 4116 2h � 0

 16t2 � 800t � h � 0

 h � �16t2 � 800t

S E C T I O N  1 . 6 | Solving Quadratic Equations 129

10,000 ft

1 . 6  E X E R C I S E S

C O N C E P T S
1. The Quadratic Formula gives us the solutions of the equation

.

(a) State the Quadratic Formula: x � .

(b) In the equation , a � ,

b � , and c � . So the solution of the 

equation is x � .

2. Explain how you would use each method to solve the equation
.

(a) By factoring:

(b) By completing the square:

(c) By using the Quadratic Formula:

3. For the quadratic equation the discriminant 

is D � . The discriminant tells us how many real 
solutions a quadratic equation has.

If D � 0, the equation has real solution(s).

If D � 0, the equation has real solution(s).

If D � 0, the equation has real solution(s).

4. Make up quadratic equations that have the following number
of solutions:

Two solutions:

One solution:

No solution:

S K I L L S
5–18 ■ Find all real solutions of the equation by factoring.

5. 6.

7. 8.

9. 10.

11. 12. 4y2 � 9y � 282s2 � 5s � 3

4x2 � 4x � 15 � 03x2 � 5x � 2 � 0

x2 � 8x � 12 � 0x2 � 7x � 12 � 0

x 2 � 5x � �4x 2 � x � 12

ax2 � bx � c � 0

x2 � 4x � 5 � 0

1
2   
x 2 � x � 4 � 0

ax2 � bx � c � 0

13. 14.

15. 16.

17. 18.

19–30 ■ Find all real solutions of the equation by completing the
square.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31–52 ■ Find all real solutions of the equation.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53–56 ■ Use the quadratic formula and a calculator to find all real
solutions, rounded to three decimals.

53. 54.

55. 56. x2 � 1.800x � 0.810 � 0x2 � 2.450x � 1.501 � 0

x2 � 2.450x � 1.500 � 0x2 � 0.011x � 0.064 � 0

5x2 � 7x � 5 � 03x2 � 2x � 2 � 0

25x2 � 70x � 49 � 010y2 � 16y � 5 � 0

16 x 
2 � 2x � 23

2 � 0x 
2 � 15 x � 1 � 0

3 � 5z � z2 � 0„ 
2 � 31„ � 1 2

0 � x2 � 4x � 14x2 � 16x � 9 � 0

2y2 � y � 1
2 � 0z2 � 3

2  
z � 9

16 � 0

x2 � 6x � 1 � 03x2 � 6x � 5 � 0

8x2 � 6x � 9 � 0x2 � 12x � 27 � 0

3x2 � 7x � 4 � 02x2 � x � 3 � 0

x2 � 30x � 200 � 0x2 � 7x � 10 � 0

x2 � 5x � 6 � 0x2 � 2x � 15 � 0

4x 2 � 5x � 8 � 02x 2 � 7x � 4 � 0

3x2 � 6x � 1 � 02x2 � 8x � 1 � 0

x2 � 18x � 19x2 � 22x � 21 � 0

x2 � 5x � 1 � 0x 
2 � x � 3

4 � 0

x2 � 3x � 7
4 � 0x2 � 6x � 11 � 0

x2 � 4x � 2 � 0x2 � 2x � 5 � 0

6x1x � 1 2 � 21 � xx 
2 � 51x � 100 2

3x2 � 1 � 4x6x2 � 5x � 4

4„2 � 4„ � 312z2 � 44z � 45
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84. Geometry Find the length x if the shaded area is 160 in2.

85. Geometry Find the length x if the shaded area is 1200 cm2.

86. Profit A small-appliance manufacturer finds that the profit P
(in dollars) generated by producing x microwave ovens per
week is given by the formula provided that
0 � x � 200. How many ovens must be manufactured in a
given week to generate a profit of $1250?

87. Dimensions of a Box A box with a square base and no top
is to be made from a square piece of cardboard by cutting 
4-in. squares from each corner and folding up the sides, as
shown in the figure. The box is to hold 100 in3. How big a
piece of cardboard is needed?

88. Dimensions of a Can A cylindrical can has a volume of 
40p cm3 and is 10 cm tall. What is its diameter?
[Hint: Use the volume formula listed on the inside back cover
of this book.]

10 cm

4 in.

4 in.

P � 1
10   

x 1300 � x 2

x

x

1 cm

area=1200 cm2

x

x

13 in.

14 in.

area=160 in2

57–62 ■ Solve the equation for the indicated variable.

57. 58.

59. A � 2x2 � 4xh; for x 60. A � 2pr2 � 2prh; for r

61.

62.

63–68 ■ Use the discriminant to determine the number of real so-
lutions of the equation. Do not solve the equation.

63. x2 � 6x � 1 � 0 64. x2 � 6x � 9

65. x2 � 2.20x � 1.21 � 0 66. x2 � 2.21x � 1.21 � 0

67. 68. 1s � 02

69–70 ■ Solve the equation for x.

69. 1a 
 02

70.

71–76 ■ Find all real solutions of the equation both algebraically
and graphically.

71. 72.

73. 74.

75. 76.

77–78 ■ Find all values of k that ensure that the given equation
has exactly one solution.

77. 78.

A P P L I C A T I O N S
79. Number Problem Find two numbers whose sum is 55 and

whose product is 684.

80. Number Problem The sum of the squares of two con-
secutive even integers is 1252. Find the integers.

81. Dimensions of a Garden A rectangular garden is 10 ft
longer than it is wide. Its area is 875 ft2. What are its dimensions?

82. Dimensions of a Room A rectangular bedroom is 7 ft
longer than it is wide. Its area is 228 ft2. What is the width of
the room?

83. Dimensions of a Garden A farmer has a rectangular gar-
den plot surrounded by 200 ft of fence. Find the length and
width of the garden if its area is 2400 ft2.

perimeter=200 ft

kx2 � 36x � k � 04x2 � kx � 25 � 0

x 2 � 2x � 10 � 0x 2 � 6x � 14 � 0

16x 2 � 8x � 1 � 0x 2 � 6x � 9 � 0

x 2 � 9 � 0x 2 � x � 6 � 0

ax 
2 � 12a � 1 2x � 1a � 1 2 � 0 1a 
 0 2

a 
2

 x 
2 � 2ax � 1 � 0 

x 
2 � rx � s � 04x 

2 � 5x � 13
8 � 0

1
r

�
2

1 � r
�

4

r 
2  ; for r

1

s � a
�

1

s � b
�

1
c

 ; for s

S �
n1n � 1 2

2
; for nh � 1

2  gt 
2 � √0t; for t
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95–96 ■ Falling-Body Problems Suppose an object is
dropped from a height h0 above the ground. Then its height after 
t seconds is given by h � �16t2 � h0, where h is measured in feet.
Use this information to solve the problem.

95. If a ball is dropped from 288 ft above the ground, how long
does it take to reach ground level?

96. A ball is dropped from the top of a building 96 ft tall.
(a) How long will it take to fall half the distance to ground

level?
(b) How long will it take to fall to ground level?

97–98 ■ Falling-Body Problems Use the formula 
h � �16t2 � √0 t discussed in Example 8.

97. A ball is thrown straight upward at an initial speed of 
√0 � 40 ft/s.
(a) When does the ball reach a height of 24 ft?
(b) When does it reach a height of 48 ft?
(c) What is the greatest height reached by the ball?
(d) When does the ball reach the highest point of its 

path?
(e) When does the ball hit the ground?

98. How fast would a ball have to be thrown upward to reach a
maximum height of 100 ft? [Hint: Use the discriminant of
the equation 16t2 � √0 t � h � 0.]

99. Fish Population The fish population in a certain lake rises
and falls according to the formula

Here F is the number of fish at time t, where t is measured in
years since January 1, 2002, when the fish population was
first estimated.
(a) On what date will the fish population again be the same

as it was on January 1, 2002?
(b) By what date will all the fish in the lake have died?

100. Comparing Areas A wire 360 in. long is cut into two 
pieces. One piece is formed into a square, and the other is 
formed into a circle. If the two figures have the same area, what
are the lengths of the two pieces of wire (to the nearest tenth of
an inch)?

101. Width of a Lawn A factory is to be built on a lot measur-
ing 180 ft by 240 ft. A local building code specifies that a
lawn of uniform width and equal in area to the factory must
surround the factory. What must the width of this lawn be,
and what are the dimensions of the factory?

F � 1000130 � 17t � t 
2 2

89. Dimensions of a Lot A parcel of land is 6 ft longer 
than it is wide. Each diagonal from one corner to the opposite
corner is 174 ft long. What are the dimensions of the 
parcel?

90. Height of a Flagpole A flagpole is secured on opposite
sides by two guy wires, each of which is 5 ft longer than the
pole. The distance between the points where the wires are
fixed to the ground is equal to the length of one guy wire.
How tall is the flagpole (to the nearest inch)?

91. Distance, Speed, and Time A salesman drives from Ajax
to Barrington, a distance of 120 mi, at a steady speed. He then
increases his speed by 10 mi/h to drive the 150 mi from Bar-
rington to Collins. If the second leg of his trip took 6 min
more time than the first leg, how fast was he driving between
Ajax and Barrington?

92. Distance, Speed, and Time Kiran drove from Tortula
to Cactus, a distance of 250 mi. She increased her speed by
10 mi/h for the 360-mi trip from Cactus to Dry Junction.
If the total trip took 11 h, what was her speed from Tortula to
Cactus?

93. Distance, Speed, and Time It took a crew 2 h 40 min to
row 6 km upstream and back again. If the rate of flow of the
stream was 3 km/h, what was the rowing speed of the crew in
still water?

94. Speed of a Boat Two fishing boats depart a harbor at the
same time, one traveling east, the other south. The eastbound
boat travels at a speed 3 mi/h faster than the southbound boat.
After two hours the boats are 30 mi apart. Find the speed of
the southbound boat.

N

30 m
i

S
EW
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where K � 0 is a constant and x is the distance of the object
from the center of the earth, measured in thousands of miles.
How far from the center of the earth is the “dead spot” where
no net gravitational force acts upon the object? (Express your
answer to the nearest thousand miles.)

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
106. Relationship Between Roots and Coefficients The

Quadratic Formula gives us the roots of a quadratic equa-
tion from its coefficients. We can also obtain the coefficients
from the roots. For example, find the roots of the equation 
x2 � 9x � 20 � 0 and show that the product of the roots is
the constant term 20 and the sum of the roots is 9, the neg-
ative of the coefficient of x. Show that the same relationship
between roots and coefficients holds for the following 
equations:

Use the Quadratic Formula to prove that in general, if the 
equation x2 � bx � c � 0 has roots r1 and r2, then c � r1r2

and .b � �1r1 � r2 2

 x 
2 � 4x � 2 � 0

 x 
2 � 2x � 8 � 0

x

102. Reach of a Ladder A -foot ladder leans against a
building. The base of the ladder is ft from the building.
How high up the building does the ladder reach?

103. Sharing a Job Henry and Irene working together can wash
all the windows of their house in 1 h 48 min. Working alone, it
takes Henry h more than Irene to do the job. How long does
it take each person working alone to wash all the windows?

104. Sharing a Job Jack, Kay, and Lynn deliver advertising
flyers in a small town. If each person works alone, it takes
Jack 4 h to deliver all the flyers, and it takes Lynn 1 h longer
than it takes Kay. Working together, they can deliver all the
flyers in 40% of the time it takes Kay working alone. How
long does it take Kay to deliver all the flyers alone?

105. Gravity If an imaginary line segment is drawn between the
centers of the earth and the moon, then the net gravitational
force F acting on an object situated on this line segment is

F �
�K

x 
2 �

0.012K

1239 � x 2 2

1 
1
2

19 ft2
1

7 ft2
1

7 
1
2

19 
1
2
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1.7 SOLVING OTHER T YPES OF EQUATIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve basic polynomial equations � Solve equations involving radicals
� Solve equations of quadratic type � Model with equations

So far, we have learned how to solve linear and quadratic equations. In this section we
study other types of equations, including those that involve higher powers, fractional ex-
pressions, and radicals.

▼ Polynomial Equations
Some equations can be solved by factoring and using the Zero-Product Property, which
says that if a product equals 0, then at least one of the factors must equal 0.

E X A M P L E  1 Solving an Equation by Factoring

Solve the equation x5 � 9x3.
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S O L U T I O N We bring all terms to one side and then factor:

Subtract 9x3

Factor x3

Difference of squares

Zero-Product Property

Solve

The solutions are x � 0, x � 3, and x � �3. You should check that each of these
satisfies the original equation.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

To divide each side of the equation in Example 1 by the common factor x3 would be
wrong, because in doing so, we would lose the solution x � 0. Never divide both sides of
an equation by an expression that contains the variable unless you know that the expres-
sion cannot equal 0.

E X A M P L E  2 Factoring by Grouping

Solve the equation x3 � 3x2 � 4x � 12 � 0.

S O L U T I O N The left-hand side of the equation can be factored by grouping the terms
in pairs:

Group terms

Factor x2 and 4

Factor x � 3

Difference of squares

Zero-Product Property

Solve

The solutions are x � 2, �2, and �3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

E X A M P L E  3 An Equation Involving Fractional Expressions

Solve the equation .

S O L U T I O N To simplify the equation, we multiply each side by the common 
denominator:

Multiply by LCD x(x � 2)

Expand 

Expand LHS

Subtract 8x � 6

Divide both sides by 2

Factor

Zero-Product Property

Solvex � �1 x � 3

 x � 3 � 0  or  x � 1 � 0

 0 � 1x � 3 2 1x � 1 2

 0 � x 
2 � 2x � 3

 0 � 2x 
2 � 4x � 6

 8x � 6 � 2x 
2 � 4x

 31x � 2 2 � 5x � 2x 
2 � 4x

 a
3
x

�
5

x � 2
b x1x � 2 2 � 2x1x � 2 2

3
x

�
5

x � 2
� 2

x � �3x � �2 x � 2

 x � 2 � 0  or  x � 2 � 0  or  x � 3 � 0

 1x � 2 2 1x � 2 2 1x � 3 2 � 0

 1x 
2 � 4 2 1x � 3 2 � 0

 x 
21x � 3 2 � 41x � 3 2 � 0

 1x 
3 � 3x 

2 2 � 14x � 12 2 � 0

x � �3x � 3x � 0

 x 
3 � 0  or  x � 3 � 0  or  x � 3 � 0

 x 
31x � 3 2 1x � 3 2 � 0

 x 
31x 

2 � 9 2 � 0

 x 
5 � 9x 

3 � 0
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We must check our answers because multiplying by an expression that contains the vari-
able can introduce extraneous solutions (see the Warning on page 133). From Check Your
Answers we see that the solutions are x � 3 and �1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

▼ Equations Involving Radicals
When you solve an equation that involves radicals, you must be especially careful to check
your final answers. The next example demonstrates why.

E X A M P L E  4 An Equation Involving a Radical

Solve the equation .

S O L U T I O N To eliminate the square root, we first isolate it on one side of the equal
sign, then square:

Subtract 1

Square each side

Expand LHS

Add �2 � x

Factor

Zero-Product Property

Solve

The values and x � 1 are only potential solutions. We must check them to see
whether they satisfy the original equation. From Check Your Answers we see that

is a solution but x � 1 is not. The only solution is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

When we solve an equation, we may end up with one or more extraneous solutions,
that is, potential solutions that do not satisfy the original equation. In Example 4 the value
x � 1 is an extraneous solution. Extraneous solutions may be introduced when we square
each side of an equation because the operation of squaring can turn a false equation into a
true one. For example, �1 
 1, but . Thus the squared equation may be true
for more values of the variable than the original equation. That is why you must always
check your answers to make sure that each satisfies the original equation.

▼ Equations of Quadratic Type
An equation of the form aW 2 � bW � c � 0, where W is an algebraic expression, is an
equation of quadratic type. We solve equations of quadratic type by substituting for the
algebraic expression, as we see in the next two examples.

E X A M P L E  5 An Equation of Quadratic Type

Solve the equation .

S O L U T I O N We could solve this equation by multiplying it out first. But it’s easier to
think of the expression as the unknown in this equation and give it a new name,
W. This turns the equation into a quadratic equation in the new variable W:

1 � 1
x

a1 �
1
x
b

2

� 6 a1 �
1
x
b � 8 � 0

1�1 2 2 � 12

x � � 
1
4x � � 

1
4

x � � 
1
4

 x � � 
1
4    x � 1

 4x � 1 � 0  or   x � 1 � 0

 14x � 1 2 1x � 1 2 � 0

 4x 
2 � 3x � 1 � 0

 4x 
2 � 4x � 1 � 2 � x

 12x � 1 2 2 � 2 � x

 2x � 1 � � 12 � x

2x � 1 � 12 � x
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C H E C K  Y O U R  A N S W E R S

:

✓

:

✓ LHS � RHS

 RHS � 2

 LHS �
3

�1
�

5

�1 � 2
� 2

 x � �1

 LHS � RHS

 RHS � 2

 LHS �
3

3
�

5

3 � 2
� 2

 x � 3
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:

✓

:

✗ LHS 
 RHS

 � 1 � 1 � 0

 RHS � 1 � 12 � 1

 LHS � 211 2 � 2

 x � 1

 LHS � RHS

 � 1 �  3 

2 � � 1 

2

 � 1 � 2 9 

4

 RHS � 1 � 22 � A� 1 

4 B

LHS � 2A� 1 

4 B � � 1 

2

 x � � 1 

4
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Given equation

Let 

Factor

Zero-Product Property

Solve

Now we change these values of W back into the corresponding values of x:

Subtract 1

Take reciprocals

The solutions are and x � 1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 49 ■

E X A M P L E  6 A Fourth-Degree Equation of Quadratic Type

Find all solutions of the equation x4 � 8x2 � 8 � 0.

S O L U T I O N If we set W � x2, then we get a quadratic equation in the new variable W:

Write x4 as 1x222

Let W � x2

Quadratic Formula

W � x2

Take square roots x � � 24 � 2 12

 x 
2 � 4 � 2 12

 W �
�1�8 2 � 21�8 2 2 � 4 # 8

2
� 4 � 212

 W2 � 8W � 8 � 0

 1x 
2 2 2 � 8x 

2 � 8 � 0

x � 1
3

 x � 1 x �
1

3

 
1
x

� 1 
1
x

� 3

W � 1 �
1
x

 1 �
1
x

� 2 1 �
1
x

� 4

W � 2 W � 4

 W � 4 � 0  or  W � 2 � 0

 1W � 4 2 1W � 2 2 � 0

W � 1 �
1
x

 W  
2 � 6W � 8 � 0

 a1 �
1
x
b

2

� 6 a1 �
1
x
b � 8 � 0
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Error-Correcting
Codes
The pictures sent back by the
Pathfinder spacecraft from the
surface of Mars on July 4,
1997, were astoundingly clear.
But few watching these pic-
tures were aware of the com-
plex mathematics used to ac-
complish that feat.The
distance to Mars is enormous,

and the background noise (or static) is many times stronger than the orig-
inal signal emitted by the spacecraft. So when scientists receive the signal,
it is full of errors.To get a clear picture, the errors must be found and cor-
rected.This same problem of errors is routinely encountered in transmit-
ting bank records when you use an ATM  or voice when you are talking on
the telephone.

To understand how errors are found and corrected,we must first under-
stand that to transmit pictures,sound,or text,we transform them into bits

(the digits 0 or 1; see page 97).To help the receiver recognize errors,the
message is“coded”by inserting additional bits.For example,suppose you
want to transmit the message“10100.”A very simple-minded code is as fol-
lows:Send each digit a million times.The person receiving the message
reads it in blocks of a million digits. If the first block is mostly 1’s,the person
concludes that you are probably trying to transmit a 1,and so on.To say that
this code is not efficient is a bit of an understatement; it requires sending a
million times more data than the original message.Another method inserts
“check digits.”For example,for each block of eight digits insert a ninth digit;
the inserted digit is 0 if there is an even number of 1’s in the block and 1 if
there is an odd number.So if a single digit is wrong (a 0 changed to a 1 or
vice versa),the check digits allow us to recognize that an error has occurred.
This method does not tell us where the error is,so we can’t correct it.Mod-
ern error-correcting codes use interesting mathematical algorithms that re-
quire inserting relatively few digits but that allow the receiver to not only
recognize,but also correct,errors.The first error-correcting code was devel-
oped in the 1940s by Richard Hamming at MIT.It is interesting to note that
the English language has a built-in error correcting mechanism;to test it, try
reading this error-laden sentence: Gve mo libty ox giv ne deth.

M AT H E M AT I C S  I N  T H E  M O D E R N  W O R L D
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So there are four solutions:

Using a calculator, we obtain the approximations x � 2.61, 1.08, �2.61, �1.08.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 51 ■

E X A M P L E  7 An Equation Involving Fractional Powers

Find all solutions of the equation x1/3 � x1/6 � 2 � 0.

S O L U T I O N This equation is of quadratic type because if we let W � x1/6, then
:

Given equation

Let W � x1/6

Factor

Zero-Product Property

Solve

W � x1/6

Take the 6th power

From Check Your Answers we see that x � 1 is a solution but x � 64 is not. The only
solution is x � 1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

▼ Applications
Many real-life problems can be modeled with the types of equations that we have studied
in this section.

E X A M P L E  8 Dividing a Lottery Jackpot

A group of people come forward to claim a $1,000,000 lottery jackpot, which the win-
ners are to share equally. Before the jackpot is divided, three more winning ticket hold-
ers show up. As a result, the share of each of the original winners is reduced by
$75,000. How many winners were in the original group?

S O L U T I O N Identify the variable. We are asked for the number of people in the
original group. So let

Translate from words to algebra. We translate the information in the problem as 
follows:

x � number of winners in the original group

 x � 16 � 1    x � 1�2 2 6 � 64

 x1/6 � 1    x1/6 � �2

 W � 1    W � �2

 W � 1 � 0  or   W � 2 � 0

 1W � 1 2 1W � 2 2 � 0

 W 
2 � W � 2 � 0

 x1/3 � x1/6 � 2 � 0

W 
2 � 1x 

1/6 2 2 � x 
1/3

� 24 � 2 12� 24 � 2 1224 � 2 1224 � 2 12
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: :

✓ ✗ LHS 
 RHS LHS � RHS

 RHS � 0 RHS � 0

 � 4 � 2 � 2 � 4

 LHS � 641/3 � 641/6 � 2 LHS � 11/3 � 11/6 � 2 � 0

x � 64x � 1
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In Words In Algebra

Number of winners in original group x
Number of winners in final group x � 3

Winnings per person, originally

Winnings per person, finally

Set up the model. Now we set up the model:

� �

Solve. We now solve for x:

Multiply by LCD x(x � 3)

Divide by 25,000

Factor

Zero-Product Property

Solve

Since we can’t have a negative number of people, we conclude that there were five win-
ners in the original group.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 81 ■

E X A M P L E  9 Energy Expended in Bird Flight

Ornithologists have determined that some species of birds tend to avoid flights over
large bodies of water during daylight hours, because air generally rises over land and
falls over water in the daytime, so flying over water requires more energy. A bird is
released from point A on an island, 5 mi from point B, the nearest point on a straight
shoreline. The bird flies to a point C on the shoreline and then flies along the shore-
line to its nesting area at point D, as shown in Figure 1. Suppose the bird has 
170 kcal of energy reserves. It uses 10 kcal/mi flying over land and 14 kcal/mi flying
over water.

(a) Where should the point C be located so that the bird uses exactly 170 kcal of 
energy during its flight?

(b) Does the bird have enough energy reserves to fly directly from A to D?

x � 5x � �8

x � 8 � 0  or  x � 5 � 0

 1x � 8 2 1x � 5 2 � 0

Expand, simplify, and
divide by 3 x 

2 � 3x � 40 � 0

 401x � 3 2 � 3x1x � 3 2 � 40x

 1,000,0001x � 3 2 � 75,000x1x � 3 2 � 1,000,000x

 
1,000,000

x
� 75,000 �

1,000,000

x � 3

winnings per
person, finally

$75,000
winnings per

person, originally

1,000,000

x � 3

1,000,000

x
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C H E C K  Y O U R  A N S W E R

✓ $200,000 � $75,000 � $125,000

 winnings per person, finally �
$1,000,000

8
� $125,000

winnings per person, originally �
$1,000,000

5
� $200,000

C D

island

5 mi

nesting
area

B

12 mi

A

x

F I G U R E  1
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S O L U T I O N

(a) Identify the variable. We are asked to find the location of C. So let

Translate from words to algebra. From the figure, and from the fact that

we determine the following:

In Words In Algebra

Distance from B to C x
Distance flown over water (from A to C ) Pythagorean Theorem
Distance flown over land (from C to D ) 12 � x
Energy used over water
Energy used over land

Set up the model. Now we set up the model:

� �

Solve. To solve this equation, we eliminate the square root by first bringing all
other terms to the left of the equal sign and then squaring each side:

Simplify LHS

Square each side

Expand

All terms to RHS

This equation could be factored, but because the numbers are so large, it is easier
to use the Quadratic Formula and a calculator:

Point C should be either mi or mi from point B so that the bird uses exactly
170 kcal of energy during its flight.

(b) By the Pythagorean Theorem (see page 253), the length of the route directly from 

A to D is mi, so the energy the bird requires for that route is 
14 � 13 � 182 kcal. This is more energy than the bird has available, so it can’t use
this route.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 89 ■

We were able to solve all the equations in this section algebraically; however, not all
equations can be solved this way. If our model leads to an equation that cannot be solved
algebraically, we can solve it graphically as described in Section 1.4.

252 � 122 � 13

3 
3
46 

2
3

 x � 6 
2
3  or  x � 3 

3
4

 x �
1000 � 21�1000 2 2 � 4196 2 12400 2

2196 2
�

1000 � 280

192

 0 � 96x 
2 � 1000x � 2400

 2500 � 1000x � 100x 
2 � 196x 

2 � 4900

 150 � 10x 2 2 � 114 2 21x 
2 � 25 2

 50 � 10x � 142x 
2 � 25

Isolate square root
term on RHS 170 � 10112 � x 2 � 142x 

2 � 25

170 � 142x 
2 � 25 � 10112 � x 2

energy used
over land

energy used
over water

total energy
used

10112 � x 2
142x 

2 � 25

2x 
2 � 25

energy used � energy per mile � miles flown

x � distance from B to C
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28.

29.

30.

31. 32.

33. 34.

35–46 ■ Find all real solutions of the equation.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47–56 ■ Find all real solutions of the equation.

47.

48.

49.

50.

51. x4 � 13x2 � 40 � 0 52. x4 � 5x2 � 4 � 0

53. 2x4 � 4x2 � 1 � 0 54. x6 � 2x3 � 3 � 0

55. x6 � 26x3 � 27 � 0 56. x8 � 15x4 � 16

57–64 ■ Find all real solutions of the equation.

57. x4/3 � 5x2/3 � 6 � 0 58.

59.

60.

61. x3/2 � 8x1/2 � 16x�1/2 � 0

62. x1/2 � 3x�1/2 � 10x�3/2

63. x1/2 � 3x1/3 � 3x1/6 � 9 64. x � 51x � 6 � 0

21x � 4 2 7/3 � 1x � 4 2 4/3 � 1x � 4 2 1/3 � 0

41x � 1 2 1/2 � 51x � 1 2 3/2 � 1x � 1 2 5/2 � 0

1x � 314 x � 4 � 0

a
x

x � 2
b

2

�
4x

x � 2
� 4

a
1

x � 1
b

2

� 2 a
1

x � 1
b � 8 � 0

a
x � 1

x
b

2

� 4 a
x � 1

x
b � 3 � 0

1x � 5 2 2 � 31x � 5 2 � 10 � 0

x � 2 1x � 7 � 10x � 1x � 3 �
x

2

23 � x � 2 � 1 � xx � 2x � 1 � 3

x � 19 � 3x � 012x � 1 � 1 � x

14 � 6x � 2x1x � 2 � x

23 � x � 2x 2 � 122x � 1 � 23x � 5

28x � 1 � 35 � 24x � 3

3 �
1
x

2 �
4
x

� x

x �
2
x

3 �
4
x

� 5x

1

x � 1
�

2

x 
2 � 0

x

2x � 7
�

x � 1

x � 3
� 1

y

3y � 1
�

2

3y � 1
�

4

9y2 � 1

x � 5

x � 2
�

5

x � 2
�

28

x 
2 � 4

1 �
2x

1x � 3 2 1x � 4 2
�

2

x � 3
�

4

x � 4
C O N C E P T S
1. (a) To solve the equation , we the

left-hand side.

(b) The solutions of the equation are .

2. Solve the equation by doing the following steps.

(a) Isolate the radical: .

(b) Square both sides: .
(c) The solutions of the resulting quadratic equation are  

.
(d) The solution(s) that satisfy the original equation are 

.

3. The equation is of 

type. To solve the equation, we set W � . The result-

ing quadratic equation is .

4. The equation is of type. To solve 

the equation, we set W � . The resulting quadratic 

equation is .

S K I L L S
5–22 ■ Find all real solutions of the equation.

5. x3 � 64x 6. x7 � 25x5

7. x6 � 81x2 � 0 8. x5 � 16x � 0

9. 10.

11. 12. x4 � 64x � 0

13. x3 � 5x2 � 6x � 0 14. x4 � x3 � 6x2 � 0

15. x4 � 4x3 � 2x2 � 0 16.

17.

18.

19. x3 � 5x2 � 2x � 10 � 0 20. 2x3 � x2 � 18x � 9 � 0

21. x3 � x2 � x � 1 � x2 � 1

22. 7x3 � x � 1 � x3 � 3x2 � x

23–34 ■ Find all real solutions of the equation.

23. 24.

25. 26.

27.
x 

2

x � 100
� 50

10
x

�
12

x � 3
� 4 � 0

1

x � 1
�

1

x � 2
�

5

4

10

m � 5
� 15 � 3mz �

4

z � 1
� 3

1x � 2 2 5 � 91x � 2 2 3 � 0

12r � 1 2 6 � 1612r � 1 2 4 � 0

y5 � 8y4 � 4y3 � 0

x 5 � 8x 2 � 0

125t 10 � 2t 7 � 04z5 � 10z2 � 0

x6 � 7x3 � 8 � 0

1x � 1 2 2 � 51x � 1 2 � 6 � 0

12x � x � 0

x21x � 4 2 � 0

x3 � 4x2 � 0
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85. Volume of Grain Grain is falling from a chute onto the
ground, forming a conical pile whose diameter is always three
times its height. How high is the pile (to the nearest hundredth
of a foot) when it contains 1000 ft 3 of grain?

86. Radius of a Tank A spherical tank has a capacity of 
750 gallons. Using the fact that 1 gallon is about 0.1337 ft3,
find the radius of the tank (to the nearest hundredth of a foot).

87. Radius of a Sphere A jeweler has three small solid spheres
made of gold, of radius 2 mm, 3 mm, and 4 mm. He decides
to melt these down and make just one sphere out of them.
What will the radius of this larger sphere be?

88. Dimensions of a Box A large plywood box has a volume
of 180 ft 3. Its length is 9 ft greater than its height, and its
width is 4 ft less than its height. What are the dimensions of
the box?

89. Construction Costs The town of Foxton lies 10 mi north of
an abandoned east-west road that runs through Grimley,
as shown in the figure. The point on the abandoned road clos-
est to Foxton is 40 mi from Grimley. County officials are
about to build a new road connecting the two towns. They
have determined that restoring the old road would cost
$100,000 per mile, while building a new road would cost
$200,000 per mile. How much of the abandoned road should
be used (as indicated in the figure) if the officials intend to
spend exactly $6.8 million? Would it cost less than this
amount to build a new road connecting the towns directly?

Abandoned road
40 mi

Grimley

New
road 10 mi

oxtonF

x+9

x

x-4

65–72 ■ Find all real solutions of the equation.

65. 66. 4x�4 � 16x�2 � 4 � 0

67. 68.

69.

70.

71.

72.

73–76 ■ Solve the equation graphically. Compare your answer to
the one obtained in the indicated exercise.

73. (Exercise 19)

74. (Exercise 41)

75. (Exercise 57)

76. (Exercise 69)

77–80 ■ Solve the equation for the variable x. The constants a
and b represent positive real numbers.

77. x4 � 5ax2 � 4a2 � 0 78. a3x3 � b3 � 0

79.

80.

A P P L I C A T I O N S
81. Chartering a Bus A social club charters a bus at a cost of

$900 to take a group of members on an excursion to Atlantic
City. At the last minute, five people in the group decide not to
go. This raises the transportation cost per person by $2. How
many people originally intended to take the trip?

82. Buying a Cottage A group of friends decides to buy a va-
cation home for $120,000, sharing the cost equally. If they can
find one more person to join them, each person’s contribution
will drop by $6000. How many people are in the group?

83. Fish Population A large pond is stocked with fish. 
The fish population P is modeled by the formula

, where t is the number of days since
the fish were first introduced into the pond. How many days
will it take for the fish population to reach 500?

84. The Lens Equation If F is the focal length of a convex lens
and an object is placed at a distance x from the lens, then its
image will be at a distance y from the lens, where F, x, and y
are related by the lens equation

Suppose that a lens has a focal length of 4.8 cm and that the
image of an object is 4 cm closer to the lens than the object it-
self. How far from the lens is the object?

1

F
�

1
x

�
1
y

P � 3t � 10 1t � 140

1x � a13 x � b16 x � ab � 0

1x � a � 1x � a � 121x � 6

x 22x � 3 � 1x � 3 2 3/2

x 4/3 � 5x 2/3 � 6 � 0

22x � 1 � 1 � x

x 3 � 5x 2 � 2x � 10 � 0

31 � 2x � 12x � 1 � 25 � 1x

2x � 1x � 2 � 2

211 � x 
2 �

2211 � x 
2

� 1

x 
21x � 3 � 1x � 3 2 3/2

23 4x 
2 � 4x � x21x � 5 � x � 5

1

x 
3 �

4

x 
2 �

4
x

� 0
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93. Depth of a Well One method for determining the depth of 
a well is to drop a stone into it and then measure the time it
takes until the splash is heard. If d is the depth of the well (in
feet) and t1 the time (in seconds) it takes for the stone to fall,
then , so . Now if t2 is the time it takes for
the sound to travel back up, then d � 1090t 2 because the speed
of sound is 1090 ft/s. So t2 � d/1090. Thus the total time
elapsed between dropping the stone and hearing the splash is

. How deep is the well if this total
time is 3 s? (See the following figure.)

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
94. Solving an Equation in Different Ways We have learned

several different ways to solve an equation in this section. Some
equations can be tackled by more than one method. For example,
the equation is of quadratic type: We can solve
it by letting and x � u2 and factoring. Or we could solve
for , square each side, and then solve the resulting quadratic
equation. Solve the following equations using both methods indi-
cated, and show that you get the same final answers.

(a) Quadratic type; solve for the 
radical, and square

(b) Quadratic type; 
multiply by LCD

12

1x � 3 2 2
�

10

x � 3
� 1 � 0

x � 1x � 2 � 0

1x
1x � u
x � 1x � 2 � 0

t¤= d
1090

Time
sound
rises:

Time
stone
falls:

t⁄=œ∑d
4

t1 � t2 � 1d/4 � d/1090

t1 � 1d/4d � 16t1
2

90. Distance, Speed, and Time A boardwalk is parallel to
and 210 ft inland from a straight shoreline. A sandy beach
lies between the boardwalk and the shoreline. A man is
standing on the boardwalk, exactly 750 ft across the sand
from his beach umbrella, which is right at the shoreline. The
man walks 4 ft/s on the boardwalk and 2 ft/s on the sand.
How far should he walk on the boardwalk before veering off
onto the sand if he wishes to reach his umbrella in exactly 
4 min 45 s?

91. Dimensions of a Lot A city lot has the shape of a right tri-
angle whose hypotenuse is 7 ft longer than one of the other
sides. The perimeter of the lot is 392 ft. How long is each side
of the lot?

92. TV Monitors Two television monitors sitting beside each
other on a shelf in an appliance store have the same screen
height. One has a conventional screen, which is 5 in. wider
than it is high. The other has a wider, high-definition screen,
which is 1.8 times as wide as it is high. The diagonal measure
of the wider screen is 14 in. more than the diagonal measure
of the smaller. What is the height of the screens, rounded to
the nearest 0.1 in.?

210 ft

boardwalk

750 ft
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1.8 SOLVING INEQUALITIES

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve Linear Inequalities � Solve Nonlinear Inequalities � Model with 
Inequalities

x 4x � 7 � 19

1 11 � 19 ✓
2 15 � 19 ✓
3 19 � 19 ✓
4 23 � 19 ✗
5 27 � 19 ✗

Some problems in algebra lead to inequalities instead of equations. An inequality looks
just like an equation, except that in the place of the equal sign is one of the symbols, �,
�, �, or �. Here is an example of an inequality in the one variable x:

The table in the margin shows that some numbers satisfy the inequality and some num-
bers do not.

4x � 7 � 19

Unless otherwise noted, all content on this page is © Cengage Learning.
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To solve an inequality that contains a variable means to find all values of the variable
that make the inequality true. Unlike an equation, an inequality generally has infinitely
many solutions, which form an interval or a union of intervals on the real line. The 
following illustration shows how an inequality differs from its corresponding equation:

Solution Graph

Equation: 4x � 7 � 19 x � 3

Inequality: 4x � 7 � 19 x � 3

To solve inequalities, we use the following rules to isolate the variable on one side of
the inequality sign. These rules tell us when two inequalities are equivalent (the symbol
3 means “is equivalent to”). In these rules, the symbols A, B, and C stand for real num-
bers or algebraic expressions. Here we state the rules for inequalities involving the sym-
bol �, but they apply to all four inequality symbols.

Pay special attention to Rules 3 and 4. Rule 3 says that we can multiply (or divide) each
side of an inequality by a positive number, but Rule 4 says that if we multiply each side
of an inequality by a negative number, then we reverse the direction of the inequality. For
example, if we start with the inequality

and multiply by 2, we get

but if we multiply by �2, we get

▼ Solving Linear Inequalities
An inequality is linear if each term is constant or a multiple of the variable. To solve a
linear inequality, we isolate the variable on one side of the inequality sign.

 �6 � �10

 6 � 10

 3 � 5

0 3

0 3
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RULES FOR INEQUALITIES

Rule Description

1. Adding the same quantity to each side of an inequality gives
an equivalent inequality.

2. Subtracting the same quantity from each side of an inequal-
ity gives an equivalent inequality.

3. If , then Multiplying each side of an inequality by the same positive
quantity gives an equivalent inequality.

4. If , then Multiplying each side of an inequality by the same negative
quantity reverses the direction of the inequality.

5. If and , Taking reciprocals of each side of an inequality involving 

then positive quantities reverses the direction of the inequality.

6. If and , then Inequalities can be added.A � C � B � DC � DA � B

A � B 3  
1

A
�

1

B

B � 0A � 0

A � B 3  CA � CBC � 0

A � B 3  CA � CBC � 0

A � B 3  A � C � B � C

A � B 3  A � C � B � C
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E X A M P L E  1 Solving a Linear Inequality

Solve the inequality 3x � 9x � 4, and sketch the solution set.

S O L U T I O N

Given inequality

Subtract 9x

Simplify

Multiply by (or divide by �6)

Simplify

The solution set consists of all numbers greater than . In other words, the solution of
the inequality is the interval . It is graphed in Figure 1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 23 ■

E X A M P L E  2 Solving a Pair of Simultaneous Inequalities

Solve the inequalities 4 � 3x � 2 � 13.

S O L U T I O N The solution set consists of all values of x that satisfy both of the in-
equalities 4 � 3x � 2 and 3x � 2 � 13. Using Rules 1 and 3, we see that the following
inequalities are equivalent:

Given inequality

Add 2

Divide by 3

Therefore the solution set is , as shown in Figure 2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

▼ Solving Nonlinear Inequalities
To solve inequalities involving squares and other powers of the variable, we use factoring,
together with the following principle.

For example, to solve the inequality , we first move all terms to the left-
hand side and factor to get

This form of the inequality says that the product must be negative or zero,
so to solve the inequality, we must determine where each factor is negative or positive (be-
cause the sign of a product depends on the sign of the factors). The details are explained
in Example 3, in which we use the following guidelines.

1x � 2 2 1x � 3 2

1x � 2 2 1x � 3 2 � 0

x2 � 5x � �6

32,  5 2

2 � x � 5

6 � 3x � 15

4 � 3x � 2 � 13

A� 
2
3, q B

� 
2
3

 x � � 
2
3

� 
1
6 1� 

1
6B 1�6x 2 � A�1

6B 14 2

 �6x � 4

 3x � 9x � 9x � 4 � 9x

 3x � 9x � 4
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0_ 2
3

F I G U R E  1

Multiplying by the negative number 
reverses the direction of the inequality.

�1
6

F I G U R E  2

0 2 5

THE SIGN OF A PRODUCT OR QUOTIENT

If a product or a quotient has an even number of negative factors, then its value is
positive.

If a product or a quotient has an odd number of negative factors, then its value is
negative.
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The factoring technique that is described in these guidelines works only if all nonzero
terms appear on one side of the inequality symbol. If the inequality is not written in this
form, first rewrite it, as indicated in Step 1.

E X A M P L E  3 Solving a Quadratic Inequality

Solve the inequality .

S O L U T I O N We will follow the guidelines above.

Move all terms to one side. We move all the terms to the left-hand side:

Given inequality

Subtract 5x and add 6

Factor. Factoring the left-hand side of the inequality, we get

Factor

Find the intervals. The factors of the left-hand side are and . These fac-
tors are zero when x is 2 and 3, respectively. As shown in Figure 3, the numbers 2 and 3
divide the real line into the three intervals

The factors x � 2 and x � 3 change sign only at 2 and 3, respectively. So these factors
maintain their sign on each of these three intervals.

Make a table or diagram. To determine the sign of each factor on each of the intervals that
we found, we use test values. We choose a number inside each interval and check the sign of
the factors x � 2 and x � 3 at the number we chose. For the interval , let’s choose
the test value 1 (see Figure 4). Substituting 1 for x in the factors x � 2 and x � 3, we get

So both factors are negative on this interval. Notice that we need to check only one test
value for each interval because the factors x � 2 and x � 3 do not change sign on any
of the three intervals we found.

Using the test values and x � 4 for the intervals and (see Figure 4),
respectively, we construct the following sign table. The final row of the table is obtained
from the fact that the expression in the last row is the product of the two factors.

13, q 212, 3 2x � 2 
1
2

x � 3 � 1 � 3 � �2 � 0

x � 2 � 1 � 2 � �1 � 0

1�q, 2 2

1�q, 2 2 , 12, 3 2 , 13, q 2

x � 3x � 2

 1x � 2 2 1x � 3 2 � 0

 x2 � 5x � 6 � 0

 x2 � 5x � 6

x2 � 5x � 6

144 C H A P T E R  1 | Equations and Graphs

GUIDELINES FOR SOLVING NONLINEAR INEQUALITIES

1. Move All Terms to One Side. If necessary, rewrite the inequality so that all
nonzero terms appear on one side of the inequality sign. If the nonzero side of
the inequality involves quotients, bring them to a common denominator.

2. Factor. Factor the nonzero side of the inequality.

3. Find the Intervals. Determine the values for which each factor is zero.
These numbers will divide the real line into intervals. List the intervals that are
determined by these numbers.

4. Make a Table or Diagram. Use test values to make a table or diagram of the
signs of each factor on each interval. In the last row of the table determine the
sign of the product (or quotient) of these factors.

5. Solve. Determine the solution of the inequality from the last row of the sign
table. Be sure to check whether the inequality is satisfied by some or all of the
endpoints of the intervals. (This may happen if the inequality involves � or �.)

0 3
(_`, 2) (2, 3) (3, `)

2

F I G U R E  3

F I G U R E  4

20 3

Test value
x = 1

Test value
x = 4

Test value
x = 2 1

2

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_Ch01_073-172.qxd  11/23/11  3:09 PM  Page 144



If you prefer, you can represent this information on a real line, as in the following
sign diagram. The vertical lines indicate the points at which the real line is divided into
intervals:

Solve. We read from the table or the diagram that is negative on the
interval . Thus the solution of the inequality is

We have included the endpoints 2 and 3 because we seek values of x such that the prod-
uct is either less than or equal to zero. The solution is illustrated in Figure 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 43 ■

E X A M P L E  4 Solving an Inequality

Solve the inequality .

S O L U T I O N We will follow the guidelines on page 144.

Move all terms to one side. We move all the terms to the left-hand side:

Given inequality

Subtract 1

Factor. Factoring the left-hand side of the inequality, we get

Factor

Find the intervals. The factors of the left-hand side are 2x � 1 and x � 1. These fac-
tors are zero when x is and 1. These numbers divide the real line into the intervals

Make a diagram. We make the following diagram, using test points to determine the
sign of each factor in each interval:

Sign of 2x+1 

Sign of x-1 

Sign of (2x+1)(x-1)

1
2 1

+-

-

+

-

+

-

-

+

+

A�q, � 1 

2 B, A�
 1 

2 , 1B, A1, q B

� 1 

2

 12x � 1 2 1x � 1 2 � 0

 2x2 � x � 1 � 0

 2x2 � x � 1

2x2 � x � 1

5x 0  2 � x � 36 � 32, 3 4

1x � 2 2 1x � 3 2 � 012, 3 2
1x � 2 2 1x � 3 2

Sign of x-2

Sign of x-3

Sign of (x-2)(x-3)

2 3

+

-

-

-

-

+

+

+

+
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Interval 11�qq, 222 112, 322 113, qq22

Sign of x � 2 � � �
Sign of x � 3 � � �

Sign of 1x � 22 1x � 32 � � �

F I G U R E  5

20 3
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Solve. From the diagram we see that for x in the interval
or for x in . So the solution set is the union of these two intervals:

The solution set is graphed in Figure 6.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

E X A M P L E  5 Solving an Inequality with Repeated Factors

Solve the inequality .

S O L U T I O N All nonzero terms are already on one side of the inequality, and the non-
zero side of the inequality is already factored. So we begin by finding the intervals for
this inequality.

Find the intervals. The factors of the left-hand side are x, and x � 3. These
are zero when x � 0, 1, 3. These numbers divide the real line into the intervals

Make a diagram. We make the following diagram, using test points to determine the
sign of each factor in each interval:

Solve. From the diagram we see that for x in the interval 10, 12
or for x in 11, 32. So the solution set is the union of these two intervals:

The solution set is graphed in Figure 7.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

E X A M P L E  6 Solving an Inequality Involving a Quotient

Solve the inequality .

S O L U T I O N Move all terms to one side. We move the terms to the left-hand side
and simplify using a common denominator:

Given inequality

Subtract 1

Common denominator 1 � x

Combine the fractions

Simplify 
2x

1 � x
� 0

 
1 � x � 1 � x

1 � x
� 0

 
1 � x

1 � x
�

1 � x

1 � x
� 0

 
1 � x

1 � x
� 1 � 0

 
1 � x

1 � x
� 1

1 � x

1 � x
� 1

10, 1 2 � 11, 3 2

x1x � 1 2 21x � 3 2 � 0

Sign of x
Sign of (x-1)2

Sign of (x-3) 
Sign of x(x-1)2(x-3)

0

+
+
-
-

-
+
-
+

+

-
-

3

+
+
+
+
+

1

1�q, 0 2 , 10, 1 2 , 11, 3 2 , 13, q 2

1x � 1 2 2,

x1x � 1 2 21x � 3 2 � 0

A�q, � 1 

2 B � 11, q 2

11, q 2A�q, � 1 

2 B
12x � 1 2 1x � 1 2 � 0
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F I G U R E  6

_ 1
2 10

F I G U R E  7

3 1 0

It is tempting to multiply both
sides of the inequality by 1 � x (as you
would if this were an equation). But
this doesn’t work because we don’t
know whether 1 � x is positive or neg-
ative, so we can’t tell whether the in-
equality needs to be reversed. (See 
Exercise 109.)

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_Ch01_073-172.qxd  11/23/11  3:09 PM  Page 146



Find the intervals. The factors of the left-hand side are 2x and 1 � x. These are zero
when x is 0 and 1. These numbers divide the real line into the intervals

Make a diagram. We make the following diagram using test points to determine the
sign of each factor in each interval:

Solve. From the diagram we see that for x in the interval 30, 12. We include

the endpoint 0 because the original inequality requires that the quotient be greater than
or equal to 1. However, we do not include the other endpoint 1 because the quotient in
the inequality is not defined at 1. So the solution set is the interval

The solution set is graphed in Figure 8.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 65 ■

Example 6 shows that we should always check the endpoints of the solution set to see
whether they satisfy the original inequality.

▼ Solving Inequalities Graphically
Inequalities can be solved graphically. To describe the method, we solve the inequality of
Example 3 graphically:

We first use a graphing calculator to draw the graph of the equation

Our goal is to find those values of x for which y � 0. These are simply the x-values for
which the graph lies below the x-axis. From Figure 9 we see that the solution of the in-
equality is the interval 32, 34.

E X A M P L E  7 Solving an Inequality Graphically

Solve the inequality 3.7x2 � 1.3x � 1.9 � 2.0 � 1.4x.

S O L U T I O N We graph the equations

in the same viewing rectangle in Figure 10. We are interested in those values of x for
which y1 � y2; these are points for which the graph of y2 lies on or above the graph of
y1. To determine the appropriate interval, we look for the x-coordinates of points where 
the graphs intersect. We conclude that the solution is (approximately) the interval
3�1.45, 0.724.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 79 ■

y1 � 3.7x2 � 1.3x � 1.9  and  y2 � 2.0 � 1.4x

y � x2 � 5x � 6

x2 � 5x � 6 � 0

30, 1 2

2x

1 � x
� 0

Sign of 2x

Sign of 1-x

Sign of 

0 1

+-

+

-

+

-

-

+

+2x
1-x

1�q, 0 2 , 10, 1 2 , 11, q 2
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0 1

F I G U R E  8

10

_2

_1 5

F I G U R E  9 x2 � 5x � 6 � 0

5

_3

_3 3

y⁄

y¤

F I G U R E  1 0

y1 � 3.7x2 � 1.3x � 1.9
y2 � 2.0 � 1.4x
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E X A M P L E  8 Solving an Inequality Graphically

Solve the inequality x3 � 5x2 � �8.

S O L U T I O N We write the inequality as

and then graph the equation

in the viewing rectangle 3�6, 64 by 3�15, 154, as shown in Figure 11. The solution 
of the inequality consists of those intervals on which the graph lies on or above the 
x-axis. By moving the cursor to the x-intercepts, we find that, rounded to one decimal
place, the solution is 3�1.1, 1.54 � 34.6, q2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 81 ■

▼ Modeling with Inequalities
Modeling real-life problems frequently leads to inequalities because we are often inter-
ested in determining when one quantity is more (or less) than another.

E X A M P L E  9 Carnival Tickets

A carnival has two plans for tickets:

Plan A: $5 entrance fee and 25¢ each ride

Plan B: $2 entrance fee and 50¢ each ride

How many rides would you have to take for Plan A to be less expensive than Plan B?

S O L U T I O N Identify the variable. We are asked for the number of rides for which
Plan A is less expensive than Plan B. So let

Translate from words to algebra. The information in the problem may be organized
as follows:

In Words In Algebra

Number of rides x

Cost with Plan A 5 � 0.25x

Cost with Plan B 2 � 0.50x

Set up the model. Now we set up the model:

�

Solve. We solve for x.

Subtract 2

Subtract 0.25x

Divide by 0.25

So if you plan to take more than 12 rides, Plan A is less expensive.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 95 ■

 12 � x

 3 � 0.25x

 3 � 0.25x � 0.50x

5 � 0.25x � 2 � 0.50x

cost with
Plan B

cost with
Plan A

x � number of rides

y � x3 � 5x2 � 8

x3 � 5x2 � 8 � 0

148 C H A P T E R  1 | Equations and Graphs

15

_15

_6 6

F I G U R E  1 1 x3 � 5x2 � 8 � 0
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E X A M P L E  1 0 Relationship Between Fahrenheit 
and Celsius Scales

The instructions on a bottle of medicine indicate that the bottle should be stored at a
temperature between and . What range of temperatures does this correspond
to on the Fahrenheit scale?

S O L U T I O N The relationship between degrees Celsius (C ) and degrees Fahrenheit
(F ) is given by the equation . Expressing the statement on the bottle in
terms of inequalities, we have

So the corresponding Fahrenheit temperatures satisfy the inequalities

Substitute C � (F � 32)

Multiply by 

Simplify

Add 32

Simplify

The medicine should be stored at a temperature between and .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 93 ■

86 °F41 °F

 41 � F � 86

 9 � 32 � F � 54 � 32

 9 � F � 32 � 54

9
5 95 # 5 � F � 32 � 9

5
# 30

5
9 5 � 5

9 1F � 32 2 � 30

5 � C � 30

C � 5
9 1F � 32 2

30 °C5 °C
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C

5

30

F

41

86

* *

1 . 8  E X E R C I S E S

C O N C E P T S
1. Fill in the blank with an appropriate inequality sign.

(a) If x � 5, then x � 3 2.

(b) If x � 5, then 3x 15.

(c) If x � 2, then �3x �6.

(d) If x � �2, then �x 2.

2. To solve the nonlinear inequality , we first 

move all terms to one side to get the inequality ,

and then factor to get the inequality . 

The numbers and divide the real line into the 

intervals . Complete the table.

The solution of the inequality is

x 2 � �5x � 14

3. The figure shows a graph of 
Use the graph to find the solutions of the inequality

4. The figure shows the graphs of and Use
the graphs to find the solutions of the inequality 

654321-1

y

7
6
5
4
3
2
1

-1
-2

x

y=5x-x2

y=4

5x � x 2 � 4.
y � 4.y � 5x � x 2

4321-1-2

y
8
6
4
2

-2
-4
-6
-8

x

y=x4-3x3-x2+3x

x 4 � 3x 3 � x 2 � 3x � 0.

y � x 4 � 3x 3 � x 2 � 3x.

Interval

Sign of 
Sign of 

Sign of 

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_Ch01_073-172.qxd  11/23/11  3:09 PM  Page 149



63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. x4 � x2 78. x5 � x2

79–86 ■ Solve the inequality graphically. Express the solution us-
ing interval notation.

79. 80.

81. 82.

83. 84.

85. 86.

87–90 ■ Determine the values of the variable for which the ex-
pression is defined as a real number.

87. 88.

89. 90.

91. Solve the inequality for x, assuming that a, b, and c are posi-
tive constants.
(a) (b) a � bx � c � 2a

92. Suppose that a, b, c, and d are positive numbers such that

Show that  .

A P P L I C A T I O N S
93. Temperature Scales Use the relationship between C and F

given in Example 8 to find the interval on the Fahrenheit scale
corresponding to the temperature range 20 � C � 30.

94. Temperature Scales What interval on the Celsius scale
corresponds to the temperature range 50 � F � 95?

95. Car Rental Cost A car rental company offers two plans for
renting a car:

Plan A: $30 per day and 10¢ per mile

Plan B: $50 per day with free unlimited mileage

For what range of miles will Plan B save you money?

a

b
�

a � c

b � d
�

c

d

a

b
�

c

d

a1bx � c 2 � bc

B4 1 � x

2 � x
a

1

x 
2 � 5x � 14

b
1/2

23x 
2 � 5x � 2216 � 9x 

2

1x � 1 2 2 � x 31x � 1 2 2 � 1x � 1 2 2
20.5x 2 � 1 � 2 0 x 0x 1/3 � x

16x 3 � 24x 2 � �9x � 1x 3 � 11x � 6x 2 � 6

0.5x 2 � 0.875x � 0.25x 2 � 3x � 10

12x � 1 2 1x � 3 2 2

x � 4
� 0

1x � 1 2 1x � 2 2

1x � 2 2 2
� 0

1

x � 1
�

1

x � 2
� 0

x � 2

x � 3
�

x � 1

x � 2

x

2
�

5

x � 1
� 4

6

x � 1
�

6
x

� 1

3

x � 1
�

4
x

� 11 �
2

x � 1
�

2
x

x

x � 1
� 3x

4
x

� x

3 � x

3 � x
� 1

2x � 1

x � 5
� 3

�2 �
x � 1

x � 3

4x

2x � 3
� 2S K I L L S

5–14 ■ Let . Determine which 
elements of S satisfy the inequality.

5. x � 3 � 0 6. x � 1 � 2

7. 8. 2x � 1 � x

9. 1 � 2x � 4 � 7 10. �2 � 3 � x � 2

11. 12.

13. 14. x2 � 2 � 4

15–38 ■ Solve the linear inequality. Express the solution using 
interval notation and graph the solution set.

15. 2x � 7 16. �4x � 10

17. 2x � 5 � 3 18. 3x � 11 � 5

19. 7 � x � 5 20. 5 � 3x � �16

21. 2x � 1 � 0 22. 0 � 5 � 2x

23. 3x � 11 � 6x � 8 24. 6 � x � 2x � 9

25. 26.

27. 28.

29. 30.

31. 2 � x � 5 � 4 32. 5 � 3x � 4 � 14

33. �1 � 2x � 5 � 7 34. 1 � 3x � 4 � 16

35. �2 � 8 � 2x � �1 36.

37. 38.

39–60 ■ Solve the nonlinear inequality. Express the solution using
interval notation and graph the solution set.

39. 40.

41. 42.

43. x2 � 3x � 18 � 0 44. x2 � 5x � 6 � 0

45. 2x2 � x � 1 46. x2 � x � 2

47. 3x2 � 3x � 2x2 � 4 48. 5x2 � 3x � 3x2 � 2

49. 50. x2 � 2x � 3

51. x2 � 4 52. x2 � 9

53.

54.

55. 56.

57.

58.

59. x3 � 4x � 0 60. 16x � x3

61–78 ■ Solve the linear inequality. Express the solution using in-
terval notation and graph the solution set.

61. 62.
2x � 6

x � 2
� 0

x � 3

x � 1
� 0

x21x2 � 1 2 � 0

1x � 2 2 21x � 3 2 1x � 1 2 � 0

1x � 3 2 21x � 1 2 � 01x � 4 2 1x � 2 2 2 � 0

1x � 5 2 1x � 2 2 1x � 1 2 � 0

1x � 2 2 1x � 1 2 1x � 3 2 � 0

x 
2 � 31x � 6 2

x12 � 3x 2 � 0x12x � 7 2 � 0

1x � 5 2 1x � 4 2 � 01x � 2 2 1x � 3 2 � 0

�
1

2
�

4 � 3x

5
�

1

4

2

3
�

2x � 3

12
�

1

6

�3 � 3x � 7 � 1
2

217x � 3 2 � 12x � 164 � 3x � �11 � 8x 2

2
3 � 1

2 x � 1
6 � x1

3 x � 2 � 1
6 x � 1

2
5 x � 1 � 1

5 � 2x1
2 x � 2

3 � 2

1 � x 2 � �1

3
x

� 6
1
x

�
1

2

3 � 2x � 1
2

S � 5�2, �1, 0, 12, 1, 12, 2, 46
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At what range of distances from the fire’s center was the
temperature less than 500 �C?

103. Falling Ball Using calculus, it can be shown that if a ball
is thrown upward with an initial velocity of 16 ft/s from the
top of a building 128 ft high, then its height h above the
ground t seconds later will be

During what time interval will the ball be at least 32 ft above
the ground?

104. Gas Mileage The gas mileage g (measured in mi/gal) for 
a particular vehicle, driven at √ mi/h, is given by the formula 
g � 10 � 0.9√ � 0.01√2, as long as √ is between 10 mi/h and
75 mi/h. For what range of speeds is the vehicle’s mileage 
30 mi/gal or better?

105. Stopping Distance For a certain model of car the dis-
tance d required to stop the vehicle if it is traveling at √ mi/h
is given by the formula

where d is measured in feet. Kerry wants her stopping distance
not to exceed 240 ft. At what range of speeds can she travel?

106. Manufacturer’s Profit If a manufacturer sells x units of a
certain product, revenue R and cost C (in dollars) are given by

Use the fact that

to determine how many units the manufacturer should sell to
enjoy a profit of at least $2400.

107. Fencing a Garden A determined gardener has 120 ft of
deer-resistant fence. She wants to enclose a rectangular veg-
etable garden in her backyard, and she wants the area that is
enclosed to be at least 800 ft 2. What range of values is possi-
ble for the length of her garden?

profit � revenue � cost

 C � 2000 � 8x � 0.0025x 
2

 R � 20x

240 ft

d � √ �
√ 2

20

h � 128 � 16t � 16t 
2

96. Long-Distance Cost A telephone company offers two
long-distance plans:

Plan A: $25 per month and 5¢ per minute

Plan B: $5 per month and 12¢ per minute

For how many minutes of long-distance calls would Plan B
be financially advantageous?

97. Driving Cost It is estimated that the annual cost of 
driving a certain new car is given by the formula

where m represents the number of miles driven per year and
C is the cost in dollars. Jane has purchased such a car and
decides to budget between $6400 and $7100 for next year’s
driving costs. What is the corresponding range of miles that
she can drive her new car?

98. Air Temperature As dry air moves upward, it expands
and, in so doing, cools at a rate of about for each 
100-meter rise, up to about 12 km.
(a) If the ground temperature is , write a formula for

the temperature at height h.
(b) What range of temperatures can be expected if an air-

plane takes off and reaches a maximum height of 5 km?

99. Airline Ticket Price A charter airline finds that on its
Saturday flights from Philadelphia to London all 120 seats
will be sold if the ticket price is $200. However, for each 
$3 increase in ticket price, the number of seats sold decreases
by one.
(a) Find a formula for the number of seats sold if the ticket

price is P dollars.
(b) Over a certain period the number of seats sold for this

flight ranged between 90 and 115. What was the corre-
sponding range of ticket prices?

100. Accuracy of a Scale A coffee merchant sells a customer 
3 lb of Hawaiian Kona at $6.50 per pound. The merchant’s
scale is accurate to within �0.03 lb. By how much could the
customer have been overcharged or undercharged because of
possible inaccuracy in the scale? 

101. Gravity The gravitational force F exerted by the earth on
an object having a mass of 100 kg is given by the equation

where d is the distance (in km) of the object from the center
of the earth, and the force F is measured in newtons (N). For
what distances will the gravitational force exerted by the
earth on this object be between 0.0004 N and 0.01 N?

102. Bonfire Temperature In the vicinity of a bonfire the
temperature T in �C at a distance of x meters from the center
of the fire was given by

T �
600,000

x 
2 � 300

F �
4,000,000

d 2

20 °C

1°C

C � 0.35m � 2200
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109. What’s Wrong Here? It is tempting to try to solve an in-
equality as if it were an equation. For instance, we might try
to solve 1 � 3/x by multiplying both sides by x, to get 
x � 3, so the solution would be . But that’s wrong;
for example, x � �1 lies in this interval but does not satisfy
the original inequality. Explain why this method doesn’t
work (think about the sign of x). Then solve the inequality
correctly.

1�q,  3 2

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
108. Do Powers Preserve Order? If a � b, is a2 � b2?

(Check both positive and negative values for a and b.) If 
a � b, is a3 � b3? On the basis of your observations, state a
general rule about the relationship between an and bn when 
a � b and n is a positive integer.
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1.9 SOLVING ABSOLUTE VALUE EQUATIONS AND INEQUALITIES

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve Absolute Value Equations � Solve Absolute Value Inequalities

| _5|=5 | 5|=5

_5 0 5

F I G U R E  1

| 5-2 |=| 2-5|=3

0 2 5

F I G U R E  2

Recall from Section P.2 that the absolute value of a number a is given by

and that it represents the distance from a to the origin on the real number line (see 
Figure 1). More generally, is the distance between x and a on the real number
line. Figure 2 illustrates the fact that the distance between 2 and 5 is 3.

▼ Absolute Value Equations
We use the following property to solve equations that involve absolute value.

This property says that to solve an absolute value equation, we must solve two separate
equations. For example, the equation is equivalent to the two equations x � 5 and
x � �5.

E X A M P L E  1 Solving an Absolute Value Equation

Solve the equation .

S O L U T I O N The equation is equivalent to two equations:

or

Add 5

Divide by 2

The solutions are 1 and 4.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 13 ■

E X A M P L E  2 Solving an Absolute Value Equation

Solve the equation .3 0 x � 7 0 � 5 � 14

 x � 1 x � 4

 2x � 2 2x � 8

 2x � 5 � �3 2x � 5 � 3

0 2x � 5 0 � 3

0 2x � 5 0 � 3

0 x 0 � 5

0 x 0 � C  is equivalent to  x � �C

0 x � a 0

0 a 0 � e
a if a � 0

�a if a � 0

C H E C K  Y O U R  A N S W E R S

x � 1:

✓

x � 4:

✓ � 0 3 0 � 3 � RHS

 LHS � 0 2 # 4 � 5 0

 � 0 �3 0 � 3 � RHS

 LHS � 0 2 # 1 � 5 0
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S O L U T I O N We first isolate the absolute value on one side of the equal sign.

Given equation

Subtract 5

Divide by 3

or Take cases

Add 7

The solutions are 4 and 10.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

▼ Absolute Value Inequalities
We use the following properties to solve inequalities that involve absolute value.

These properties can be proved by using the definition of absolute value. To prove 
Property 1, for example, note that the inequality says that the distance from x to
0 is less than c, and from Figure 3 you can see that this is true if and only if x is between 
c and �c.

E X A M P L E  3 Solving an Absolute Value Inequality

Solve the inequality .

S O L U T I O N  1 The inequality is equivalent to

Property 1

Add 5

The solution set is the open interval .

S O L U T I O N  2 Geometrically, the solution set consists of all numbers x whose dis-
tance from 5 is less than 2. From Figure 4 we see that this is the interval .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27 ■

E X A M P L E  4 Solving an Absolute Value Inequality

Solve the inequality .

S O L U T I O N By Property 4 the inequality is equivalent to

or

Subtract 2

Divide by 3x � �2x � 2
3

3x � �63x � 2

3x � 2 � �43x � 2 � 4

0 3x � 2 0 � 4

0 3x � 2 0 � 4

13, 7 2

13,  7 2

 3 � x � 7

 �2 � x � 5 � 2

0 x � 5 0 � 2

0 x � 5 0 � 2

0 x 0 � c

 x � 4 x � 10

 x � 7 � �3 x � 7 � 3

 0 x � 7 0 � 3

 3 0 x � 7 0 � 9

 3 0 x � 7 0 � 5 � 14

S E C T I O N  1 . 9 | Solving Absolute Value Equations and Inequalities 153

PROPERTIES OF ABSOLUTE VALUE INEQUALITIES

Inequality Equivalent form Graph

1. �x � � c �c � x � c

2. �x � � c �c � x � c

3. �x � � c x � �c or c � x

4. �x � � c x � �c or c � x

0_c c

0_c c

0_c c

0_c c

These properties hold when x is re-
placed by any algebraic expression. 

_c 0x c

c c

| x |

F I G U R E  3

F I G U R E  4

0

2

3 5 7

2

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_Ch01_073-172.qxd  11/23/11  3:10 PM  Page 153



So the solution set is

The solution set is graphed in Figure 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

E X A M P L E  5 Piston Tolerances

The specifications for a car engine indicate that the pistons have diameter 3.8745 in. with
a tolerance of 0.0015 in. This means that the diameters can vary from the indicated
specification by as much as 0.0015 in. and still be acceptable.

(a) Find an inequality involving absolute values that describes the range of possible 
diameters for the pistons.

(b) Solve the inequality.

S O L U T I O N

(a) Let d represent the actual diameter of a piston. Since the difference between the ac-
tual diameter (d) and the specified diameter (3.8745) is less than 0.0015, we have

(b) The inequality is equivalent to

Property 1

Add 3.8745

Acceptable piston diameters may vary between 3.8730 in. and 3.8760 in.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

3.8730 � d � 3.8760

�0.0015 � d � 3.8745 � 0.0015

0 d � 3.8745 0 � 0.0015

Ex 0  x � �2  or  x � 2
3F � 1�q,  �2 4 � C23,  q 2
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0_2 2
3

F I G U R E  5

d

1 . 9  E X E R C I S E S

C O N C E P T S
1. The equation has the two solutions and 

.

2. The solution of the inequality is the interval .

3. The solution of the inequality is a union of two inter-

vals .

4. (a) The set of all points on the real line whose distance from
zero is less than 3 can be described by the absolute value 

inequality .
(b) The set of all points on the real line whose distance from

zero is greater than 3 can be described by the absolute 

value inequality .

S K I L L S
5–22 ■ Solve the equation.

5. 6.

7. 8.

9. 10. 0 2x � 3 0 � 70 x � 3 0 � 2

1
2 0 x 0 � 7 � 25 0 x 0 � 3 � 28

0 6x 0 � 150 4x 0 � 24

0 x 0

0 x 0

�

0 x 0 � 3

0 x 0 � 3

0 x 0 � 3

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23–48 ■ Solve the inequality. Express the answer using interval
notation.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. 0 x � a 0 � d0 x � 6 0 � 0.001

`
x � 1

2
` � 4`

x � 2

3
` � 2

0 5x � 2 0 � 60 2x � 3 0 � 0.4

0 x � 1 0 � 30 x � 5 0 � 2

0 x � 4 0 � 00 x � 1 0 � 1

0 x � 9 0 � 90 x � 5 0 � 3

1
2 0 x 0 � 10 2x 0 � 7

0 3x 0 � 150 x 0 � 4

0 x � 3 0 � 0 2x � 1 00 x � 1 0 � 0 3x � 2 0

0 35   
x � 2 0 � 1

2 � 48 � 5 0 13   
x � 5

6 0 � 33

20 � 0 2x � 4 0 � 153 0 x � 5 0 � 6 � 15

0 5 � 2x 0 � 6 � 144 � 0 3x � 6 0 � 1

0 12  
x � 2 0 � 10 4x � 7 0 � 9

0 x � 4 0 � �30 x � 4 0 � 0.5
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A P P L I C A T I O N S
57. Thickness of a Laminate A company manufactures 

industrial laminates (thin nylon-based sheets) of thickness 
0.020 in., with a tolerance of 0.003 in.
(a) Find an inequality involving absolute values that describes

the range of possible thickness for the laminate.
(b) Solve the inequality that you found in part (a).

58. Range of Height The average height of adult males is 
68.2 in., and 95% of adult males have height h that satisfies
the inequality

Solve the inequality to find the range of heights.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
59. Using Distances to Solve Absolute Value Inequalities

Recall that is the distance between a and b on the
number line. For any number x, what do and 
represent? Use this interpretation to solve the inequality

geometrically. In general, if a � b, what
is the solution of the inequality ?0 x � a 0 � 0 x � b 0
0 x � 1 0 � 0 x � 3 0

0 x � 3 00 x � 1 0
0 a � b 0

`  
h � 68.2

2.9
 ` � 2

0.020 in.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49–52 ■ A phrase that describes a set of real numbers is given.
Express the phrase as an inequality involving an absolute value.

49. All real numbers x less than 3 units from 0

50. All real numbers x more than 2 units from 0

51. All real numbers x at least 5 units from 7

52. All real numbers x at most 4 units from 2

53–56 ■ A set of real numbers is graphed. Find an inequality 
involving an absolute value that describes the set.

53.

54.

55.

56.
0 1 3 52 4_3_4_5 _2 _1

0 1 3 52 4_3_4_5 _2 _1

0 1 3 52 4_3_4_5 _2 _1

0 1 3 52 4_3_4_5 _2 _1

1

0 2x � 3 0
� 5

1

0 x � 7 0
� 2

0 � 0 x � 5 0 � 1
21 � 0 x 0 � 4

2 0 12  
x � 3 0 � 3 � 511

2 0 4x � 1
3 0 �

5
6

7 0 x � 2 0 � 5 � 48 � 0 2x � 1 0 � 6

3 � 0 2x � 4 0 � 14 0 x � 2 0 � 3 � 13
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■ P R O P E R T I E S  A N D  F O R M U L A S

The Distance Formula (p. 75)

The distance between the points is

The Midpoint Formula (p. 76)

The midpoint of the line segment from is

Intercepts (p. 82)

To find the x-intercepts of the graph of an equation, set and
solve for x.

To find the y-intercepts of the graph of an equation, set and
solve for y.

Circles (p. 84)

The circle with center (0, 0) and radius r has equation

x2 � y2 � r2

x � 0

y � 0

a
x1 � x2

2
, 

y1 � y2

2
b

A1x1, y1 2  to B1x2, y2 2

d1A, B 2 � 21x1 � x2 2
2 � 1y1 � y2 2

2

A1x1, y1 2  and B1x2, y2 2

The circle with center (h, k) and radius r has equation

Symmetry (p. 86)

The graph of an equation is symmetric with respect to the x-axis
if the equation remains unchanged when you replace y by �y.

The graph of an equation is symmetric with respect to the y-axis
if the equation remains unchanged when you replace x by �x.

The graph of an equation is symmetric with respect to the origin
if the equation remains unchanged when you replace x by �x and 
y by �y.

Slope of a Line (p. 91)

The slope of the nonvertical line that contains the points 
and is

m �
rise

run
�

y2 � y1

x2 � x1

B1x2, y2 2
A1x1, y1 2

1x � h 2 2 � 1y � k 2 2 � r2
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Quadratic Formula (pp. 123–125)

A quadratic equation is an equation of the form

Its solutions are given by the Quadratic Formula:

The discriminant is D � .

If D � 0, the equation has two real solutions.

If D � 0, the equation has one solution.

If D � 0, the equation has two complex solutions.

Inequalities (p. 142)

Adding the same quantity to each side of an inequality gives an
equivalent inequality:

Multiplying each side of an inequality by the same positive quan-
tity gives an equivalent inequality. Multiplying each side by the
same negative quantity reverses the direction of the inequality:

if C � 0

if C � 0

Absolute Value Equations (p. 152)

To solve an absolute value equation, we use

Absolute Value Inequalities (p. 153)

To solve an absolute value inequality, we use

 0 x 0 � C 3 x � �C or x � C

 0 x 0 � C 3 �C � x � C

0 x 0 � C 3 x � C or x � �C

A � B 3 CA � CB

A � B 3 CA � CB

A � B 3 A � C � B � C

b2 � 4ac

x �
�b � 2b2 � 4ac

2a

ax2 � bx � c � 0

Equations of Lines (pp. 92–95)

If a line has slope m, has y-intercept b, and contains the point
, then:

the point-slope form of its equation is

the slope-intercept form of its equation is

The equation of any line can be expressed in the general form

(where A and B can’t both be 0). 

Vertical and Horizontal Lines (p. 94)

The vertical line containing the point has the 
equation .

The horizontal line containing the point has the 
equation .

Parallel and Perpendicular Lines (pp. 95–96)

Two lines with slopes are

parallel if and only if 

perpendicular if and only if 

Zero-Product Property (p. 121)

If AB � 0 then A � 0 or B � 0.

Completing the Square (p. 122)

To make a perfect square, add . This gives the 
perfect square

x2 � bx � a
b

2
b

2

� ax �
b

2
b

2

a
b

2
b

2

x2 � bx

m1 m2 � �1

m1 � m2

m1 and m2

y � b
1a, b 2

x � a
1a, b 2

Ax � By � C � 0

y � mx � b

y � y1 � m1x � x1 2

1x1, y1 2
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■ L E A R N I N G  O B J E C T I V E S  S U M M A R Y

Section After completing this chapter, you should be able to . . . Review Exercises

1.1 ■ Graph points and regions in the coordinate plane 1–6
■ Use the Distance Formula 1–4, 7, 10
■ Use the Midpoint Formula 1–4, 10

1.2 ■ Graph equations 15–24, 33–36
■ Find intercepts 25–32, 33–36
■ Find equations of circles 1–4, 8–10, 11–14, 65–66
■ Graph circles in a coordinate plane 1–4, 11–14
■ Determine symmetry properties of an equation 25–32

1.3 ■ Find the slope of a line 1–4
■ Find the equation of a line given a point and the slope 1–4, 38, 39, 65–66
■ Find the equation of a line given the slope and y-intercept 1–4, 37–46
■ Find equations of horizontal and vertical lines 41–42
■ Graph equations of lines 1–4, 37–46
■ Find equations for parallel and perpendicular lines 43–46, 47–48
■ Make a linear model: interpret slope as rate of change 49–50

1.4 ■ Solve equations graphically 51–52, 57–60
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1.5 ■ Make linear equations that model real-world situations 85–86, 89–90, 92
■ Use equations to solve problems about real-world situations 85–94

1.6 ■ Solve quadratic equations by factoring, completing the square, or using 67–70, 73–74
the Quadratic Formula

■ Model with quadratic equations 88, 91, 93

1.7 ■ Solve basic polynomial equations 71–72, 75–76
■ Solve equations involving radicals 78–80
■ Solve equations of quadratic type 77–80
■ Model with equations 87, 94

1.8 ■ Solve linear inequalities 95–98
■ Solve nonlinear inequalities 53–56, 61–64, 99–104, 109
■ Model with inequalities 110

1.9 ■ Solve absolute value equations 81–84
■ Solve absolute value inequalities 105–108
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■ E X E R C I S E S

1–4 ■ Two points P and Q are given.
(a) Plot P and Q on a coordinate plane.
(b) Find the distance from P to Q.
(c) Find the midpoint of the segment PQ.
(d) Find the slope of the line determined by P and Q, and

find equations for the line in point-slope form and in
slope-intercept form. Then sketch a graph of the line.

(e) Sketch the circle that passes through Q and has center
P, and find the equation of this circle.

1. 2.

3. 4.

5–6 ■ Sketch the region given by the set.

5.

6.

7. Which of the points or is closer to the point
?

8. Find an equation of the circle that has center and 
radius .

9. Find an equation of the circle that has center and
passes through the origin.

10. Find an equation of the circle that contains the points 
and and has the midpoint of the segment PQ as its
center.

11–14 ■ (a) Complete the square to determine whether the 
equation represents a circle or a point or has no graph. (b) If the
equation is that of a circle, find its center and radius, and sketch its
graph.

11. x2 � y2 � 2x � 6y � 9 � 0

12. 2x2 � 2y2 � 2x � 8y �

13. x2 � y2 � 72 � 12x

14. x2 � y2 � 6x � 10y � 34 � 0

1
2

Q1�1,  8 2
P12,  3 2

1�5,  �1 2

12
12,  �5 2

C1�1,  �3 2
B15,  3 2A14,  4 2

5 1x,   y 2  0  x � 4 or y � 26

5 1x,   y 2  0  �4 � x � 4 and �2 � y � 26

P15, �2 2 , Q1�3, �6 2P1�6, 2 2 , Q14, �14 2

P12, 0 2 , Q1�4, 8 2P10, 3 2 , Q13, 7 2

15–24 ■ Sketch the graph of the equation by making a table and
plotting points.

15. y � 2 � 3x 16. 2x � y � 1 � 0

17. x � 3y � 21 18. x � 2y � 12

19. 20.

21. y � 16 � x2 22. 8x � y2 � 0

23. 24.

25–32 ■ (a) Test the equation for symmetry with respect to the 
x-axis, the y-axis, and the origin. (b) Find the x- and y-intercepts of
the graph of the equation.

25. 26.

27. 28.

29. 30.

31. 32.

33–36 ■ (a) Use a graphing device to graph the equation in 
an appropriate viewing rectangle. (b) Use the graph to find the 
x- and y-intercepts.

33. y � x2 � 6x 34.

35. y � x3 � 4x2 � 5x 36.

37–46 ■ A description of a line is given. (a) Find an equation for
the line in slope-intercept form. (b) Find an equation for the line in
general form. (c) Graph the line.

37. The line that has slope 2 and y-intercept 6

38. The line that has slope and passes through the point 
(6, �3)

39. The line that passes through the points (�1, �6) and (2, �4)

40. The line that has x-intercept 4 and y-intercept 12

�1
2

x2

4
� y2 � 1

y � 25 � x

x 3 � xy2 � 5x 2 � 4xy � y2 � 1

y �
4
x

9x2 � 16y2 � 144

x4 � 16 � yx2 � 1y � 1 2 2 � 1

6x � y2 � 36y � 9 � x2

y � �21 � x2x � 1y

x

4
�

y

5
� 0

x

2
�

y

7
� 1
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61–64 ■ Solve the inequality graphically.

61. 4x � 3 � x2 62. x3 � 4x2 � 5x � 2

63. 64.

65–66 ■ Find equations for the circle and the line in the figure.

65.

66.

67–84 ■ Find all real solutions of the equation.

67. x2 � 9x � 14 � 0 68. x2 � 24x � 144 � 0

69. 2x2 � x � 1 70. 3x2 � 5x � 2 � 0

71. 4x3 � 25x � 0 72. x3 � 2x2 � 5x � 10 � 0

73. 3x2 � 4x � 1 � 0 74. x2 � 3x � 9 � 0

75. 76.

77. x4 � 8x2 � 9 � 0 78.

79. x�1/2 � 2x1/2 � x3/2 � 0

80.

81. 82.

83. 84.

85. A shopkeeper sells raisins for $3.20 per pound and nuts for
$2.40 per pound. She decides to mix the raisins and nuts and
sell 50 lb of the mixture for $2.72 per pound. What quantities
of raisins and nuts should she use?

86. Anthony leaves Kingstown at 2:00 P.M. and drives to
Queensville, 160 mi distant, at 45 mi/h. At 2:15 P.M. Helen
leaves Queensville and drives to Kingstown at 40 mi/h. At
what time do they pass each other on the road?

4 0 3 � x 0 � 3 � 150 2x � 5 0 � 9

0 3x 0 � 180 x � 7 0 � 4

11 � 1x 2 2 � 211 � 1x 2 � 15 � 0

x � 41x � 32

x

x � 2
�

1

x � 2
�

8

x 
2 � 4

1
x

�
2

x � 1
� 3

y

x
(8, 1 )

0 5

5

y

x0

(_5, 12)

0  x 
2 � 16 0 � 10 � 0x 

4 � 4x 
2 � 1

2 x � 1

41. The vertical line that passes through the point (3, �2)

42. The horizontal line with y-intercept 5

43. The line that passes through the point (1, 1) and is parallel to
the line 

44. The line that passes through the origin and is parallel to the
line containing (2, 4) and (4,�4)

45. The line that passes through the origin and is perpendicular to
the line 

46. The line that passes through the point (1, 7) and is perpendicu-
lar to the line 

47–48 ■ The equations of two lines are given. Determine whether
the lines are parallel, perpendicular, or neither.

47. ;

48. ;

49. Hooke’s Law states that if a weight „ is attached to a hanging
spring, then the stretched length s of the spring is linearly 
related to „. For a particular spring we have

where s is measured in inches and „ in pounds.
(a) What do the slope and s-intercept in this equation 

represent?
(b) How long is the spring when a 5-lb weight is attached?

50. Margarita is hired by an accounting firm at a salary of $60,000
per year. Three years later her annual salary has increased to
$70,500. Assume that her salary increases linearly.
(a) Find an equation that relates her annual salary S and the

number of years t that she has worked for the firm.
(b) What do the slope and S-intercept of her salary equation

represent?
(c) What will her salary be after 12 years with the firm?

51–56 ■ Graphs of the equations and are
given. Use the graphs to solve the equation or inequality.

51. 52.

53. 54.

55. 56.

57–60 ■ Solve the equation graphically.

57. x2 � 4x � 2x � 7 58.

59. x4 � 9x2 � x � 9 60. @ @ � 20 x � 3 0 � 5

2x � 4 � x 
2 � 5

x 2 � 4x � 0x 2 � 4x � 0

x 2 � 4x � x � 6x 2 � 4x � x � 6

x 2 � 4x � 0x 2 � 4x � x � 6

y

x0 1

2

y=x+6

y=≈-4x

y � x � 6y � x 2 � 4x

s � 0.3„ � 2.5

10y � 16x � 15x � 8y � 3

9y � 3x � 3 � 0y � �1
3  
x � 1

x � 3y � 16 � 0

y � 1
2 x � 10

2x � 5y � 10
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fencing material at hand, what dimensions should each plot
have?

95–108 ■ Solve the inequality. Express the solution using interval
notation, and graph the solution set on the real number line.

95. 3x � 2 � �11 96. 12 � x � 7x

97. �1 � 2x � 5 � 3 98. 3 � x � 2x � 7

99. x2 � 4x � 12 � 0 100. x2 � 1

101. 102. 2x2 � x � 3

103. 104.

105. 106.

107.

108.
[Hint: Interpret the quantities as distances.]

109. For what values of x is the algebraic expression defined as a
real number?

(a) (b)

110. The volume of a sphere is given by , where r is the
radius. Find the interval of values of the radius so that the
volume is between 8 ft 3 and 12 ft 3, inclusive.

V � 4
3pr 

3

124 x � x 
4

224 � x � 3x 
2

0 x � 1 0 � 0 x � 3 0

0 2x � 1 0 � 1

0 x � 4 0 � 0.020 x � 5 0 � 3

5

x 
3 � x 

2 � 4x � 4
� 0

x � 4

x 
2 � 4

� 0

2x � 5

x � 1
� 1

87. A woman cycles 8 mi/h faster than she runs. Every morning
she cycles 4 mi and runs mi, for a total of 1 hour of exer-
cise. How fast does she run?

88. The approximate distance d (in feet) that drivers travel after
noticing that they must come to a sudden stop is given by the
following formula, where x is the speed of the car (in mi/h):

If a car travels 75 ft before stopping, what was its speed before
the brakes were applied?

89. Luc invests $7000 in two bank accounts: One earns 1.5% sim-
ple interest per year, and the other earns 2.5% simple interest
per year. After one year the total interest earned on these in-
vestments is $120.25.  How much money did he invest in each
account?

90. Shania invests $6000 at 3% simple interest per year. How
much additional money must she invest at 1.25% simple inter-
est per year to ensure that the interest she receives each year is
$300?

91. The hypotenuse of a right triangle has length 20 cm. The sum
of the lengths of the other two sides is 28 cm. Find the lengths
of the other two sides of the triangle.

92. Abbie paints twice as fast as Beth and three times as fast as
Cathie. If it takes them 60 min to paint a living room with all
three working together, how long would it take Abbie if she
works alone?

93. A rectangular swimming pool is 8 ft deep everywhere and
twice as long as it is wide. If the pool holds 8464 ft 3 of water,
what are its dimensions?

94. A gardening enthusiast wishes to fence in three adjoining gar-
den plots, one for each of his children, as shown in the figure.
If each plot is to be 80 ft 2 in area and he has 88 ft of 

d � x �
x 

2

20

2 
1
2
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1. Let and be two points in the coordinate plane.

(a) Plot P and Q in the coordinate plane.

(b) Find the distance between P and Q.

(c) Find the midpoint of the segment PQ.

(d) Find the slope of the line that contains P and Q.

(e) Find the perpendicular bisector of the line that contains P and Q.

(f) Find an equation for the circle for which the segment PQ is a diameter.

2. Find the center and radius of each circle, and sketch its graph.

(a) (b) (c)

3. Test each equation for symmetry. Find the x- and y-intercepts, and sketch a graph of the 
equation.

(a) (b)

4. A line has the general linear equation .

(a) Find the x- and y-intercepts of the graph of this line.

(b) Graph the line. Use the intercepts that you found in part (a) to help you.

(c) Write the equation of the line in slope-intercept form.

(d) What is the slope of the line?

(e) What is the slope of any line perpendicular to the given line?

5. Find an equation for the line with the given property.

(a) It passes through the point and is parallel to the line 3x � y � 10 � 0.

(b) It has x-intercept 6 and y-intercept 4.

6. A geologist uses a probe to measure the temperature T (in �C) of the soil at various depths 
below the surface, and finds that at a depth of x cm the temperature is given by the linear
equation T � 0.08x � 4.

(a) What is the temperature at a depth of one meter (100 cm)?

(b) Sketch a graph of the linear equation.

(c) What do the slope, the x-intercept, and the T-intercept of the graph of this equation 
represent?

7. Graphs of the equations and are given. Use the graphs to solve the
equation or inequality.

(a) (b)

(c) (d)

8. Solve the equation or inequality graphically, rounded to two decimals.

(a) x3 � 9x � 1 � 0 (b)

9. Natasha drove from Bedingfield to Portsmouth at an average speed of 100 km/h to attend a
job interview. On the way back she decided to slow down to enjoy the scenery, so she drove
at just 75 km/h. Her trip involved a total of 3.5 hours of driving time. What is the distance
between Bedingfield and Portsmouth?

1
2 x � 2 � 2x 

2 � 1

y

x1

1

0

y=2x-x™

y=≈-4x

x 2 � 4x � 02x � x 2 � 0

x 2 � 4x � 2x � x 2x 2 � 4x � 2x � x 2

y � 2x � x 2y � x 2 � 4x

13,  �6 2

3x � 5y � 15

y � 0  x � 2 0x � 4 � y2

x2 � 6x � y2 � 2y � 6 � 01x � 3 2 2 � y2 � 9x2 � y2 � 25
4

Q17,  5 2P11, �3 2
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10. Find all real solutions of each equation.

(a) x2 � x � 12 � 0 (b) 2x2 � 4x � 3 � 0

(c) (d) x1/2 � 3x1/4 � 2 � 0

(e) x4 � 16x2 � 0 (f)

11. A rectangular parcel of land is 70 ft longer than it is wide. Each diagonal between opposite
corners is 130 ft. What are the dimensions of the parcel?

12. Solve each inequality. Sketch the solution on a real number line, and write the answer using
interval notation.

(a) �1 � 5 � 2x � 10 (b)

(c) (d)

13. A bottle of medicine must be stored at a temperature between 5�C and 10�C. What range
does this correspond to on the Fahrenheit scale? [Note: The Fahrenheit (F ) and Celsius (C )
scales satisfy the relation .]

14. For what values of x is the expression defined as a real number?24x � x 
2

C � 5
9 1F � 32 2

2x � 5

x � 1
� 10  x � 3 0 � 2

x1x � 1 2 1x � 2 2 � 0

3 0  x � 4 0 � 10 � 0

3 � 2x � 3 � x
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A model is a representation of an object or process. For example, a toy Ferrari is a model
of the actual car; a road map is a model of the streets in a city. A mathematical model is
a mathematical representation (usually an equation) of an object or process. Once a math-
ematical model is made it can be used to obtain useful information or make predictions
about the thing being modeled. In these Focus on Modeling sections we explore different
ways in which mathematics is used to model real-world phenomena.

▼ The Line That Best Fits the Data
In Section 1.3 we used linear equations to model relationships between varying quanti-
ties. In practice, such relationships are discovered by collecting data. But real-world data
seldom fall into a precise line. The scatter plot in Figure 1(a) shows the result of a study
on childhood obesity. The graph plots the body mass index (BMI) versus the number of
hours of television watched per day for 25 adolescent subjects. Of course, we would not
expect the data to be exactly linear as in Figure 1(b). But there is a linear trend indicated
by the blue line in Figure 1(a): The more hours a subject watches TV the higher the BMI.
In this section we learn how to find the line that best fits the data.

Table 1 gives the nationwide infant mortality rate for the period from 1950 to 2000.
The rate is the number of infants who die before reaching their first birthday, out of every
1000 live births.

The scatter plot in Figure 2 shows that the data lie roughly on a straight line. We can
try to fit a line visually to approximate the data points, but since the data aren’t exactly

F O C U S  O N  M O D E L I N G

Fitting Lines to Data
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(a) Line of best fit (b) Line fits data exactly
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y 
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20 

30 

10 20 30 40 50 

Year Rate

1950 29.2
1960 26.0
1970 20.0
1980 12.6
1990 9.2
2000 6.9

T A B L E  1

U.S. Infant Mortality

F I G U R E  2 U.S. infant mortality rate
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linear, there are many lines that might seem to work. Figure 3 shows two attempts at “eye-
balling” a line to fit the data.

Of all the lines that run through these data points, there is one that “best” fits the data,
in the sense that it provides the most accurate linear model for the data. We now describe
how to find this line.

It seems reasonable that the line of best fit is the line that is as close as possible to all
the data points. This is the line for which the sum of the vertical distances from the data
points to the line is as small as possible (see Figure 4). For technical reasons it is better to
use the line where the sum of the squares of these distances is smallest. This is called the
regression line. The formula for the regression line is found by using calculus, but fortu-
nately, the formula is programmed into most graphing calculators. In Example 1 we see
how to use a TI-83 calculator to find the regression line for the infant mortality data de-
scribed above. (The process for other calculators is similar.)

E X A M P L E  1 Regression Line for U.S. Infant Mortality Rates

(a) Find the regression line for the infant mortality data in Table 1.

(b) Graph the regression line on a scatter plot of the data.

(c) Use the regression line to estimate the infant mortality rates in 1995 and 2006.

S O L U T I O N

(a) To find the regression line using a TI-83 calculator, we must first enter the data into
the lists L1 and L2, which are accessed by pressing the key and selecting
Edit. Figure 5 shows the calculator screen after the data have been entered. (Note
that we are letting x � 0 correspond to the year 1950, so that x � 50 corresponds to
2000. This makes the equations easier to work with.) We then press the key
again and select Calc, then 4:LinReg(ax+b), which provides the output shown in
Figure 6(a). This tells us that the regression line is

Here x represents the number of years since 1950, and y represents the correspond-
ing infant mortality rate.

(b) The scatter plot and the regression line have been plotted on a graphing calculator
screen in Figure 6(b).

y � � 0.48x � 29.4

STAT

STAT

Fitting Lines to Data 163
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F I G U R E  3 Visual attempts to fit 
line to data
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F I G U R E  4 Distance from the data
points to the line

L1
0 29.2
10 26
20 20
30 12.6
40 9.2
50 6.9
-------

-------
L2

L2(7)=

L3 1

F I G U R E  5 Entering the data

y=ax+b
a=-.4837142857
b=29.40952381

LinReg

30 

0 55
(b)(a) Scatter plot and regression lineOutput of the LinReg 

commandF I G U R E  6
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(c) The year 1995 is 45 years after 1950, so substituting 45 for x, we find that 
. So the infant mortality rate in 1995 was about 7.8.

Similarly, substituting 56 for x, we find that the infant mortality rate predicted for
2006 was about ■

An Internet search shows that the actual infant mortality rate was 7.6 in 1995 and 6.4
in 2006. So the regression line is fairly accurate for 1995 (the actual rate was slightly
lower than the predicted rate), but it is considerably off for 2006 (the actual rate was more
than twice the predicted rate). The reason is that infant mortality in the United States
stopped declining and actually started rising in 2002, for the first time in more than a cen-
tury. This shows that we have to be very careful about extrapolating linear models outside
the domain over which the data are spread.

▼ Examples of Regression Analysis
Since the modern Olympic Games began in 1896, achievements in track and field events
have been improving steadily. One example in which the winning records have shown an
upward linear trend is the pole vault. Pole vaulting began in the northern Netherlands as
a practical activity: When traveling from village to village, people would vault across the
many canals that crisscrossed the area to avoid having to go out of their way to find a
bridge. Households maintained a supply of wooden poles of lengths appropriate for each
member of the family. Pole vaulting for height rather than distance became a collegiate
track and field event in the mid-1800s and was one of the events in the first modern
Olympics. In the next example we find a linear model for the gold-medal-winning records
in the men’s Olympic pole vault.

E X A M P L E  2 Regression Line for Olympic Pole Vault Records

Table 2 gives the men’s Olympic pole vault records up to 2004.

(a) Find the regression line for the data.

(b) Make a scatter plot of the data, and graph the regression line. Does the regression
line appear to be a suitable model for the data?

(c) What does the slope of the regression line represent?

(d) Use the model to predict the winning pole vault height for the 2008 Olympics.

�0.48156 2 � 29.4 � 2.5.

y � �0.48145 2 � 29.4 � 7.8

164 Focus on Modeling

Steven Hooker, 2008 Olympic gold
medal winner, men’s pole vault
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Year x Gold medalist Height (m) Year x Gold medalist Height (m)

1896 �4 William Hoyt, USA 3.30 1956 56 Robert Richards, USA 4.56
1900 0 Irving Baxter, USA 3.30 1960 60 Don Bragg, USA 4.70
1904 4 Charles Dvorak, USA 3.50 1964 64 Fred Hansen, USA 5.10
1906 6 Fernand Gonder, France 3.50 1968 68 Bob Seagren, USA 5.40
1908 8 A. Gilbert, E. Cook, USA 3.71 1972 72 W. Nordwig, E. Germany 5.64
1912 12 Harry Babcock, USA 3.95 1976 76 Tadeusz Slusarski, Poland 5.64
1920 20 Frank Foss, USA 4.09 1980 80 W. Kozakiewicz, Poland 5.78
1924 24 Lee Barnes, USA 3.95 1984 84 Pierre Quinon, France 5.75
1928 28 Sabin Can, USA 4.20 1988 88 Sergei Bubka, USSR 5.90
1932 32 William Miller, USA 4.31 1992 92 M. Tarassob, Unified Team 5.87
1936 36 Earle Meadows, USA 4.35 1996 96 Jean Jaffione, France 5.92
1948 48 Guinn Smith, USA 4.30 2000 100 Nick Hysong, USA 5.90
1952 52 Robert Richards, USA 4.55 2004 104 Timothy Mack, USA 5.95

T A B L E  2

Men’s Olympic Pole Vault Records
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S O L U T I O N

(a) Let x � year � 1900, so 1896 corresponds to x � �4, 1900 to x � 0, and so on. 
Using a calculator, we find the following regression line:

(b) The scatter plot and the regression line are shown in Figure 7. The regression line 
appears to be a good model for the data.

(c) The slope is the average rate of increase in the pole vault record per year. So on 
average, the pole vault record increased by 0.0266 m/yr.

(d) The year 2008 corresponds to x � 108 in our model. The model gives

So the model predicts that in 2008 the winning pole vault will be 6.27 m. ■

At the 2008 Olympics in Beijing, China, the men's Olympic gold medal in the pole
vault was won by Steven Hooker of Australia, with a vault of 5.96 m. Although this height
set an Olympic record, it was considerably lower than the 6.27 m predicted by the model
of Example 2. In Problem 10 we find a regression line for the pole vault data from 1972
to 2004. Do the problem to see whether this restricted set of more recent data provides a
better predictor for the 2008 record.

Is a linear model really appropriate for the data of Example 2? In subsequent Focus on
Modeling sections, we study regression models that use other types of functions, and we
learn how to choose the best model for a given set of data.

In the next example we see how linear regression is used in medical research to inves-
tigate potential causes of diseases such as cancer.

E X A M P L E  3 Regression Line for Links Between 
Asbestos and Cancer

When laboratory rats are exposed to asbestos fibers, some of the rats develop lung tu-
mors. Table 3 lists the results of several experiments by different scientists.

(a) Find the regression line for the data.

(b) Make a scatter plot and graph the regression line. Does the regression line appear
to be a suitable model for the data?

(c) What does the y-intercept of the regression line represent?

 � 6.27

 y � 0.02661108 2 � 3.40

y � 0.0266x � 3.40

Fitting Lines to Data 165

y=ax+b
a=.0265652857
b=3.400989881

LinReg

Output of the LinReg
function on the TI-83

y 

4 

2 

20 40 60 80 100 0 x 

Height 
(m) 

Years since 1900 

6 

F I G U R E  7 Scatter plot and regres-
sion line for pole vault data

Asbestos Percent that 
exposure develop

(fibers/mL) lung tumors

50 2
400 6
500 5
900 10

1100 26
1600 42
1800 37
2000 28
3000 50

T A B L E  3

Asbestos–Tumor Data
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S O L U T I O N

(a) Using a calculator, we find the following regression line (see Figure 8(a)):

(b) The scatter plot and regression line are graphed in Figure 8(b). The regression line
appears to be a reasonable model for the data.

(c) The y-intercept is the percentage of rats that develop tumors when no asbestos
fibers are present. In other words, this is the percentage that normally develop lung
tumors (for reasons other than asbestos). ■

▼ How Good Is the Fit? The Correlation Coefficient
For any given set of two-variable data it is always possible to find a regression line, even if
the data points do not tend to lie on a line and even if the variables don’t seem to be related
at all. Look at the three scatter plots in Figure 9. In the first scatter plot, the data points lie
close to a line. In the second plot, there is still a linear trend but the points are more scat-
tered. In the third plot there doesn’t seem to be any trend at all, linear or otherwise.

A graphing calculator can give us a regression line for each of these scatter plots. But
how well do these lines represent or “fit” the data? To answer this question, statisticians
have invented the correlation coefficient, usually denoted r. The correlation coefficient
is a number between �1 and 1 that measures how closely the data follow the regression
line—or, in other words, how strongly the variables are correlated. Many graphing 
calculators give the value of r when they compute a regression line. If r is close to �1
or 1, then the variables are strongly correlated—that is, the scatter plot follows the re-
gression line closely. If r is close to 0, then the variables are weakly correlated or not cor-
related at all. (The sign of r depends on the slope of the regression line.) The correlation

y � 0.0177x � 0.5405
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F I G U R E  8 Linear regression for the asbestos–tumor data
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coefficients of the scatter plots in Figure 9 are indicated on the graphs. For the first plot,
r is close to 1 because the data are very close to linear. The second plot also has a rela-
tively large r, but it is not as large as the first, because the data, while fairly linear, are
more diffuse. The third plot has an r close to 0, since there is virtually no linear trend in 
the data.

If two variables are correlated, it does not necessarily mean that a change in one vari-
able causes a change in the other. For example, the mathematician John Allen Paulos
points out that shoe size is strongly correlated to mathematics scores among schoolchild-
ren. Does this mean that big feet cause high math scores? Certainly not—both shoe size
and math skills increase independently as children get older. So it is important not to jump
to conclusions: Correlation and causation are not the same thing. Correlation is a useful
tool in bringing important cause-and-effect relationships to light; but to prove causation,
we must explain the mechanism by which one variable affects the other. For example, the
link between smoking and lung cancer was observed as a correlation long before science
found the mechanism through which smoking causes lung cancer.

P R O B L E M S
1. Femur Length and Height Anthropologists use a linear model that relates femur length to

height. The model allows an anthropologist to determine the height of an individual when only
a partial skeleton (including the femur) is found. In this problem we find the model by analyz-
ing the data on femur length and height for the eight males given in the table.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) An anthropologist finds a femur of length 58 cm. How tall was the person?

2. Demand for Soft Drinks A convenience store manager notices that sales of soft drinks
are higher on hotter days, so he assembles the data in the table.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) Use the model to predict soft drink sales if the temperature is 95�F.

Fitting Lines to Data 167

Femur length Height
(cm) (cm)

50.1 178.5
48.3 173.6
45.2 164.8
44.7 163.7
44.5 168.3
42.7 165.0
39.5 155.4
38.0 155.8

Femur

High temperature (°F) Number of cans sold

55 340
58 335
64 410
68 460
70 450
75 610
80 735
84 780
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3. Tree Diameter and Age To estimate ages of trees, forest rangers use a linear model that
relates tree diameter to age. The model is useful because tree diameter is much easier to mea-
sure than tree age (which requires special tools for extracting a representative cross section of
the tree and counting the rings). To find the model, use the data in the table, which were col-
lected for a certain variety of oaks.

(a) Make a scatter plot of the data.

(b) Find and graph a linear function that models the data.

(c) Use the model to estimate the age of an oak whose diameter is 18 in.

4. Carbon Dioxide Levels The Mauna Loa Observatory, located on the island of Hawaii, has
been monitoring carbon dioxide (CO2) levels in the atmosphere since 1958. The table lists the
average annual CO2 levels measured in parts per million (ppm) from 1984 to 2010.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line. 

(c) Use the linear model in part (b) to estimate the CO2 level in the atmosphere in 2005.
Compare your answer with the actual CO2 level of 379.7 that was measured in 2005.

5. Temperature and Chirping Crickets Biologists have observed that the chirping rate of
crickets of a certain species appears to be related to temperature. The table shows the chirp-
ing rates for various temperatures.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the chirping rate at 100�F.

6. Extent of Arctic Sea Ice The National Snow and Ice Data Center monitors the amount of
ice in the Arctic year round. The table gives approximate values for the sea ice extent in mil-
lions of square kilometers from 1980 to 2006, in two-year intervals.

(a) Make a scatter plot of the data.

168 Focus on Modeling

Diameter (in.) Age (years)

2.5 15
4.0 24
6.0 32
8.0 56
9.0 49
9.5 76

12.5 90
15.5 89

Year CO2 level (ppm)

1984 344.3
1986 347.0
1988 351.3
1990 354.0
1992 356.3
1994 358.9
1996 362.7
1998 366.5
2000 369.4
2002 372.0
2004 377.5
2006 381.9
2008 385.6
2010 389.8

Temperature Chirping rate 
(°F) (chirps/min)

50 20
55 46
60 79
65 91
70 113
75 140
80 173
85 198
90 211
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(b) Find and graph the regression line. 

(c) Use the linear model in part (b) to estimate the ice extent in the year 2010.

7. Mosquito Prevalence The table lists the relative abundance of mosquitoes (as measured
by the mosquito positive rate) versus the flow rate (measured as a percentage of maximum
flow) of canal networks in Saga City, Japan.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model in part (b) to estimate the mosquito positive rate if the canal flow is
70% of maximum.

8. Noise and Intelligibility Audiologists study the intelligibility of spoken sentences under
different noise levels. Intelligibility, the MRT score, is measured as the percent of a spoken
sentence that the listener can decipher at a certain noise level in decibels (dB). The table
shows the results of one such test.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Find the correlation coefficient. Is a linear model appropriate?

(d) Use the linear model in part (b) to estimate the intelligibility of a sentence at a 94-dB
noise level.

Fitting Lines to Data 169

Mosquito positive 
Flow rate (%) rate (%)

0 22
10 16
40 12
60 11
90 6

100 2

Noise level (dB) MRT score (%)

80 99
84 91
88 84
92 70
96 47

100 23
104 11

Ice extent Ice extent
Year (million km2) Year (million km2)

1980 7.9 1994 7.1
1982 7.4 1996 7.9
1984 7.2 1998 6.6
1986 7.6 2000 6.3
1988 7.5 2002 6.0
1990 6.2 2004 6.1
1992 7.6 2006 5.7
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9. Life Expectancy The average life expectancy in the United States has been rising steadily
over the past few decades, as shown in the table.

(a) Make a scatter plot of the data.

(b) Find and graph the regression line.

(c) Use the linear model you found in part (b) to predict the life expectancy in the year 
2006.

(d) Search the Internet or your campus library to find the actual 2006 average life ex-
pectancy. Compare to your answer in part (c).

10. Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning
Olympic men’s pole vault height has fallen below the value predicted by the regression line
in Example 2. This might have occurred because when the pole vault was a new event, there
was much room for improvement in vaulters’ performances, whereas now even the best train-
ing can produce only incremental advances. Let’s see whether concentrating on more recent
results gives a better predictor of future records.

(a) Use the data in Table 2 to complete the table of winning pole vault heights. (Note that we
are using x � 0 to correspond to the year 1972, where this restricted data set begins.)

(b) Find the regression line for the data in part (a).

(c) Plot the data and the regression line on the same axes. Does the regression line seem to
provide a good model for the data?

(d) What does the regression line predict as the winning pole vault height for the 2008
Olympics? Compare this predicted value to the actual 2008 winning height of 5.96 m, as
described on page 165. Has this new regression line provided a better prediction than the
line in Example 2?
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Year Life expectancy

1920 54.1
1930 59.7
1940 62.9
1950 68.2
1960 69.7
1970 70.8
1980 73.7
1990 75.4
2000 76.9

Year x Height (m)

1972 0 5.64

1976 4

1980 8

1984

1988

1992

1996

2000

2004
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11. Olympic Swimming Records The tables give the gold medal times in the men’s and
women’s 100-m freestyle Olympic swimming event.

(a) Find the regression lines for the men’s data and the women’s data.

(b) Sketch both regression lines on the same graph. When do these lines predict that the
women will overtake the men in the event? Does this conclusion seem reasonable?

12. Shoe Size and Height Do you think that shoe size and height are correlated? Find out by
surveying the shoe sizes and heights of people in your class. (Of course, the data for men and
women should be separate.) Find the correlation coefficient.

13. Demand for Candy Bars In this problem you will determine a linear demand equation
that describes the demand for candy bars in your class. Survey your classmates to determine
what price they would be willing to pay for a candy bar. Your survey form might look like
the sample to the left.

(a) Make a table of the number of respondents who answered “yes” at each price level.

(b) Make a scatter plot of your data.

(c) Find and graph the regression line which gives the number of responents y
who would buy a candy bar if the price were p cents. This is the demand equation. Why
is the slope m negative?

(d) What is the p-intercept of the demand equation? What does this intercept tell you about
pricing candy bars?

y � mp � b,
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Year Gold medalist Time (s)

1908 C. Daniels, USA 65.6
1912 D. Kahanamoku, USA 63.4
1920 D. Kahanamoku, USA 61.4
1924 J. Weissmuller, USA 59.0
1928 J. Weissmuller, USA 58.6
1932 Y. Miyazaki, Japan 58.2
1936 F. Csik, Hungary 57.6
1948 W. Ris, USA 57.3
1952 C. Scholes, USA 57.4
1956 J. Henricks, Australia 55.4
1960 J. Devitt, Australia 55.2
1964 D. Schollander, USA 53.4
1968 M. Wenden, Australia 52.2
1972 M. Spitz, USA 51.22
1976 J. Montgomery, USA 49.99
1980 J. Woithe, E. Germany 50.40
1984 R. Gaines, USA 49.80
1988 M. Biondi, USA 48.63
1992 A. Popov, Russia 49.02
1996 A. Popov, Russia 48.74
2000 P. van den Hoogenband, Netherlands 48.30
2004 P. van den Hoogenband, Netherlands 48.17
2008 A. Bernard, France 47.21

MEN

Year Gold medalist Time (s)

1912 F. Durack, Australia 82.2
1920 E. Bleibtrey, USA 73.6
1924 E. Lackie, USA 72.4
1928 A. Osipowich, USA 71.0
1932 H. Madison, USA 66.8
1936 H. Mastenbroek, Holland 65.9
1948 G. Andersen, Denmark 66.3
1952 K. Szoke, Hungary 66.8
1956 D. Fraser, Australia 62.0
1960 D. Fraser, Australia 61.2
1964 D. Fraser, Australia 59.5
1968 J. Henne, USA 60.0
1972 S. Nielson, USA 58.59
1976 K. Ender, E. Germany 55.65
1980 B. Krause, E. Germany 54.79
1984 (Tie) C. Steinseifer, USA 55.92

N. Hogshead, USA 55.92
1988 K. Otto, E. Germany 54.93
1992 Z. Yong, China 54.64
1996 L. Jingyi, China 54.50
2000 I. DeBruijn, Netherlands 53.83
2004 J. Henry, Australia 53.84
2008 B. Steffen, Germany 53.12

WOMEN
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Finding and Using Rules Many of our everyday activities are governed by
precise rules. There is a rule that relates the amount of money you get paid to
the number of hours you work, a rule that relates the grade you get in your
algebra class to your exam scores, a rule that relates the amount of gas you use
to the distance you drive. Rules like these are expressed in algebra by using
functions. Rules are discovered in different ways: by collecting data and
looking for patterns, by experimenting, or by reasoning about the properties of
the process being studied. Once a rule has been found, it can be used to
predict the outcome of a process. For example, the skydivers pictured here
need to know the rule that relates the distance they fall to the amount of time
they’ve been falling. Knowing this rule allows them to enjoy skydiving—
safely! 

In Focus on Modeling at the end of this chapter we explore different ways
of using functions to model real-world situations.
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In this section we explore the idea of a function and then give the mathematical definition
of function.

▼ Functions All Around Us
In nearly every physical phenomenon we observe that one quantity depends on another.
For example, your height depends on your age, the temperature depends on the date, the
cost of mailing a package depends on its weight (see Figure 1). We use the term function
to describe this dependence of one quantity on another. That is, we say the following:

■ Height is a function of age.
■ Temperature is a function of date.
■ Cost of mailing a package is a function of weight.

The U.S. Post Office uses a simple rule to determine the cost of mailing a first-class par-
cel on the basis of its weight. But it’s not so easy to describe the rule that relates height
to age or the rule that relates temperature to date.

Can you think of other functions? Here are some more examples:

■ The area of a circle is a function of its radius.
■ The number of bacteria in a culture is a function of time.
■ The weight of an astronaut is a function of her elevation.
■ The price of a commodity is a function of the demand for that commodity.

The rule that describes how the area A of a circle depends on its radius r is given by
the formula A � pr2. Even when a precise rule or formula describing a function is not
available, we can still describe the function by a graph. For example, when you turn on a
hot water faucet, the temperature of the water depends on how long the water has been
running. So we can say:

■ The temperature of water from the faucet is a function of time.

Figure 2 shows a rough graph of the temperature T of the water as a function of the time
t that has elapsed since the faucet was turned on. The graph shows that the initial temper-
ature of the water is close to room temperature. When the water from the hot water tank
reaches the faucet, the water’s temperature T increases quickly. In the next phase, T is con-
stant at the temperature of the water in the tank. When the tank is drained, T decreases to
the temperature of the cold water supply.

174 C H A P T E R  2 | Functions
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2.1 FUNCTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Recognize functions in the real world � Work with function notation
� Evaluate functions � Find net change � Find domains of functions
� Represent functions verbally, algebraically, graphically, and numerically

Temperature is a function of date. Postage is a function of weight.

Date

* F

0

40

60

80

100

5 10 15 20 25 30

„ (ounces)

0 < „≤3

6 < „≤7
7 < „≤8

5 < „≤6

3 < „≤4
4 < „≤5

2011 Postage (dollars)

1.71

2.39
2.56

2.22

1.88
2.05

Height is a function of age.

Height
(in feet)

Age (in years)
0

1
2
3
4
5
6
7

5 10 15 20 25

Daily high temperature
Columbia, MO, May 2010

F I G U R E  1
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▼ Definition of Function
A function is a rule. To talk about a function, we need to give it a name. We will use let-
ters such as f, g, h, . . . to represent functions. For example, we can use the letter f to rep-
resent a rule as follows:

“f ” is the rule “square the number”

When we write f 122, we mean “apply the rule f to the number 2.” Applying the rule gives
f 122 � 22 � 4. Similarly, f 132 � 32 � 9, f 142 � 42 � 16, and in general f 1x 2 � x2.

We usually consider functions for which the sets A and B are sets of real numbers. The
symbol f 1x 2 is read “f of x” or “f at x” and is called the value of ff at x, or the image of
x under ff. The set A is called the domain of the function. The range of f is the set of all
possible values of f 1x 2 as x varies throughout the domain, that is,

The symbol that represents an arbitrary number in the domain of a function f is called
an independent variable. The symbol that represents a number in the range of f is called
a dependent variable. So if we write y � f 1x 2, then x is the independent variable and y
is the dependent variable.

It is helpful to think of a function as a machine (see Figure 3). If x is in the domain of
the function f, then when x enters the machine, it is accepted as an input and the machine
produces an output f 1x 2 according to the rule of the function. Thus we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

Another way to picture a function is by an arrow diagram as in Figure 4. Each arrow
connects an element of A to an element of B. The arrow indicates that f 1x 2 is associated
with x, f 1a2 is associated with a, and so on.

fx
input

Ï
output

range of f � 5f 1x 2 ƒ  x � A6

S E C T I O N  2 . 1 | Functions 175

Unless otherwise noted, all content on this page is © Cengage Learning.

50
60
70
80
90

100
110

T (°F)

0 tF I G U R E  2 Graph of water tempera-
ture T as a function of time t

We have previously used letters to
stand for numbers. Here we do some-
thing quite different: We use letters 
to represent rules.

The key on your calculator is a
good example of a function as a ma-
chine. First you input x into the display.
Then you press the key labeled .
(On most graphing calculators the or-
der of these operations is reversed.) If 
x � 0, then x is not in the domain of
this function; that is, x is not an accept-
able input, and the calculator will indi-
cate an error. If x � 0, then an approxi-
mation to appears in the display,
correct to a certain number of decimal
places. (Thus, the key on your cal-
culator is not quite the same as the ex-
act mathematical function f defined by

.)f1x 2 � 1x

10

1x

10

10

DEFINITION OF A FUNCTION

A function f is a rule that assigns to each element x in a set A exactly one 
element, called f 1x 2, in a set B.

F I G U R E  3 Machine 
diagram of f

Ï

f(a)

B

f

A

x

a

F I G U R E  4 Arrow 
diagram of f
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E X A M P L E  1 | Analyzing a Function

A function f is defined by the formula

(a) Express in words how f acts on the input x to produce the output f 1x 2.
(b) Evaluate f 132, f 1�22, and .

(c) Find the domain and range of f.

(d) Draw a machine diagram for f.

S O L U T I O N

(a) The formula tells us that f first squares the input x and then adds 4 to the result. 
So f is the function

“square, then add 4”

(b) The values of f are found by substituting for x in the formula f 1x 2 � x2 � 4.

Replace x by 3

Replace x by –2

Replace x by ���5

(c) The domain of f consists of all possible inputs for f. Since we can evaluate the for-
mula f 1x 2 � x2 � 4 for every real number x, the domain of f is the set of all real
numbers.

The range of f consists of all possible outputs of f. Because x2 � 0 for all real
numbers x, we have x2 � 4 � 4, so for every output of f we have f 1x 2 � 4. Thus 
the range of f is .

(d) A machine diagram for f is shown in Figure 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 9, 13, 17, AND 49 ■

▼ Evaluating a Function
In the definition of a function the independent variable x plays the role of a placeholder.
For example, the function f 1x 2 � 3x2 � x � 5 can be thought of as

To evaluate f at a number, we substitute the number for the placeholder.

E X A M P L E  2 | Evaluating a Function

Let f 1x 2 � 3x2 � x � 5. Evaluate each function value.

(a) f 1�22 (b) f 102 (c) f 142 (d)

S O L U T I O N To evaluate f at a number, we substitute the number for x in the defini-
tion of f.

(a)

(b)

(c)

(d)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

fA  1 

2 B � 3 # A  1 

2 B
2 �  1 

2 � 5 � �15
4

f 14 2 � 3 # 14 2 2 � 4 � 5 � 47

f 10 2 � 3 # 02 � 0 � 5 � �5

f 1�2 2 � 3 # 1�2 2 2 � 1�2 2 � 5 � 5

f A12B

f 1�� 2 � 3 # �� 
2 � �� � 5

5y 0  y � 46 � 34, q 2

�

f 115 2 � 115 2 2 � 4 � 9

f 1�2 2 � 1�2 2 2 � 4 � 8

f 13 2 � 32 � 4 � 13

f 115 2

f 1x 2 � x2 � 4
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square and
add 4

x
input

x2+4
output

3 13

_2 8square and
add 4

square and
add 4

F I G U R E  5 Machine diagram
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E X A M P L E  3 | A Piecewise Defined Function

A cell phone plan costs $39 a month. The plan includes 400 free minutes and charges
20¢ for each additional minute of usage. The monthly charges are a function of the
number of minutes used, given by

Find C 11002, C 14002, and C 14802.

S O L U T I O N Remember that a function is a rule. Here is how we apply the rule for this
function. First we look at the value of the input x. If 0 � x � 400, then the value of 
C 1x 2 is 39. On the other hand, if x � 400, then the value of C 1x 2 is 39 � 0.20 1x � 4002 .

Since 100 � 400, we have C 11002 � 39.

Since 400 � 400, we have C 14002 � 39.

Since 480 � 400, we have C 14802 � 39 � 0.20 1480 � 4002 � 55.

Thus the plan charges $39 for 100 minutes, $39 for 400 minutes, and $55 for 480 minutes.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

From Examples 2 and 3 we see that the values of a function can change from one in-
put to another. The net change in the value of a function f as the input changes from a to
b (where ) is given by 

The next example illustrates this concept.

E X A M P L E  4 | Finding Net Change

Let . Find the net change in the value of f between the given inputs. 

(a) From 1 to 3 (b) From to 2

S O L U T I O N   

(a) The net change is .

(b) The net change is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

E X A M P L E  5 | Evaluating a Function

If , evaluate the following.

(a) (b)

(c) (d)

S O L U T I O N

(a)

(b)

(c)

 � 2a2 � 4ah � 2h2 � 3a � 3h � 1

 � 21a2 � 2ah � h2 2 � 31a � h 2 � 1

 f 1a � h 2 � 21a � h 2 2 � 31a � h 2 � 1

f 1�a 2 � 21�a 2 2 � 31�a 2 � 1 � 2a2 � 3a � 1

f 1a 2 � 2a2 � 3a � 1

f 1a � h 2 � f 1a 2
h

, h 	 0f 1a � h 2

f 1�a 2f 1a 2
f 1x 2 � 2x2 � 3x � 1

f 12 2 � f 1�2 2 � 4 � 4 � 0

f 13 2 � f 11 2 � 9 � 1 � 8

�2

f 1x 2 � x 2

f 1b 2 � f 1a 2

a � b

C1x 2 � b39 if 0 � x � 400

39 � 0.201x � 400 2 if x � 400
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A piecewise defined function is de-
fined by different formulas on different 
parts of its domain. The function C
of Example 3 is piecewise defined.

Expressions like the one in part (d) of
Example 5 occur frequently in calculus;
they are called difference quotients,
and they represent the average change 
in the value of f between x � a and 
x � a � h.

The values of the function in Example
4 decrease and then increase between

and 2, but the net change from 
to 2 is 0 because and have
the same value. 

f 12 2f 1�2 2
�2�2
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(d) Using the results from parts (c) and (a), we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

E X A M P L E  6 | The Weight of an Astronaut

If an astronaut weighs 130 pounds on the surface of the earth, then her weight when she
is h miles above the earth is given by the function

(a) What is her weight when she is 100 mi above the earth?

(b) Construct a table of values for the function „ that gives her weight at heights from 
0 to 500 mi. What do you conclude from the table?

(c) Find the net change in the astronaut's weight from ground level to a height of 
500 mi.

S O L U T I O N

(a) We want the value of the function „ when h � 100; that is, we must calculate
„ 1100 2:

So at a height of 100 mi she weighs about 124 lb.

(b) The table gives the astronaut’s weight, rounded to the nearest pound, at 100-mile 
increments. The values in the table are calculated as in part (a).

The table indicates that the higher the astronaut travels, the less she weighs.

(c) The net change in the astronaut's weight from to is

The negative sign indicates that the astronaut’s weight decreased by 28 lb.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 77 ■

▼ The Domain of a Function
Recall that the domain of a function is the set of all inputs for the function. The domain
of a function may be stated explicitly. For example, if we write

f 1x 2 � x2  0 � x � 5

„1500 2 � „10 2 � 102 � 130 � �28

h � 500h � 0

„1100 2 � 130 a
3960

3960 � 100
b

2

� 123.67

„1h 2 � 130 a
3960

3960 � h
b

2

 �
4ah � 2h2 � 3h

h
� 4a � 2h � 3

 
f 1a � h 2 � f 1a 2

h
�
12a2 � 4ah � 2h2 � 3a � 3h � 1 2 � 12a2 � 3a � 1 2

h
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The weight of an object on or near the
earth is the gravitational force that the
earth exerts on it. When in orbit around
the earth, an astronaut experiences the
sensation of “weightlessness” because
the centripetal force that keeps her in
orbit is exactly the same as the gravita-
tional pull of the earth.

h „„ 11h22

0 130
100 124
200 118
300 112
400 107
500 102

90169_Ch02_173-256.qxd  11/23/11  2:11 PM  Page 178



then the domain is the set of all real numbers x for which 0 � x � 5. If the function is
given by an algebraic expression and the domain is not stated explicitly, then by conven-
tion the domain of the function is the domain of the algebraic expression—that is, the set
of all real numbers for which the expression is defined as a real number. For example,
consider the functions

The function f is not defined at x � 4, so its domain is . The function g is not
defined for negative x, so its domain is .

E X A M P L E  7 | Finding Domains of Functions

Find the domain of each function.

(a) (b) (c)

S O L U T I O N

(a) A rational expression is not defined when the denominator is 0. Since

we see that f 1x 2 is not defined when x � 0 or x � 1. Thus the domain of f is

The domain may also be written in interval notation as

(b) We can’t take the square root of a negative number, so we must have 9 � x2 � 0. 
Using the methods of Section 1.8, we can solve this inequality to find that 
� 3 � x � 3. Thus the domain of g is

(c) We can’t take the square root of a negative number, and we can’t divide by 0, so
we must have t � 1 � 0, that is, t � � 1. So the domain of h is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 53 AND 57 ■

▼ Four Ways to Represent a Function
To help us understand what a function is, we have used machine and arrow diagrams. We
can describe a specific function in the following four ways:

■ verbally (by a description in words)
■ algebraically (by an explicit formula)
■ visually (by a graph)
■ numerically (by a table of values)

A single function may be represented in all four ways, and it is often useful to go from
one representation to another to gain insight into the function. However, certain functions
are described more naturally by one method than by the others. An example of a verbal
description is the following rule for converting between temperature scales:

“To find the Fahrenheit equivalent of a Celsius temperature,
multiply the Celsius temperature by , then add 32.”9

5

5t  0  t � �16 � 1�1, q 2

5x 0  �3 � x � 36 � 3�3, 3 4

1q, 0 2 � 10, 1 2 � 11, q 2

5x 0  x 	 0, x 	 16

f 1x 2 �
1

x2 � x
�

1

x1x � 1 2

h1t 2 �
t1t � 1

g1x 2 � 29 � x2f 1x 2 �
1

x2 � x

5x 0  x � 06
5x 0  x 	 46

f 1x 2 �
1

x � 4
  g1x 2 � 1x
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Domains of algebraic expressions are
discussed on page 44.
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In Example 8 we see how to describe this verbal rule or function algebraically, graphi-
cally, and numerically. A useful representation of the area of a circle as a function of its
radius is the algebraic formula

The graph produced by a seismograph (see the box below) is a visual representation of the
vertical acceleration function a 1t 2 of the ground during an earthquake. As a final example,
consider the function C 1„ 2, which is described verbally as “the cost of mailing a first-
class letter with weight „.” The most convenient way of describing this function is 
numerically—that is, using a table of values.

We will be using all four representations of functions throughout this book. We sum-
marize them in the following box.

A1r 2 � pr 
2
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FOUR WAYS TO REPRESENT A FUNCTION

Verbal

Using words:

“To convert from Celsius to Fahrenheit, multiply 
the Celsius temperature by , then add 32.”

Relation between Celsius and Fahrenheit
temperature scales

 9 

5

Algebraic

Using a formula:

Area of a circle

A1r 2 � pr 2

Visual

Using a graph:

Vertical acceleration during an earthquake

Numerical

Using a table of values:

„„ (ounces) C(„„) (dollars)

0 � „ � 3 1.71
3 � „ � 4 1.88
4 � „ � 5 2.05
5 � „ � 6 2.22
6 � „ � 7 2.39

o o

Cost of mailing a first-class parcel

(cm/s2)

t (s)

Source: California Department of
Mines and Geology

5

50

�50
10 15 20 25

a

100

30

E X A M P L E  8 Representing a Function Verbally, Algebraically,
Numerically, and Graphically

Let F 1C 2 be the Fahrenheit temperature corresponding to the Celsius temperature C.
(Thus F is the function that converts Celsius inputs to Fahrenheit outputs.) The box above
gives a verbal description of this function. Find ways to represent this function

(a) Algebraically (using a formula)

(b) Numerically (using a table of values)

(c) Visually (using a graph)

S O L U T I O N

(a) The verbal description tells us that we should first multiply the input C by and
then add 32 to the result. So we get

F1C 2 �  9 

5  
C � 32

 9 

5
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(b) We use the algebraic formula for F that we found in part (a) to construct a table of
values:

(c) We use the points tabulated in part (b) to help us draw the graph of this function in
Figure 6.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 71 ■
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C (Celsius) F (Fahrenheit)

�10 14
0 32

10 50
20 68
30 86
40 104

C40

F
100

50

0 20

F I G U R E  6 Celsius and Fahrenheit

C O N C E P T S
1. If , then

(a) the value of f at is .

(b) the value of f at is .
(c) the net change in the value of f between and 

is .

2. For a function f, the set of all possible inputs is called the 

of f, and the set of all possible outputs is called the

of f.

3. (a) Which of the following functions have 5 in their domain?

(b) For the functions from part (a) that do have 5 in their do-
main, find the value of the function at 5.

4. A function is given algebraically by the formula 
f 1x 2 � 1x � 42 2 � 3. Complete these other ways to represent f:

(a) Verbal: “Subtract 4, then and .
(b) Numerical:

h1x 2 � 2x � 10g1x 2 �
x � 5

x
f 1x 2 � x2 � 3x

2 �f 12 �f 1x � 2

x � �1
2 �f 1x � 2

2 �f 1x � �1

f 1x 2 � x 3 � 1

S K I L L S
5–8 ■ Express the rule in function notation. (For example,
the rule “square, then subtract 5” is expressed as the function
f 1x 2� x2 � 5.)

5. Subtract 2, then divide by 5

6. Add 6, then square

7. Multiply by 4, then subtract 1

8. Add 5, take the square root, then multiply by 2

9–12 ■ Express the function (or rule) in words.

9. 10.

11. 12.

13–14 ■ Draw a machine diagram for the function.

13. 14.

15–16 ■ Complete the table.

15. 16. g1x 2 � 0 2x � 3 0f 1x 2 � 21x � 1 2 2

f 1x 2 �
3

x � 2
f 1x 2 � 1x � 1

g1x 2 �
x

3
� 4f 1x 2 �  

x � 4

3

k1x 2 � 1x � 2h1x 2 � x2 � 2

2 . 1  E X E R C I S E S

x ff 11x22

0 19
2
4
6

x ff 11x22

�1
�0
�1
�2
�3

x gg 11x22

�3
�2
�0
�1
�3
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33–36 ■ Use the function to evaluate the indicated expressions
and simplify.

33.

34.

35.

36.

37–40 ■ Find the net change in the value of the function between
the given inputs.

37. ; from 1 to 5

38. ; from to 5

39. ; from to 5

40. ; from to 6

41–48 ■ Find , and the difference quotient 

, where h 	 0.

41. 42.

43. 44.

45. 46.

47. 48.

49–70 ■ Find the domain of the function.

49. 50.

51.

52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71–74 ■ A verbal description of a function is given. Find (a) alge-
braic, (b) numerical, and (c) graphical representations for the function.

71. To evaluate f 1x 2, divide the input by 3 and add to the result.

72. To evaluate g 1x 2, subtract 4 from the input and multiply the 
result by . 3 

4

 2 

3

f 1x 2 �
x24 9 � x2

f 1x 2 �
1x � 1 2 222x � 1

f 1x 2 �
x226 � x

f 1x 2 �
32x � 4

g 1x 2 � 2x2 � 2x � 8g 1x 2 � 24 x2 � 6x

g 1x 2 �
1x

2x2 � x � 1
g 1x 2 �

22 � x

3 � x

G 1x 2 � 2x2 � 9h 1x 2 � 22x � 5

g 1x 2 � 27 � 3xf 1t 2 � 23 t � 1

f 1x 2 � 24 x � 9f 1x 2 � 2x � 5

f 1x 2 �
x4

x2 � x � 6
f 1x 2 �

x � 2

x2 � 1

f 1x 2 �
1

3x � 6
f 1x 2 �

1

x � 3

f 1x 2 � x2 � 1, 0 � x � 5

f 1x 2 � 2x, �1 � x � 5

f 1x 2 � x2 � 1f 1x 2 � 2x

f 1x 2 � x3f 1x 2 � 3 � 5x � 4x2

f 1x 2 �
2x

x � 1
f 1x 2 �

x

x � 1

f 1x 2 �
1

x � 1
f 1x 2 � 5

f 1x 2 � x2 � 1f 1x 2 � 3x � 2

f 1a � h 2 � f 1a 2
h

f 1a 2 , f 1a � h 2

�3h1t 2 � t 2 � 5

�2g1t 2 � 1 � t 2

3f 1x 2 � 4 � 5x

f 1x 2 � 3x � 2

f 1x 2 � 6x � 18; f a
x

3
b , 

f 1x 2
3

f 1x 2 � x � 4; f 1x2 2 , 1f 1x 2 2 2
f 1x 2 � 3x � 1; f 12x 2 , 2f 1x 2

f 1x 2 � x2 � 1; f 1x � 2 2 , f 1x 2 � f 12 2

17–28 ■ Evaluate the function at the indicated values.

17. f 1x 2 � x2 � 6; f 1�32, f 132, f 102,

18. f 1x 2 � x3 � 2x; f 1�22, f 1�12, f 102,

19. ;

20. ; 

21. ;

22. ;

23. ;

24. ; 

25. ;

26. ;

27. ;

28. ;

29–32 ■ Evaluate the piecewise defined function at the indicated
values.

29.

30.

31.

32.

f 1�5 2 , f 10 2 , f 11 2 , f 12 2 , f 15 2

f 1x 2 � •

3x if x � 0

x � 1 if 0 � x � 2

1x � 2 2 2 if x � 2

f 1�4 2 , f A� 3 

2 B, f 1�1 2 , f 10 2 , f 125 2

f 1x 2 � •

x2 � 2x if x � �1

x if �1 � x � 1

�1 if x � 1

f 1�3 2 , f 10 2 , f 12 2 , f 13 2 , f 15 2

f 1x 2 � e
5 if x � 2

2x � 3 if x � 2

f 1�2 2 , f 1�1 2 , f 10 2 , f 11 2 , f 12 2

f 1x 2 � e
x2 if x � 0

x � 1 if x � 0

f 1�2 2 , f 1�1 2 , f 10 2 , f 15 2 , f 1x 2 2 , f a
1
x
b

f 1x 2 �
0 x 0

x

f 1�2 2 , f 10 2 , f A 1
 2 
B, f 12 2 , f 1x � 1 2 , f 1x 2 � 2 2

f 1x 2 � 2 0 x � 1 0

f 10 2 , f 11 2 , f 1�1 2 , f A  3 

2 B, f a
x

2
b , f 1x2 2

f 1x 2 � x3 � 4x2

f 10 2 , f 12 2 , f 112 2 , f 1x � 1 2 , f 1�x 2 , f 1x 3 2

f 1x 2 � 2x2 � 3x � 4

g1�2 2 , g12 2 , g10 2 , g1a 2 , g1a2 � 2 2 , g1a � 1 2

g1t 2 �
t � 2

t � 2

g12 2 , g1�1 2 , gA  1 

2 B, g1a 2 , g1a � 1 2 , g1x 2 � 1 2

g1x 2 �
1 � x

1 � x

h1�1 2 , h12 2 , hA  1 

2 B, h1x � 1 2 , h a
1
x
b

h1t 2 � t �
1

t

f 10 2 , f 13 2 , f 1�3 2 , f 1a 2 , f 1�x 2 , f a
1
a
b

f 1x 2 � x2 � 2x

h11 2 , h1�1 2 , h1a 2 , h1�x 2 , h1a � 2 2 , h12x 2

h1x 2 � 3x � 2

f 11 2 , f 1�2 2 , f A 1
 2 
B, f 1a 2 , f 1�a 2 , f 1a � 1 2

f 1x 2 � 2x � 1

f A 1
 2 
B

f A 1
 2 
B
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(c) Commercial aircraft fly at an altitude of about 7 mi. 
How far can the pilot see?

(d) Find the net change in the value of distance D as 
h changes from 1135 ft to 7 mi.

79. Blood Flow As blood moves through a vein or an artery, its
velocity √ is greatest along the central axis and decreases as the
distance r from the central axis increases (see the figure). The
formula that gives √ as a function of r is called the law of 
laminar flow. For an artery with radius 0.5 cm, the relationship
between √ (in cm/s) and r (in cm) is given by the function

(a) Find √ 10.12 and √ 10.42.
(b) What do your answers to part (a) tell you about the flow 

of blood in this artery?
(c) Make a table of values of √ (r) for r � 0, 0.1, 0.2, 0.3,

0.4, 0.5.
(d) Find the net change in the velocity √ as r changes from

0.1 cm to 0.5 cm.

80. Pupil Size When the brightness x of a light source is in-
creased, the eye reacts by decreasing the radius R of the pupil.
The dependence of R on x is given by the function

where R is measured in millimeters and x is measured in 
appropriate units of brightness.
(a) Find , and .
(b) Make a table of values of .
(c) Find the net change in the radius R as x changes from 

10 to 100.

81. Relativity According to the Theory of Relativity, the length
L of an object is a function of its velocity √ with respect to an
observer. For an object whose length at rest is 10 m, the func-
tion is given by

where c is the speed of light (300,000 km/s).
(a) Find , and .
(b) How does the length of an object change as its velocity 

increases?

L10.9c 2L10.5c 2 , L10.75c 2

L 1√ 2 � 10 B1 �
√ 2

c2

R

R 1x 2
R 1100 2R 11 2 , R 110 2

R1x 2 � B13 � 7x0.4

1 � 4x0.4

0.5 cm r

√1r 2 � 18,50010.25 � r2 2  0 � r � 0.5

73. Let T 1x 2 be the amount of sales tax charged in Lemon County
on a purchase of x dollars. To find the tax, take 8% of the pur-
chase price.

74. Let V 1d 2 be the volume of a sphere of diameter d. To find the
volume, take the cube of the diameter, then multiply by p and
divide by 6.

A P P L I C A T I O N S
75. Production Cost The cost C in dollars of producing 

x yards of a certain fabric is given by the function

(a) Find C 1102 and C 11002.
(b) What do your answers in part (a) represent?
(c) Find C 102. (This number represents the fixed costs.)

76. Area of a Sphere The surface area S of a sphere is a func-
tion of its radius r given by

(a) Find S 122 and S 132.
(b) What do your answers in part (a) represent?

77. Torricelli’s Law A tank holds 50 gallons of water, which
drains from a leak at the bottom, causing the tank to empty in
20 minutes. The tank drains faster when it is nearly full because
the pressure on the leak is greater. Torricelli’s Law gives the
volume of water remaining in the tank after t minutes as

(a) Find V(0) and V(20).
(b) What do your answers to part (a) represent?
(c) Make a table of values of for t � 0, 5, 10, 15, 20.
(d) Find the net change in the volume V as t changes from 

0 min to 20 min.

78. How Far Can You See? Because of the curvature of the
earth, the maximum distance D that you can see from the top
of a tall building or from an airplane at height h is given by 
the function

where r � 3960 mi is the radius of the earth and D and h are
measured in miles.
(a) Find D(0.1) and D(0.2).
(b) How far can you see from the observation deck of

Toronto’s CN Tower, 1135 ft above the ground?

D1h 2 � 22rh � h2

V1t 2

V1t 2 � 50 a1 �
t

20
b

2

  0 � t � 20

S1r 2 � 4pr2

C 1x 2 � 1500 � 3x � 0.02x2 � 0.0001x3
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The most important way to visualize a function is through its graph. In this section we in-
vestigate in more detail the concept of graphing functions.

the grass as a function of time over the course of a four-week
period beginning on a Sunday.

87. Temperature Change You place a frozen pie in an oven
and bake it for an hour. Then you take the pie out and let it
cool before eating it. Sketch a rough graph of the temperature
of the pie as a function of time.

88. Daily Temperature Change Temperature readings T (in °F)
were recorded every 2 hours from midnight to noon in Atlanta,
Georgia, on March 18, 1996. The time t was measured in hours
from midnight. Sketch a rough graph of T as a function of t.

89. Population Growth The population P (in thousands) of 
San Jose, California, from 1988 to 2000 is shown in the table.
(Midyear estimates are given.) Draw a rough graph of P as a
function of time t.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
90. Examples of Functions At the beginning of this section 

we discussed three examples of everyday, ordinary functions:
Height is a function of age, temperature is a function of date,
and postage cost is a function of weight. Give three other ex-
amples of functions from everyday life.

91. Four Ways to Represent a Function In the box on
page 180 we represented four different functions verbally, al-
gebraically, visually, and numerically. Think of a function that
can be represented in all four ways, and write the four repre-
sentations.

82. Income Tax In a certain country, income tax T is assessed 
according to the following function of income x:

(a) Find , and .
(b) What do your answers in part (a) represent?

83. Internet Purchases An Internet bookstore charges $15
shipping for orders under $100 but provides free shipping for
orders of $100 or more. The cost C of an order is a function of
the total price x of the books purchased, given by

(a) Find , and .
(b) What do your answers in part (a) represent?

84. Cost of a Hotel Stay A hotel chain charges $75 each night
for the first two nights and $50 for each additional night’s stay.
The total cost T is a function of the number of nights x that a
guest stays.
(a) Complete the expressions in the following piecewise 

defined function.

(b) Find T(2), T(3), and T(5).
(c) What do your answers in part (b) represent?

85. Speeding Tickets In a certain state the maximum speed
permitted on freeways is 65 mi/h, and the minimum is 40. The
fine F for violating these limits is $15 for every mile above the
maximum or below the minimum.
(a) Complete the expressions in the following piecewise defined

function, where x is the speed at which you are driving.

(b) Find F(30), F(50), and F(75).
(c) What do your answers in part (b) represent?

86. Height of Grass A home owner mows the lawn every
Wednesday afternoon. Sketch a rough graph of the height of

F1x 2 � •

���� if 0 � x � 40

���� if 40 � x � 65

���� if x � 65

T 1x 2 � e
���� if 0 � x � 2

���� if x � 2

C1105 2C175 2 , C190 2 , C1100 2

C 1x 2 � e
x � 15 if x � 100

x if x � 100

T125,000 2T15,000 2 , T112,000 2

T1x 2 � •

0 if 0 � x � 10,000

0.08x if 10,000 � x � 20,000

1600 � 0.15x if 20,000 � x
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t 0 2 4 6 8 10 12

T 58 57 53 50 51 57 61

t 1988 1990 1992 1994 1996 1998 2000

P 733 782 800 817 838 861 895

2.2 GRAPHS OF FUNCTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Graph functions by plotting points � Graph functions with a graphing 
calculator � Graph piecewise defined functions � Use the Vertical Line Test
� Determine whether an equation defines a function
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▼ Graphing Functions by Plotting Points
To graph a function f, we plot the points in a coordinate plane. In other words,
we plot the points whose x-coordinate is an input and whose y-coordinate is the cor-
responding output of the function.

The graph of a function f gives a picture of the behavior or “life history” of the func-
tion. We can read the value of f 1x 2 from the graph as being the height of the graph above
the point x (see Figure 1).

A function f of the form f 1x 2 � mx � b is called a linear function because its graph
is the graph of the equation y � mx � b, which represents a line with slope m and 
y-intercept b. A special case of a linear function occurs when the slope is m � 0. The func-
tion f 1x 2� b, where b is a given number, is called a constant function because all its val-
ues are the same number, namely, b. Its graph is the horizontal line y � b. Figure 2 shows
the graphs of the constant function f 1x 2 � 3 and the linear function f 1x 2 � 2x � 1.

E X A M P L E  1 | Graphing Functions by Plotting Points

Sketch graphs of the following functions.

(a) f 1x 2 � x2 (b) g 1x 2 � x3 (c)

S O L U T I O N We first make a table of values. Then we plot the points given by the
table and join them by a smooth curve to obtain the graph. The graphs are sketched in
Figure 3 on the next page.

h1x 2 � 1x

1x, y 2
1x, f 1x 2 2

S E C T I O N  2 . 2 | Graphs of Functions 185
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THE GRAPH OF A FUNCTION

If f is a function with domain A, then the graph of f is the set of ordered pairs

plotted in a coordinate plane. In other words, the graph of f is the set of all points
such that ; that is, the graph of f is the graph of the equation

.y � f 1x 2
y � f 1x 21x, y 2

5 1x, f 1x 2 2 0  x � A6

y

x

f(1)

0 2

f(2)
Ï

1 x

Óx, ÏÔ

F I G U R E  1 The height of the graph
above the point x is the value of .f 1x 2

The constant function Ï=3 The linear function Ï=2x+1

y

x0 1

1

y=2x+1

y

x0 2 4 6_2

2

4 y=3

F I G U R E  2

x ff 11x22 � x2

0 0


1 1

2 4

3 9

 1 

4
 1 

2

x gg11x22 � x3

0 0

1 1
2 8

�1 �1
�2 �8

� 
1
 8 

� 
 1 

2

1
 8 

 1 

2

x h11x22 �

0 0
1 1
2
3
4 2
5 15

13
12

1x
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PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 11, 17, AND 21 ■

▼ Graphing Functions with a Graphing Calculator
A convenient way to graph a function is to use a graphing calculator. To graph the func-
tion , we use a calculator to graph the equation .

E X A M P L E  2 | Graphing a Function with a Graphing Calculator

Use a graphing calculator to graph the function f 1x 2 � x3 � 8x2 in an appropriate view-
ing rectangle.

S O L U T I O N To graph the function f 1x 2 � x3 � 8x2, we must graph the equation
y � x3 � 8x2. On the TI-83 graphing calculator the default viewing rectangle gives the
graph in Figure 4(a). But this graph appears to spill over the top and bottom of the
screen. We need to expand the vertical axis to get a better representation of the graph.
The viewing rectangle 3�4, 104 by 3�100, 1004 gives a more complete picture of the
graph, as shown in Figure 4(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

E X A M P L E  3 | A Family of Power Functions

(a) Graph the functions f 1x 2 � xn for n � 2, 4, and 6 in the viewing rectangle 3�2, 24
by 3�1, 34.

(b) Graph the functions f 1x 2 � xn for n � 1, 3, and 5 in the viewing rectangle 3�2, 24
by 3�2, 24.

(c) What conclusions can you draw from these graphs?

y � f1x 2f
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(a) Ï=≈

y

x0 3

3

(1, 1)

(2, 4)

(_1, 1)

(_2, 4)

!_   ,    @1
2

1
4 !   ,    @1

2
1
4

y=≈

(b) ˝=x£

y

x1

(1, 1 (1, 1)

(2, )

)

(2, 8)

(_1, _1)

(_2, _8)

2

y=x£

(c) h(x)= x

y

x1

1

0

y= x

2 (4, 2)

F I G U R E  3

10

_10

100

_100

_10 10

(a)

_4 10

(b)
F I G U R E  4 Graphing the function 
f1x2 � x3 � 8x2

See Appendix B, Graphing with a
Graphing Calculator, for general
guidelines on using a graphing calcula-
tor. See Appendix C, Using the 
TI-83/84 Graphing Calculator, for 
specific instructions.
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S O L U T I O N To graph the function f 1x 2 � xn, we graph the equation y � xn. The
graphs for parts (a) and (b) are shown in Figure 5.

(c) We see that the general shape of the graph of depends on whether n is
even or odd.

If n is even, the graph of is similar to the parabola y � x2.

If n is odd, the graph of is similar to that of y � x3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 71 ■

Notice from Figure 5 that as n increases, the graph of y � xn becomes flatter near 0
and steeper when x � 1. When 0 � x � 1, the lower powers of x are the “bigger” func-
tions. But when x � 1, the higher powers of x are the dominant functions.

▼ Graphing Piecewise Defined Functions
A piecewise defined function is defined by different formulas on different parts of its do-
main. As you might expect, the graph of such a function consists of separate pieces.

E X A M P L E  4 | Graph of a Piecewise Defined Function

Sketch the graph of the function

S O L U T I O N If x � 1, then f 1x 2� x2, so the part of the graph to the left of x � 1 coincides
with the graph of y � x2, which we sketched in Figure 3. If x � 1, then f 1x 2� 2x � 1,
so the part of the graph to the right of x � 1 coincides with the line y � 2x � 1, which we
graphed in Figure 2. This enables us to sketch the graph in Figure 6.

The solid dot at 11, 12 indicates that this point is included in the graph; the open dot 
at 11, 32 indicates that this point is excluded from the graph.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

f 1x 2 � e
x2 if x � 1

2x � 1 if x � 1

f 1x 2 � xn

f 1x 2 � xn

f 1x 2 � xn
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2

�2

�2 2

x∞ x£ x3

�1

�2 2

x§ x¢ x™

(a) Even powers of x (b) Odd powers of x
F I G U R E  5 A family of power 
functions f1x2 � xn

F I G U R E  6

f 1x 2 � e
x2 if x � 1

2x � 1 if x � 1

On many graphing calculators the
graph in Figure 6 can be produced by
using the logical functions in the cal-
culator. For example, on the TI-83 the
following equation gives the required
graph:

(To avoid the extraneous vertical line
between the two parts of the graph, put
the calculator in Dot mode.) 

Y1�1X�1 2X2�1X�1 2 12X�1 2 y

x0 1

1
f (x) � ≈
if x � 1

f (x) � 2x � 1
if x � 1

5

�1

�2 2

90169_Ch02_173-256.qxd  11/23/11  2:11 PM  Page 187



E X A M P L E  5 | Graph of the Absolute Value Function

Sketch a graph of the absolute value function .

S O L U T I O N Recall that

Using the same method as in Example 4, we note that the graph of f coincides with the
line y � x to the right of the y-axis and coincides with the line y � �x to the left of 
the y-axis (see Figure 7).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

The greatest integer function is defined by

For example, and 
.

E X A M P L E  6 | Graph of the Greatest Integer Function

Sketch a graph of .

S O L U T I O N The table shows the values of f for some values of x. Note that is
constant between consecutive integers, so the graph between integers is a horizontal
line segment, as shown in Figure 8.

The greatest integer function is an example of a step function. The next example gives
a real-world example of a step function.

E X A M P L E  7 | The Cost Function for Long-Distance Phone Calls

The cost of a long-distance daytime phone call from Toronto, Canada, to Mumbai, India,
is 69 cents for the first minute and 58 cents for each additional minute (or part of a
minute). Draw the graph of the cost C (in dollars) of the phone call as a function of time
t (in minutes).

f 1x 2

f 1x 2 � “x‘

“�0.5‘ � �1
“�3.5‘ � �4,“0.002‘ � 0,“1.999‘ � 1,“2.3‘ � 2,“2‘ � 2,

“x‘ � greatest integer less than or equal to x

0 x 0 � e
x if x � 0

�x if x � 0

f 1x 2 � 0 x 0

188 C H A P T E R  2 | Functions

Unless otherwise noted, all content on this page is © Cengage Learning.

F I G U R E  7 Graph of f 1x 2 � 0 x 0

y

x0 1

1

y

x0 1

1

F I G U R E  8 The greatest integer 
function, ■y � “x‘

x

�2 � x � �1 �2�
�1 � x � 0� �1�

0 � x � 1 �0�
1 � x � 2 �1�
2 � x � 3 �2�

oo

oo

“x‘
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S O L U T I O N Let C 1t 2 be the cost for t minutes. Since t � 0, the domain of the func-
tion is 10, q2. From the given information we have

and so on. The graph is shown in Figure 9.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 83 ■

A function is called continuous if its graph has no “breaks” or “holes.” The functions in
Examples 1, 2, 3, and 5 are continuous; the functions in Examples 4, 6, and 7 are not con-
tinuous.

▼ The Vertical Line Test
The graph of a function is a curve in the xy-plane. But the question arises: Which curves
in the xy-plane are graphs of functions? This is answered by the following test.

We can see from Figure 10 why the Vertical Line Test is true. If each vertical line 
x � a intersects a curve only once at 1a, b 2, then exactly one functional value is defined by
f 1a 2� b. But if a line x � a intersects the curve twice, at 1a, b 2 and at 1a, c 2, then the curve
cannot represent a function because a function cannot assign two different values to a.

E X A M P L E  8 | Using the Vertical Line Test

Using the Vertical Line Test, we see that the curves in parts (b) and (c) of Figure 11 rep-
resent functions, whereas those in parts (a) and (d) do not.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

 C1t 2 � 0.69 � 310.58 2 � 2.43  if 3 � t � 4

 C1t 2 � 0.69 � 210.58 2 � 1.85  if 2 � t � 3

 C1t 2 � 0.69 � 0.58 � 1.27   if 1 � t � 2

 C1t 2 � 0.69   if 0 � t � 1
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THE VERTIC AL LINE TEST

A curve in the coordinate plane is the graph of a function if and only if no verti-
cal line intersects the curve more than once.

C

t0 1

1

F I G U R E  9 Cost of a long-distance
call

y

x0 a

x=a

(a, b)

y

x0 a

x=a

(a, b)

(a, c)

Graph of a function Not a graph of a functionF I G U R E  1 0 Vertical Line Test

(a) (b) (c) (d)

y

x0

y

x0

y

x0

y

x0

F I G U R E  1 1
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▼ Equations That Define Functions
Any equation in the variables x and y defines a relationship between these variables. For
example, the equation

y � x2 � 0

defines a relationship between y and x. Does this equation define y as a function of x? To
find out, we solve for y and get

y � x2 Equation form

We see that the equation defines a rule, or function, that gives one value of y for each value
of x. We can express this rule in function notation as

f 1x 2 � x2 Function form

But not every equation defines y as a function of x, as the following example shows.

E X A M P L E  9 | Equations That Define Functions

Does the equation define y as a function of x?

(a) y � x2 � 2 (b) x2 � y2 � 4

S O L U T I O N

(a) Solving for y in terms of x gives

Add x2

Add x2

The last equation is a rule that gives one value of y for each value of x, so it defines
y as a function of x. We can write the function as f 1x 2 � x2 � 2.

(b) We try to solve for y in terms of x:

Subtract x2

Take square roots

The last equation gives two values of y for a given value of x. Thus the equation
does not define y as a function of x.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 59 AND 63 ■

The graphs of the equations in Example 9 are shown in Figure 12. The Vertical Line
Test shows graphically that the equation in Example 9(a) defines a function but the equa-
tion in Example 9(b) does not.

 y � 
24 � x2

 y2 � 4 � x2

 x2 � y2 � 4

 y � x2 � 2

 y � x2 � 2
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D O N A L D  K N U T H was born in
Milwaukee in 1938 and is Professor
Emeritus of Computer Science at
Stanford University. When Knuth was a
high school student, he became fasci-
nated with graphs of functions and la-
boriously drew many hundreds of
them because he wanted to see the be-
havior of a great variety of functions.
(Today, of course, it is far easier to use
computers and graphing calculators to
do this.) While still a graduate student
at Caltech, he started writing a monu-
mental series of books entitled The Art
of Computer Programming.

Knuth is famous for his invention of
TEX, a system of computer-assisted
typesetting. This system was used in
the preparation of the manuscript for
this textbook.

Knuth has received numerous hon-
ors, among them election as an associ-
ate of the French Academy of Sciences,
and as a Fellow of the Royal Society.
President Carter awarded him the
National Medal of Science in 1979.
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The following box shows the graphs of some functions that you will see frequently in
this book.
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SOME FUNCTIONS AND THEIR GRAPHS

x

y

Ï=|x|

x

y

Ï=“x‘

1

1

x

y

x

y

Ï= 1
x Ï= 1

≈

x

y

x

y

Ï= 1
x¢Ï= 1

x£

Ï= x Ï= £ x Ï=¢ x Ï= ∞ x

x

y

x

y

x

y

x

y

Ï=≈ Ï=x3 Ï=x4 Ï=x5

x

y

x

y

x

y

x

y

Ï=b Ï=mx+b

b

x

y

b

x

yLinear functions
f 1x 2 � mx � b

Power functions
f 1x 2 � xn

Root functions
f 1x 2 � 1n x

Reciprocal functions

f 1x 2 �
1

xn

Absolute value function
f 1x 2 � 0  x 0

Greatest integer function
f 1x 2 � “x‘

C O N C E P T S
1. To graph the function f, we plot the points (x, ) in 

a coordinate plane. To graph f 1x2 � x2 � 2, we plot the 

points (x, ). So the point (3, ) is on the 

graph of f. The height of the graph of f above the x-axis when 

2 . 2  E X E R C I S E S
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27. 28.

29. 30.

31–34 ■ Graph the function in each of the given viewing rectan-
gles, and select the one that produces the most appropriate graph
of the function.

31. f 1x2 � 8x � x2

(a) 3�5, 5 4 by 3�5, 5 4
(b) 3�10, 10 4 by 3�10, 10 4
(c) 3�2, 10 4 by 3�5, 20 4
(d) 3�10, 10 4 by 3�100, 100 4

32.
(a) 3�2, 2 4 by 3�5, 5 4
(b) 3�10, 10 4 by 3�10, 10 4
(c) 3�7, 7 4 by 3�25, 20 4
(d) 3�10, 10 4 by 3�100, 100 4

33.
(a) 3�2, 24 by 3�2, 24
(b) 3�3, 34 by 3�10, 104
(c) 3�3, 34 by 3�10, 54
(d) 3�10, 104 by 3�10, 104

34.
(a) 3�1, 1 4 by 3�1, 1 4
(b) 3�2, 2 4 by 3�2, 2 4
(c) 3�5, 5 4 by 3�5, 5 4
(d) 3�10, 10 4 by 3�10, 10 4

35–48 ■ Sketch the graph of the piecewise defined function.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44. f 1x 2 � e
1 � x2 if x � 2

x if x � 2

f 1x 2 � e
2 if x � �1

x2 if x � �1

f 1x 2 � •

�1 if x � �1

x if �1 � x � 1

1 if x � 1

f 1x 2 � •

�1 if x � �1

1 if �1 � x � 1

�1 if x � 1

f 1x 2 � e
2x � 3 if x � �1

3 � x if x � �1

f 1x 2 � e
x if x � 0

x � 1 if x � 0

f 1x 2 � e
1 � x if x � �2

5 if x � �2

f 1x 2 � e
3 if x � 2

x � 1 if x � 2

f 1x 2 � e
1 if x � 1

x � 1 if x � 1

f 1x 2 � e
0 if x � 2

1 if x � 2

k 1x 2 � 1
 32  

x4 � x2 � 2

h1x 2 � x3 � 5x � 4

g1x 2 � x2 � x � 20

f 1x 2 �
x

0 x 0
f 1x 2 � 0 2x � 2 0

G1x 2 � 0 x 0 � xG1x 2 � 0 x 0 � xx � 3 is . Complete the table, and sketch a graph 
of f.

2. If f 122 � 3, then the point (2, ) is on the graph of f.

3. If the point (2, 3) is on the graph of f, then f 122 � .

4. Match the function with its graph.
(a) f 1x2 � x2 (b) f 1x2 � x3

(c) (d)

S K I L L S
5–30 ■ Sketch the graph of the function by first making a table of
values.

5. 6.

7. 8.

9. f 1x2 � �x � 3, �3 � x � 3

10.

11. f 1x2 � �x2 12. f 1x2 � x2 � 4

13. h 1x2 � 16 � x2 14. g 1x2 � 1x � 322

15. 16.

17. g 1x2 � x3 � 8 18. g 1x2 � 1x � 223

19. g 1x2 � x2 � 2x 20. h 1x2 � 4x2 � x4

21. 22.

23. 24.

25. 26. H1x 2 � 0 x � 1 0H1x 2 � 0 2x 0

g 1x 2 � 1�xg 1x 2 � �1x

f 1x 2 � 1x � 4f 1x 2 � 1 � 1x

k1x 2 � �x 2 � 2x � 3W1x 2 � x 2 � 2x � 1

f 1x 2 �
x � 3

2
, 0 � x � 5

f 1x 2 � 4 � 2xf 1x 2 � x � 2

f 1x 2 � �2f 1x 2 � 3

I y 

x 0 1 

1 

II y 

x 0 1 

1 

III y 

x 0 1 

1 

IV y 

x 0 1 

1 

f 1x 2 � 0 x 0f 1x 2 � 1x
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54. (a) (b)

(c) (d)

55–58 ■ Use the Vertical Line Test to determine whether the
curve is the graph of a function of x. If it is, state the domain and
range of the function.

55. 56.

57. 58.

59–70 ■ Determine whether the equation defines y as a function
of x. (See Example 9.)

59. x2 � 2y � 4 60. 3x � 7y � 21

61. x � y2 62. x2 � 1y � 122 � 4

63. x � y2 � 9 64. x2 � y � 9

65. x2y � y � 1 66.

67. 68.

69. x � y3 70. x � y4

71–76 ■ A family of functions is given. In parts (a) and (b) graph all
the given members of the family in the viewing rectangle indicated.
In part (c) state the conclusions that you can make from your graphs.

71. f 1x2 � x2 � c
(a) c � 0, 2, 4, 6; 3�5, 5 4 by 3�10, 10 4
(b) c � 0, �2, �4, �6; 3�5, 5 4 by 3�10, 10 4
(c) How does the value of c affect the graph?

72.
(a) c � 0, 1, 2, 3; 3�5, 5 4 by 3�10, 10 4
(b) c � 0, �1, �2, �3; 3�5, 5] by 3�10, 10]
(c) How does the value of c affect the graph?

f 1x 2 � 1x � c 2 2

2x � 0 y 0 � 02 0 x 0 � y � 0

1x � y � 12

y

x0 2

2

y

x0 3

1

y

x0 3

2

y

x0 2

2

y

x0

y

x0

y

x0

y

x0

45.

46.

47.

48.

49–50 ■ Use a graphing device to draw the graph of the piecewise
defined function. (See the margin note on page 187.)

49.

50.

51–52 ■ The graph of a piecewise defined function is given. Find
a formula for the function in the indicated form.

51.

52.

53–54 ■ Use the Vertical Line Test to determine whether the
curve is the graph of a function of x.

53. (a) (b)

(c) (d) y

x0

y

x0

y

x0

y

x0

f 1x 2 � •

���� if x � �1

���� if �1 � x � 2

���� if x � 2

f 1x 2 � •

���� if x � �2

���� if �2 � x � 2

���� if x � 2

f 1x 2 � e
2x � x2 if x � 1

1x � 1 2 3 if x � 1

f 1x 2 � e
x � 2 if x � �1

x2 if x � �1

f 1x 2 � •

�x if x � 0

9 � x2 if 0 � x � 3

x � 3 if x � 3

f 1x 2 � •

4 if x � �2

x2 if �2 � x � 2

�x � 6 if x � 2

f 1x 2 � e
x2 if 0 x 0 � 1

1 if 0 x 0 � 1

f 1x 2 � e
0 if 0 x 0 � 2

3 if 0 x 0 � 2
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83. Utility Rates Westside Energy charges its electric cus-
tomers a base rate of $6.00 per month, plus 10¢ per kilowatt-
hour (kWh) for the first 300 kWh used and 6¢ per kWh for all
usage over 300 kWh. Suppose a customer uses x kWh of elec-
tricity in one month.
(a) Express the monthly cost E as a piecewise-defined 

function of x.
(b) Graph the function E for 0 � x � 600.

84. Taxicab Function A taxi company charges $2.00 for the first
mile (or part of a mile) and 20 cents for each succeeding tenth
of a mile (or part). Express the cost C (in dollars) of a ride as a
piecewise-defined function of the distance x traveled (in miles)
for 0 � x � 2, and sketch the graph of this function.

85. Postage Rates The 2011 domestic postage rate for first-
class letters weighing 3.5 oz or less is 44 cents for the first
ounce (or less), plus 20 cents for each additional ounce (or
part of an ounce). Express the postage P as a piecewise-
defined function of the weight x of a letter, with 0 � x � 3.5,
and sketch the graph of this function.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
86. When Does a Graph Represent a Function? For every

integer n, the graph of the equation y � xn is the graph of a
function, namely f(x) � xn. Explain why the graph of 
x � y2 is not the graph of a function of x. Is the graph of 
x � y3 the graph of a function of x? If so, of what function of
x is it the graph? Determine for what integers n the graph of 
x � yn is the graph of a function of x.

87. Step Functions In Example 7 and Exercises 84 and 85 we
are given functions whose graphs consist of horizontal line
segments. Such functions are often called step functions, be-
cause their graphs look like stairs. Give some other examples
of step functions that arise in everyday life.

88. Stretched Step Functions Sketch graphs of the functions
, and on separate graphs.

How are the graphs related? If n is a positive integer, what
does the graph of look like?

89. Graph of the Absolute Value of a Function
(a) Draw the graphs of the functions

and

How are the graphs of f and g related?
(b) Draw the graphs of the functions and

. How are the graphs of f and g
related?

(c) In general, if , how are the graphs of f and
g related? Draw graphs to illustrate your answer.

g1x 2 � 0 f 1x 2 0

g1x 2 � 0 x4 � 6x2 0
f 1x 2 � x4 � 6x2

g1x 2 � 0 x2 � x � 6 0

f 1x 2 � x2 � x � 6

k1x 2 � “nx‘

h1x 2 � “3x‘f 1x 2 � “x‘, g1x 2 � “2x‘

73.
(a) c � 0, 2, 4, 6; 3�10, 10] by 3�10, 10]
(b) c � 0, �2, �4, �6; 3�10, 10] by 3�10, 10]
(c) How does the value of c affect the graph?

74. f 1x2 � cx2

(a) c �1, , 2, 4; [�5, 5] by [�10, 10]
(b) c �1, �1, � , �2; [�5, 5] by [�10, 10]
(c) How does the value of c affect the graph?

75. f 1x2 � xc

(a) ; [�1, 4] by [�1, 3]
(b) ; [�3, 3] by [�2, 2]
(c) How does the value of c affect the graph?

76.

(a) n � 1, 3; 3�3, 3 4 by 3�3, 34
(b) n � 2, 4; 3�3, 34 by 3�3, 34
(c) How does the value of n affect the graph?

77–80 ■ Find a function whose graph is the given curve.

77. The line segment joining the points (�2, 1) and (4, �6)

78. The line segment joining the points (�3, �2) and (6, 3)

79. The top half of the circle x2 � y2 � 9

80. The bottom half of the circle x2 � y2 � 9

A P P L I C A T I O N S
81. Weather Balloon As a weather balloon is inflated, the 

thickness T of its rubber skin is related to the radius of the bal-
loon by

where T and r are measured in centimeters. Graph the function
T for values of r between 10 and 100.

82. Power from a Wind Turbine The power produced by a 
wind turbine depends on the speed of the wind. If a windmill
has blades 3 meters long, then the power P produced by the
turbine is modeled by

where P is measured in watts (W) and √ is measured in meters
per second (m/s). Graph the function P for wind speeds be-
tween 1 m/s and 10 m/s.

P1√ 2 � 14.1√ 3

T1r 2 �
0.5

r 2

f 1x 2 �
1

xn

c � 1, 13, 
1
5

c �  1 

2 ,  1 

4 ,  1 

6

 1 

2

 1 

2

f 1x 2 � 1x � c 2 3
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Relations and Functions

In this project we explore the concept of function by 
comparing it with the concept of a relation. You can 
find the project at the book companion website:
www.stewartmath.com

❍ DISCOVERY
PROJECT
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Many properties of a function are more easily obtained from a graph than from the rule
that describes the function. We will see in this section how a graph tells us whether the
values of a function are increasing or decreasing and also where the maximum and mini-
mum values of a function are.

▼ Values of a Function; Domain and Range
A complete graph of a function contains all the information about a function, because the
graph tells us which input values correspond to which output values. To analyze the graph
of a function, we must keep in mind that the height of the graph is the value of the func-
tion. So we can read off the values of a function from its graph.

E X A M P L E  1 | Finding the Values of a Function from a Graph

The function T graphed in Figure 1 gives the temperature between noon and 6:00 P.M. at
a certain weather station.

(a) Find T 112, T 132, and T 152.

(b) Which is larger, T 12 2 or T 14 2?

(c) Find the value(s) of x for which T 1x 2 � 25.

(d) Find the value(s) of x for which T 1x 2 � 25.

(e) Find the net change in temperature from 1 P.M. to 3 P.M.

S O L U T I O N

(a) T(1) is the temperature at 1:00 P.M. It is represented by the height of the graph
above the x-axis at x � 1. Thus, . Similarly, T 132 � 30 and T 152 � 20.

(b) Since the graph is higher at x � 2 than at x � 4, it follows that T 12 2 is larger than T 14 2.

(c) The height of the graph is 25 when x is 1 and when x is 4. In other words, the tem-
perature is 25 at 1:00 P.M. and 4:00 P.M.

(d) The graph is higher than 25 for x between 1 and 4. In other words, the temperature
was 25 or greater between 1:00 P.M. and 4:00 P.M.

(e) The net change in temperature is

So there was a net increase of 5°F from 1 P.M. to 3 P.M.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 5 AND 47 ■

The graph of a function helps us to picture the domain and range of the function on the 
x-axis and y-axis, as shown in Figure 2.

T13 2 � T11 2 � 30 � 25 � 5

T11 2 � 25
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2.3 GETTING INFORMATION FROM THE GRAPH OF A FUNCTION

LEARNING OBJECTIVES After completing this section, you will be able to:

Find function values from a graph � Find domain and range from a graph
� Find where a function is increasing or decreasing from a graph
� Find local maxima and minima from a graph

x

T (*F) 

0

10
20
30
40

1 2 3 4 5 6

F I G U R E  1 Temperature function

y

x0 Domain

Range y=Ï

F I G U R E  2 Domain
and range of f

Net change is defined on page 177.
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E X A M P L E  2 | Finding the Domain and Range from a Graph

(a) Use a graphing calculator to draw the graph of .

(b) Find the domain and range of f.

S O L U T I O N

(a) The graph is shown in Figure 3.

(b) From the graph in Figure 3 we see that the domain is 3�2, 2 4 and the range is 30, 2 4.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

▼ Increasing and Decreasing Functions
It is very useful to know where the graph of a function rises and where it falls. The graph
shown in Figure 4 rises, falls, then rises again as we move from left to right: It rises from
A to B, falls from B to C, and rises again from C to D. The function f is said to be in-
creasing when its graph rises and decreasing when its graph falls.

We have the following definition.

f 1x 2 � 24 � x2
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F I G U R E  3 Graph of f 1x 2 � 24 � x2

2

Domain=[_2, 2]

0_2

Range=[0, 2]

y

x0 a

y=Ï

b c d

A

B

C

D
f is increasing

f is increasing

f is decreasing

F I G U R E  4 f is increasing on 3a, b4
and 3c, d 4. f is decreasing on 3b, c4.

DEFINITION OF INCREASING AND DECREASING FUNCTIONS

f is increasing on an interval I if whenever in I.

f is decreasing on an interval I if whenever in I.x1 � x2f 1x1 2 � f 1x2 2

x1 � x2f 1x1 2 � f 1x2 2

f(
x⁄)

x2)
x2)

f

f(x⁄)
f(

f

y

x0 x⁄ x2

f(

y

x0 x⁄ x2

f is increasing f is decreasing

See Appendix B, Graphing with a
Graphing Calculator, for guidelines 
on using a graphing calculator. See 
Appendix C, Using the TI-83/84 
Graphing Calculator, for specific
graphing instructions.

90169_Ch02_173-256.qxd  11/23/11  2:12 PM  Page 196



E X A M P L E  3 Intervals on Which a Function Increases 
and Decreases

The graph in Figure 5 gives the weight W of a person at age x. Determine the intervals
on which the function W is increasing and on which it is decreasing.

S O L U T I O N The function W is increasing on 30, 254 and 335, 404. It is decreasing on 
340, 504. The function W is constant (neither increasing nor decreasing) on 325, 304 and 
350, 804. This means that the person gained weight until age 25, then gained weight
again between ages 35 and 40. He lost weight between ages 40 and 50.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 49 ■

E X A M P L E  4 Finding Intervals Where a Function 
Increases and Decreases

(a) Sketch a graph of the function .

(b) Find the domain and range of f.

(c) Find the intervals on which f is increasing and on which f is decreasing.

S O L U T I O N

(a) We use a graphing calculator to sketch the graph in Figure 6.

(b) The domain of f is because f is defined for all real numbers. Using the 
feature on the calculator, we find that the highest value is f 12 2 � 32. So the range 
of f is 

(c) From the graph we see that f is increasing on the intervals and 30, 2 4
and is decreasing on 3�1, 04 and 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27 ■

32, q 2 .
1�q, �1 4

1�q, 32 4 .

TRACE�

f 1x 2 � 12x2 � 4x3 � 3x4
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x (yr) 
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F I G U R E  5 Weight as a function of age

40 

�40

�2.5 3.5 

F I G U R E  6 Graph of
f 1x 2 � 12x 2 � 4x 3 � 3x 4
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E X A M P L E  5 Finding Intervals Where a Function 
Increases and Decreases

(a) Sketch the graph of the function 

(b) Find the domain and range of the function.

(c) Find the intervals on which f is increasing and on which f is decreasing.

S O L U T I O N

(a) We use a graphing calculator to sketch the graph in Figure 7.

(b) From the graph we observe that the domain of f is and the range is 

(c) From the graph we see that f is decreasing on and increasing on .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

▼ Local Maximum and Minimum Values of a Function
Finding the largest or smallest values of a function is important in many applications. For
example, if a function represents revenue or profit, then we are interested in its maximum
value. For a function that represents cost, we would want to find its minimum value. (See
Focus on Modeling: Modeling with Functions on pages 247–256 for many such exam-
ples.) We can easily find these values from the graph of a function. We first define what
we mean by a local maximum or minimum.

30, q 21�q, 0 4

30, q 2 .�

f 1x 2 � x2/3.
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F I G U R E  7 Graph of f 1x 2 � x2/3

10

�1
�20 20

LOC AL MA XIMA AND MINIMA OF A FUNCTION

1. The function value f 1a 2 is a local maximum value of f if 

f 1a 2 � f 1x 2 when x is near a

(This means that f 1a 2 � f 1x 2 for all x in some open interval containing a.)

In this case we say that f has a local maximum at x � a.

2. The function value f 1a 2 is a local minimum of f if 

f 1a 2 � f 1x 2 when x is near a

(This means that f 1a 2 � f 1x 2 for all x in some open interval containing a.)
In this case we say that f has a local minimum at x � a.

y 

x 

f 

Local maximum 
Local maximum 

Local minimum 
Local minimum 

0 
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We can find the local maximum and minimum values of a function using a graphing 
calculator.

If there is a viewing rectangle such that the point 1a, f 1a 22 is the highest point on the graph
of f within the viewing rectangle (not on the edge), then the number f 1a 2 is a local maximum
value of f (see Figure 8). Notice that f 1a 2 � f 1x 2 for all numbers x that are close to a.

Similarly, if there is a viewing rectangle such that the point 1b, f 1b 22 is the lowest point
on the graph of f within the viewing rectangle, then the number f 1b 2 is a local minimum
value of f. In this case f 1b 2 � f 1x 2 for all numbers x that are close to b.

E X A M P L E  6 | Finding Local Maxima and Minima from a Graph

Find the local maximum and minimum values of the function f 1x 2 � x3 � 8x � 1,
rounded to three decimal places.

S O L U T I O N The graph of f is shown in Figure 9. There appears to be one local maxi-
mum between x � �2 and x � �1, and one local minimum between x � 1 and x � 2.

Let’s find the coordinates of the local maximum point first. We zoom in to enlarge
the area near this point, as shown in Figure 10. Using the feature on the graph-
ing device, we move the cursor along the curve and observe how the y-coordinates
change. The local maximum value of y is 9.709, and this value occurs when x is
�1.633, correct to three decimal places.

We locate the minimum value in a similar fashion. By zooming in to the viewing 
rectangle shown in Figure 11, we find that the local minimum value is about �7.709,
and this value occurs when x � 1.633.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

The maximum and minimum commands on a TI-83 or TI-84 calculator provide another
method for finding extreme values of functions. We use this method in the next example.

E X A M P L E  7 | A Model for the Food Price Index

A model for the food price index (the price of a representative “basket” of foods) be-
tween 1990 and 2000 is given by the function

I1t 2 � �0.0113t3 � 0.0681t2 � 0.198t � 99.1

TRACE
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x

y

0 a b

Local minimum
value f(b)

Local maximum
value f(a)

F I G U R E  8

20

_20

_5 5

F I G U R E  9 Graph of 
f 1x 2 � x3 � 8x � 1
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9.71

9.7
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1.6
_7.7

_7.71

1.7

F I G U R E  1 0 F I G U R E  1 1
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where t is measured in years since midyear 1990, so 0 � t � 10, and I 1t 2 is scaled so that
I 132� 100. Estimate the time when food was most expensive during the period 1990–2000.

S O L U T I O N The graph of I as a function of t is shown in Figure 12(a). There appears
to be a maximum between t � 4 and t � 7. Using the maximum command, as shown 
in Figure 12(b), we see that the maximum value of I is about 100.38, and it occurs
when t � 5.15, which corresponds to August 1995.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■
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0

102

96
10

(a)

0

102

96
10

(b)

Maximum
X=5.1514939   Y=100.38241

F I G U R E  1 2

C O N C E P T S
1–4 ■ These exercises refer to the graph of the function f shown
below.

1. To find a function value f 1a 2 from the graph of f, we find

the height of the graph above the x-axis at x � . 

From the graph of f we see that f 132 � and 

f 112 � . The net change in f between x � 1 and 

x � 3 is f 1 2 � f 1 2 � .

2. The domain of the function f is all the -values of the
points on the graph, and the range is all the corresponding 

-values. From the graph of f we see that the domain 

of f is the interval and the range of f is the interval 

.

3. (a) If f is increasing on an interval, then the y-values of the 

points on the graph as the x-values increase.
From the graph of f we see that f is increasing on the 

intervals and .

f 

0 3 

3 

x

y 

(b) If f is decreasing on an interval, then y-values of the points 

on the graph as the x-values increase. From the
graph of f we see that f is decreasing on the intervals 

and .

4. (a) A function value f 1a 2 is a local maximum value of f if 

f(a) is the value of f on some open interval 
containing a. From the graph of f we see that a local 

maximum value of f is and that this value 

occurs when x is .

(b) The function value f 1a 2 is a local minimum value of f if 

f 1a 2 is the value of f on some open interval 
containing a. From the graph of f we see that a local 

minimum value of f is and that this value 

occurs when x is .

S K I L L S
5. The graph of a function h is given.

(a) Find h 1�22, h 102, h 122, and h 132.
(b) Find the domain and range of h.
(c) Find the values of x for which h 1x 2 � 3.
(d) Find the values of x for which h 1x 2 � 3.
(e) Find the net change in h between x � �3 and x � 3.

_3 3 x

y

0

3 h

2 . 3  E X E R C I S E S
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23–26 ■ The graph of a function is given. (a) Find the domain
and range of f. (b) Find the intervals on which f is increasing and
on which f is decreasing.

23. 24.

25. 26.

27–34 ■ A function f is given. (a) Use a graphing calculator to
draw the graph of f. (b) Find the domain and range of f. (c) State
approximately the intervals on which f is increasing and on which
f is decreasing.

27. f 1x 2 � x2 � 5x 28. f 1x 2 � x3 � 4x

29. f 1x 2 � 2x3 � 3x2 � 12x 30. f 1x 2 � x4 � 16x2

31. f 1x 2 � x3 � 2x2 � x � 2

32. f 1x 2 � x4 � 4x3 � 2x2 � 4x � 3

33. f 1x 2 � x2/5 34. f 1x 2 � 4 � x2/3

35–38 ■ The graph of a function is given. (a) Find all the local
maximum and minimum values of the function and the value of x
at which each occurs. (b) Find the intervals on which the function
is increasing and on which the function is decreasing.

35. 36.

37. 38.

1

10 x

y

1
1

0
x

y

1

10 x

y

1

10 x

y

y

x1

1

y

x0 1

1

y

x0 1

1

y

x0 1

1

6. The graph of a function g is given. 
(a) Find g 1�22, g 10), and g 17).
(b) Find the domain and range of g.
(c) Find the values of x for which g 1x) � 4.
(d) Find the values of x for which g 1x) � 4.
(e) Find the net change in g between x � 0 and x � 7.

7. The graph of a function g is given.
(a) Find g 1�42, g 1�22, g 102, g 122, and g 142.
(b) Find the domain and range of g.

8. Graphs of the functions f and g are given.
(a) Which is larger, f 102 or g(02?
(b) Which is larger, f 1�32 or g 1�32?
(c) For which values of x is f 1x 2 � g 1x 2?

9–22 ■ A function f is given. (a) Use a graphing calculator to draw
the graph of f. (b) Find the domain and range of f from the graph.

9. f 1x 2 � x � 1 10. f 1x 2 � 2(x � 1)

11. ,

12. ,

13. f 1x 2 � 4, 1 � x � 3 14. f 1x 2 � x2, �2 � x � 5

15. f 1x 2 � 4 � x2 16. f 1x 2 � x2 � 4 

17. 18.

19. 20.

21. 22. f 1x 2 � 2x � 2f 1x 2 � 1x � 1

f 1x 2 � �225 � x2f 1x 2 � 216 � x2

f 1x 2 � �x 2 � 2x � 1f 1x 2 � x 2 � 4x � 3

�3 � x � 3f 1x 2 � 21x � 1 2

�2 � x � 2f 1x 2 � x � 1

_2 2 x

y

0

2

_2

f
g

x

y

0

3g

_3 3

x 

g 

0 

y 

4 

4 
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49. Weight Function The graph gives the weight W of a per-
son at age x.
(a) Determine the intervals on which the function W is in-

creasing and those on which it is decreasing.
(b) What do you think happened when this person was 

30 years old?
(c) Find the net change in the person’s weight W from age 10

to age 20.

50. Distance Function The graph gives a sales representative’s
distance from his home as a function of time on a certain day.
(a) Determine the time intervals on which his distance from

home was increasing and those on which it was decreasing.
(b) Describe in words what the graph indicates about his 

travels on this day.
(c) Find the net change in his distance from home between

noon and 1:00 P.M.

51. Changing Water Levels The graph shows the depth of wa-
ter W in a reservoir over a one-year period as a function of the
number of days x since the beginning of the year.
(a) Determine the intervals on which the function W is in-

creasing and on which it is decreasing.
(b) At what value of x does W achieve a local maximum? 

A local minimum?
(c) Find the net change in the depth W from 100 days to 

300 days.

52. Population Growth and Decline The graph shows the 
population P in a small industrial city from 1950 to 2000. The
variable x represents the number of years since 1950.

x (days) 

W (ft) 

0

25

50

75

100

100 200 300

8 A.M. 10 NOON 2 4 6 P.M.

Time (hours)

Distance
from home

(miles)

0

150

100

50

10

200
W (lb)

20 30 40 50 60 70 x (yr)

39–46 ■ A function is given. (a) Find all the local maximum and
minimum values of the function and the value of x at which each oc-
curs. State each answer rounded to two decimal places. (b) Find the
intervals on which the function is increasing and on which the func-
tion is decreasing. State each answer rounded to two decimal places.

39. f 1x 2 � x3 � x

40. f 1x 2 � 3 � x � x2 � x3

41. g 1x 2 � x4 � 2x3 � 11x2

42. g 1x 2 � x5 � 8x3 � 20x

43. 44.

45. 46.

A P P L I C A T I O N S
47. Power Consumption The figure shows the power con-

sumption in San Francisco for a day in September (P is 
measured in megawatts; t is measured in hours starting at 
midnight).
(a) What was the power consumption at 6:00 A.M.? 

At 6:00 P.M.?
(b) When was the power consumption the lowest?
(c) When was the power consumption the highest?
(d) Find the net change in the power consumption from 

9:00 A.M. to 7:00 P.M.

48. Earthquake The graph shows the vertical acceleration of
the ground from the 1994 Northridge earthquake in Los Ange-
les, as measured by a seismograph. (Here t represents the time
in seconds.)
(a) At what time t did the earthquake first make noticeable

movements of the earth?
(b) At what time t did the earthquake seem to end?
(c) At what time t was the maximum intensity of the earth-

quake reached?

Source: California Department of
Mines and Geology
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V1x 2 �
1

x2 � x � 1
V1x 2 �

1 � x2

x3

U1x 2 � x2x � x2U1x 2 � x16 � x
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(a) Graph the function E for temperatures T between 100 K
and 300 K. 

(b) Use the graph to describe the change in energy E as the
temperature T increases.

56. Migrating Fish A fish swims at a speed √ relative to the 
water, against a current of 5 mi/h. Using a mathematical model
of energy expenditure, it can be shown that the total energy E
required to swim a distance of 10 mi is given by

Biologists believe that migrating fish try to minimize the total
energy required to swim a fixed distance. Find the value of 
that minimizes energy required.

NOTE: This result has been verified; migrating fish swim 
against a current at a speed 50% greater than the speed of the 
current.

57. Highway Engineering A highway engineer wants to esti-
mate the maximum number of cars that can safely travel a par-
ticular highway at a given speed. She assumes that each car is
17 ft long, travels at a speed s, and follows the car in front of
it at the “safe following distance” for that speed. She finds that
the number N of cars that can pass a given point per minute is
modeled by the function

At what speed can the greatest number of cars travel the high-
way safely?

58. Volume of Water Between 0°C and 30°C, the volume V (in
cubic centimeters) of 1 kg of water at a temperature T is given
by the formula

V � 999.87 � 0.06426T � 0.0085043T2 � 0.0000679T3

Find the temperature at which the volume of 1 kg of water is 
a minimum.

59. Coughing When a foreign object that is lodged in the tra-
chea (windpipe) forces a person to cough, the diaphragm
thrusts upward, causing an increase in pressure in the lungs. 
At the same time, the trachea contracts, causing the expelled
air to move faster and increasing the pressure on the foreign
object. According to a mathematical model of coughing, the
velocity √ (in cm/s) of the airstream through an average-sized
person’s trachea is related to the radius r of the trachea (in cm)
by the function

Determine the value of r for which √ is a maximum.

√ 1r 2 � 3.211 � r 2r 2  1
2 � r � 1

N1s 2 �
88s

17 � 17 a
s

20
b

2

√

E1√ 2 � 2.73√ 3
 

10

√ � 5

(a) Determine the intervals on which the function P is in-
creasing and on which it is decreasing.

(b) What was the maximum population, and in what year was
it attained?

(c) Find the net change in the population P from 1970 to 1990.

53. Hurdle Race Three runners compete in a 100-meter hurdle
race. The graph depicts the distance run as a function of time
for each runner. Describe in words what the graph tells you
about this race. Who won the race? Did each runner finish the
race? What do you think happened to runner B?

54. Gravity Near the Moon We can use Newton’s Law of 
Gravity to measure the gravitational attraction between the
moon and an algebra student in a space ship located a distance
x above the moon’s surface:

Here F is measured in newtons (N), and x is measured in mil-
lions of meters.
(a) Graph the function F for values of x between 0 and 10.
(b) Use the graph to describe the behavior of the gravitational

attraction F as the distance x increases.

55. Radii of Stars Astronomers infer the radii of stars using the
Stefan Boltzmann Law:

where E is the energy radiated per unit of surface area 
measured in watts (W) and T is the absolute temperature mea-
sured in kelvins (K). 

E1T 2 � 15.67 � 10�8 2T 4

F1x 2 �
350

x2

100

y (m)
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Functions are often used to model changing quantities. In this section we learn how to find
the rate at which the values of a function change as the input variable changes.

▼ Average Rate of Change
We are all familiar with the concept of speed: If you drive a distance of 120 miles in 
2 hours, then your average speed, or rate of travel, is . Now suppose you
take a car trip and record the distance that you travel every few minutes. The distance s
you have traveled is a function of the time t:

s 1t 2 � total distance traveled at time t

We graph the function s as shown in Figure 1. The graph shows that you have traveled a
total of 50 miles after 1 hour, 75 miles after 2 hours, 140 miles after 3 hours, and so on.
To find your average speed between any two points on the trip, we divide the distance
traveled by the time elapsed.

Let’s calculate your average speed between 1:00 P.M. and 4:00 P.M. The time elapsed is
4 � 1 � 3 hours. To find the distance you traveled, we subtract the distance at 1:00 P.M.
from the distance at 4:00 P.M., that is, 200 � 50 � 150 mi. Thus your average speed is

average speed �
distance traveled

time elapsed
�

150 mi

3 h
� 50 mi/h

120 mi
2 h � 60 mi/h

62. Minimizing a Distance When we seek a minimum or
maximum value of a function, it is sometimes easier to work
with a simpler function instead.
(a) Suppose 

where � 0 for all x. Explain why the local minima
and maxima of f and g occur at the same values of x.

(b) Let be the distance between the point (3, 0) and the
point on the graph of the parabola y � x2. Express
g as a function of x.

(c) Find the minimum value of the function g that you found
in part (b). Use the principle described in part (a) to sim-
plify your work.

1x, x2 2
g1x 2

f 1x 2

g1x 2 � 2f 1x 2

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
60. Functions That Are Always Increasing or 

Decreasing Sketch rough graphs of functions that are
defined for all real numbers and that exhibit the indicated 
behavior (or explain why the behavior is impossible).
(a) f is always increasing, and for all x
(b) f is always decreasing, and for all x
(c) f is always increasing, and for all x
(d) f is always decreasing, and for all x

61. Maxima and Minima In Example 7 we saw a real-world
situation in which the maximum value of a function is impor-
tant. Name several other everyday situations in which a maxi-
mum or minimum value is important.

f1x 2 � 0
f1x 2 � 0
f1x 2 � 0
f1x 2 � 0
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2.4 AVERAGE RATE OF CHANGE OF A FUNCTION

LEARNING OBJECTIVES After completing this section, you will be able to:

Find average rates of change � Interpret average rates of change in 
real-world situations � Recognize that a function with constant average 
rate of change is linear

s (mi)

200

100

1 2 3 40 t (h) 
3 h

150 mi

F I G U R E  1

Average speed
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The average speed that we have just calculated can be expressed by using function notation:

Note that the average speed is different over different time intervals. For example, be-
tween 2:00 P.M. and 3:00 P.M. we find that

Finding average rates of change is important in many contexts. For instance, we might
be interested in knowing how quickly the air temperature is dropping as a storm approaches
or how fast revenues are increasing from the sale of a new product. So we need to know
how to determine the average rate of change of the functions that model these quantities.
In fact, the concept of average rate of change can be defined for any function.

In the expression for average rate of change, the numerator is the net
change in the value of f between and (see page 177).

E X A M P L E  1 | Calculating the Average Rate of Change

For the function whose graph is shown in Figure 2, find the net
change and the average rate of change between the following points:

(a) x � 1 and x � 3 (b) x � 4 and x � 7

S O L U T I O N

(a) Definition

Use f 1x2 � 1x � 322

Calculate

Definition

Calculate �
�4

2
� �2

 Average rate of change �
f 13 2 � f 11 2

3 � 1

 � �4

 � 13 � 3 2 2 � 11 � 3 2 2

 Net change � f 13 2 � f11 2

f 1x 2 � 1x � 3 2 2,

x � bx � a
f1b 2 � f1a 2

average speed �
s13 2 � s12 2

3 � 2
�

140 � 75

1
� 65 mi/h

average speed �
s14 2 � s11 2

4 � 1
�

200 � 50

3
� 50 mi/h
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AVERAGE RATE OF CHANGE

The average rate of change of the function between x � a and x � b is

The average rate of change is the slope of the secant line between x � a and 
x � b on the graph of f, that is, the line that passes through 1a, f 1a 22  and 1b, f 1b 22 .

average rate of change �
change in y

change in x
�

f 1b 2 � f 1a 2
b � a

y � f 1x 2

f(a)

y=Ï

y

x0

f(b)

a b

b-a

f(b)-f(a)

average rate of change=f(b)-f(a)
b-a

x

y

0
1

16

9

1 3 4 7

F I G U R E  2 f 1x 2 � 1x � 3 2 2
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(b) Definition

Use f 1x2 � 1x � 322

Calculate

Definition

Calculate

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 13 ■

E X A M P L E  2 | Average Speed of a Falling Object

If an object is dropped from a high cliff or a tall building, then the distance it has fallen
after t seconds is given by the function Find its average speed (average rate 
of change) over the following intervals:

(a) Between 1 s and 5 s (b) Between t � a and t � a � h

S O L U T I O N

(a) Definition

Use d(t) � 16t2

Calculate

Calculate

(b) Definition

Use d(t) � 16t2

Expand and factor 16

Simplify numerator

Factor h

Simplify

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

The average rate of change calculated in Example 2(b) is known as a difference quo-
tient. In calculus we use difference quotients to calculate instantaneous rates of change.
An example of an instantaneous rate of change is the speed shown on the speedometer of
your car. This changes from one instant to the next as your car’s speed changes.

The graphs in Figure 3 show that if a function is increasing on an interval, then the
average rate of change between any two points is positive, whereas if a function is
decreasing on an interval, then the average rate of change between any two points is
negative.

 � 1612a � h 2

 �
16h12a � h 2

h

 �
1612ah � h2 2

h

 �
161a2 � 2ah � h2 � a2 2

h

 �
161a � h 2 2 � 161a 2 2

1a � h 2 � a

 Average rate of change �
d1a � h 2 � d1a 2

1a � h 2 � a

 � 96 ft/s

 �
400 � 16

4

 �
1615 2 2 � 1611 2 2

5 � 1

 Average rate of change �
d15 2 � d11 2

5 � 1

d1t 2 � 16t2.

 �
15

3
� 5

 Average rate of change �
f 17 2 � f 14 2

7 � 4

 � 15

 � 17 � 3 2 2 � 14 � 3 2 2

 Net change � f 17 2 � f 14 2
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d(t)=16t2

Function: In t seconds the stone
falls 16t2 ft.
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E X A M P L E  3 | Average Rate of Temperature Change

The table in the margin gives the outdoor temperatures observed by a science student on
a spring day. Draw a graph of the data, and find the average rate of change of tempera-
ture between the following times:

(a) 8:00 A.M. and 9:00 A.M.

(b) 1:00 P.M. and 3:00 P.M.

(c) 4:00 P.M. and 7:00 P.M.

S O L U T I O N A graph of the temperature data is shown in Figure 4. Let t represent
time, measured in hours since midnight (so, for example, 2:00 P.M. corresponds to 
t � 14). Define the function F by

F 1 t 2 � temperature at time t

(a)

The average rate of change was 2°F per hour.

(b)

The average rate of change was 2.5°F per hour.

(c)

The average rate of change was about �4.3°F per hour during this time interval.
The negative sign indicates that the temperature was dropping.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27 ■

Average rate of change �
F119 2 � F116 2

19 � 16
�

51 � 64

3
� � 4.3

Average rate of change �
F115 2 � F113 2

15 � 13
�

67 � 62

2
� 2.5

Average rate of change �
F19 2 � F18 2

9 � 8
�

40 � 38

9 � 8
� 2
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y

x0 a b

Slope>0

y=Ï

ƒ increasing
Average rate of change positive

ƒ decreasing
Average rate of change negative

y

x0 a b

Slope<0

y=Ï

F I G U R E  3

�F

60
50
40
30

8 100  h

70

12 14 16 18F I G U R E  4

Time Temperature (°F)

8:00 A.M. 38
9:00 A.M. 40

10:00 A.M. 44
11:00 A.M. 50

12:00 NOON 56
1:00 P.M. 62
2:00 P.M. 66
3:00 P.M. 67
4:00 P.M. 64
5:00 P.M. 58
6:00 P.M. 55
7:00 P.M. 51 Temperature at 8:00 A.M.Temperature at 9:00 A.M.
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▼ Linear Functions Have Constant Rate of Change
For a linear function the average rate of change between any two points
is the same constant m. This agrees with what we learned in Section 1.3: that the slope of
a line is the average rate of change of y with respect to x. On the other hand,
if a function f has constant average rate of change, then it must be a linear function. You
are asked to prove this fact in Exercise 35. In the next example we find the average rate
of change for a particular linear function.

E X A M P L E  4 | Linear Functions Have Constant Rate of Change

Let . Find the average rate of change of f between the following points.

(a) x � 0 and x � 1

(b) x � 3 and x � 7

(c) x � a and x � a � h

What conclusion can you draw from your answers?

S O L U T I O N

(a)

(b)

(c)

It appears that the average rate of change is always 3 for this function. In fact, part (c)
proves that the rate of change between any two arbitrary points x � a and x � a � h is 3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 23 ■

 �
3a � 3h � 5 � 3a � 5

h
�

3h

h
� 3

 Average rate of change �
f 1a � h 2 � f 1a 2
1a � h 2 � a

�
331a � h 2 � 5 4 � 33a � 5 4

h

 �
16 � 4

4
� 3

 Average rate of change �
f 17 2 � f 13 2

7 � 3
�
13 # 7 � 5 2 � 13 # 3 � 5 2

4

 �
1�2 2 � 1�5 2

1
� 3

 Average rate of change �
f 11 2 � f 10 2

1 � 0
�
13 # 1 � 5 2 � 13 # 0 � 5 2

1

f 1x 2 � 3x � 5

y � mx � b

f 1x 2 � mx � b

208 C H A P T E R  2 | Functions

C O N C E P T S
1. If you travel 100 miles in two hours, then your average speed

for the trip is

average speed � �

2. The average rate of change of a function f between and
is

average rate of change �

x � b
x � a

3. The average rate of change of the function between
and is

average rate of change� �

4. (a) The average rate of change of a function f between 

and is the slope of the line between
and .

(b) The average rate of change of the linear function 

between any two points is .f 1x 2 � 3x � 5

1b, f 1b 2 21a, f 1a 2 2
x � b

x � a

x � 5x � 1
f 1x 2 � x 2

2 . 4  E X E R C I S E S
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S E C T I O N  2 . 4 | Average Rate of Change of a Function 209

S K I L L S
5–8 ■ The graph of a function is given. Determine (a) the net
change and (b) the average rate of change of the function between
the indicated points on the graph.

5. 6.

7. 8.

9–22 ■ A function is given. Determine (a) the net change and 
(b) the average rate of change of the function between the given
values of the variable.

9.

10. ; ,

11. ; ,

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23–24 ■ A linear function is given. (a) Find the average rate of
change of the function between and . (b) Show
that the average rate of change is the same as the slope of the line.

23. 24. g1x 2 � �4x � 2f 1x 2 � 1
2 x � 3

x � a � hx � a

f 1t 2 � 1t ; t � a, t � a � h

f 1t 2 �
2

t
 ; t � a, t � a � h

g 1x 2 �
2

x � 1
 ; x � 0, x � h

g 1x 2 �
1
x

 ; x � 1, x � a

f 1x 2 � 4 � x 2 ; x � 1, x � 1 � h

f 1x 2 � 3x 2 ; x � 2, x � 2 � h

f 1x 2 � x � x 4 ; x � �1, x � 3

f 1x 2 � x 3 � 4x 2 ; x � 0, x � 10

f 1z 2 � 1 � 3z2 ; z � �2, z � 0

h1t 2 � t 2 � 2t ; t � �1, t � 4

g1x 2 � 5 � 1
2 x ; x � 1, x � 5

t � 1t � �4h1t 2 � �t � 3
2

t � 6t � 3r1t 2 � 3 � 1
3  
t

f 1x 2 � 3x � 2 ; x � 2, x � 3

y

0 5

2

4

_1 x

y

0 x1 5

6

2

4

y

x0 1 5

y

x0 1

1

3

5

4

A P P L I C A T I O N S
25. Changing Water Levels The graph shows the depth of 

water W in a reservoir over a one-year period as a function 
of the number of days x since the beginning of the year. What
was the average rate of change of W between x � 100 and 
x � 200?

26. Population Growth and Decline The graph shows the
population P in a small industrial city from 1950 to 2000. 
The variable x represents the number of years since 1950.
(a) What was the average rate of change of P between x � 20

and x � 40?
(b) Interpret the value of the average rate of change that you

found in part (a).

27. Population Growth and Decline The table gives the pop-
ulation in a small coastal community for the period
1997–2006. Figures shown are for January 1 in each year.
(a) What was the average rate of change of population 

between 1998 and 2001?
(b) What was the average rate of change of population 

between 2002 and 2004?
(c) For what period of time was the population increasing?
(d) For what period of time was the population decreasing?

x (yr) 

P
(thousands) 

0

10
20
30
40
50

10 20 30 40 50

x (days) 

W (ft) 

0

25
50
75

100

100 200 300

Year Population

1997 624
1998 856
1999 1,336
2000 1,578
2001 1,591
2002 1,483
2003 994
2004 826
2005 801
2006 745

90169_Ch02_173-256.qxd  11/23/11  2:12 PM  Page 209



31. Cooling Soup When a bowl of hot soup is left in a room,
the soup eventually cools down to room temperature. The tem-
perature T of the soup is a function of time t. The table below
gives the temperature (in °F) of a bowl of soup t minutes after
it was set on the table. Find the average rate of change of the
temperature of the soup over the first 20 minutes and over the
next 20 minutes. During which interval did the soup cool off
more quickly?

32. Farms in the United States The graph gives the number of
farms in the United States from 1850 to 2000. 
(a) Estimate the average rate of change in the number of

farms between (i) 1860 and 1890 and (ii) 1950 and 
1970.

(b) In which decade did the number of farms experience the
greatest average rate of decline?

28. Running Speed A man is running around a circular track
that is 200 m in circumference. An observer uses a stopwatch
to record the runner’s time at the end of each lap, obtaining
the data in the following table.
(a) What was the man’s average speed (rate) between 68 s

and 152 s?
(b) What was the man’s average speed between 263 s and 

412 s?
(c) Calculate the man’s speed for each lap. Is he slowing

down, speeding up, or neither?

29. CD Player Sales The table shows the number of CD players
sold in a small electronics store in the years 1993–2003.
(a) What was the average rate of change of sales between

1993 and 2003?
(b) What was the average rate of change of sales between

1993 and 1994?
(c) What was the average rate of change of sales between

1994 and 1996?
(d) Between which two successive years did CD player sales

increase most quickly? Decrease most quickly?

30. Book Collection Between 1980 and 2000 a rare book 
collector purchased books for his collection at the rate of 
40 books per year. Use this information to complete the
following table. (Note that not every year is given in the table.)

210 C H A P T E R  2 | Functions
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Time (s) Distance (m)

32 200
68 400

108 600
152 800
203 1000
263 1200
335 1400
412 1600

Year CD players sold

1993 512
1994 520
1995 413
1996 410
1997 468
1998 510
1999 590
2000 607
2001 732
2002 612
2003 584

Year Number of books

1980 420
1981 460
1982
1985
1990
1992
1995
1997
1998
1999
2000 1220

t (min) T (°F) t (min) T (°F)

0 200 35 94
5 172 40 89

10 150 50 81
15 133 60 77
20 119 90 72
25 108 120 70
30 100 150 70

y

2000
3000
4000
5000
6000
7000

1860 1900 1940 1980 x
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34. Linear Functions Have Constant Rate of Change If
is a linear function, then the average rate of

change of f between any two real numbers and is

Calculate this average rate of change to show that it is the
same as the slope m.

35. Functions with Constant Rate of Change Are Linear If
the function f has the same average rate of change c between
any two points, then for the points a and x we have

Rearrange this expression to show that 

and conclude that f is a linear function.

f 1x 2 � cx � 1f 1a 2 � ca 2

c �
f 1x 2 � f 1a 2

x � a

average rate of change �
f 1x2 2 � f 1x1 2

x2 � x1

x2x1

f 1x 2 � mx � bD I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
33. 100-Meter Race A 100-m race ends in a three-way tie for

first place. The graph at the top of the next column shows dis-
tance as a function of time for each of the three winners.
(a) Find the average speed for each winner.
(b) Describe the differences between the ways in which the

three runners ran the race.
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t (s) 

d (m) 

0

50

100

5

A

C

10

B

2.5 TRANSFORMATIONS OF FUNCTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Shift graphs vertically � Shift graphs horizontally � Stretch or shrink
graphs vertically � Stretch or shrink graphs horizontally � Reflect graphs
� Determine whether a function is odd or even

In this section we study how certain transformations of a function affect its graph. This
will give us a better understanding of how to graph functions. The transformations that we
study are shifting, reflecting, and stretching.

▼ Vertical Shifting
Adding a constant to a function shifts its graph vertically: upward if the constant is posi-
tive and downward if it is negative.

In general, suppose we know the graph of . How do we obtain from it the
graphs of

The y-coordinate of each point on the graph of is c units above the 
y-coordinate of the corresponding point on the graph of . So we obtain the
graph of simply by shifting the graph of upward c units. Simi-
larly, we obtain the graph of by shifting the graph of downward
c units.

y � f 1x 2y � f 1x 2 � c
y � f 1x 2y � f 1x 2 � c

y � f 1x 2
y � f 1x 2 � c

y � f 1x 2 � c  and  y � f 1x 2 � c  1c � 0 2

y � f 1x 2

Recall that the graph of the function f
is the same as the graph of the equation

.y � f 1x 2
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E X A M P L E  1 | Vertical Shifts of Graphs

Use the graph of to sketch the graph of each function.

(a) (b)

S O L U T I O N The function was graphed in Example 1(a), Section 2.2. It is
sketched again in Figure 1.

(a) Observe that

So the y-coordinate of each point on the graph of g is 3 units above the correspond-
ing point on the graph of f. This means that to graph g, we shift the graph of f
upward 3 units, as in Figure 1.

(b) Similarly, to graph h, we shift the graph of f downward 2 units, as shown in Figure 1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 27 AND 29 ■

▼ Horizontal Shifting
Suppose that we know the graph of . How do we use it to obtain the graphs of

The value of at x is the same as the value of at x � c. Since x � c is c units
to the left of x, it follows that the graph of is just the graph of y � f 1x 2y � f 1x � c 2

f 1x 2f 1x � c 2

y � f 1x � c 2  and  y � f 1x � c 2  1c � 0 2

y � f 1x 2

g1x 2 � x2 � 3 � f 1x 2 � 3

f 1x 2 � x2

h1x 2 � x2 � 2g1x 2 � x2 � 3

f 1x 2 � x2
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VERTIC AL SHIFTS OF GRAPHS

Suppose c � 0.

To graph , shift the graph of upward c units.

To graph , shift the graph of downward c units.

c

y

x0

c

y

x0

y=f(x)+c

y=f(x)-c

y=f(x)

y=f(x)

y � f 1x 2y � f 1x 2 � c

y � f 1x 2y � f 1x 2 � c

x

y

0 2

2

f (x)=≈

h(x)=≈ – 2

g(x)=≈+3

F I G U R E  1
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shifted to the right c units. Similar reasoning shows that the graph of is the
graph of shifted to the left c units. The following box summarizes these facts.

E X A M P L E  2 | Horizontal Shifts of Graphs

Use the graph of to sketch the graph of each function.

(a) (b)

S O L U T I O N

(a) To graph g, we shift the graph of f to the left 4 units.

(b) To graph h, we shift the graph of f to the right 2 units.

The graphs of g and h are sketched in Figure 2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 AND 33 ■

1

y

1 x_4 0

™g(x)=(x + 4)2 h(x)=(x – 2)2f (x)=x2

h1x 2 � 1x � 2 2 2g 1x 2 � 1x � 4 2 2
f 1x 2 � x2

y � f 1x 2
y � f 1x � c 2
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HORIZONTAL SHIFTS OF GRAPHS

Suppose c � 0.

To graph , shift the graph of to the right c units.

To graph , shift the graph of to the left c units.

y=Ï
y=f(x-c)

c

y

x0

y=Ï

y=f(x+c)

c

y

x0

y � f 1x 2y � f 1x � c 2

y � f 1x 2y � f 1x � c 2

Li
br

ar
y 

of
 C

on
gr

es
s

R E N É  D E S C A R T E S (1596–1650) was
born in the town of La Haye in south-
ern France. From an early age Descartes
liked mathematics because of “the cer-
tainty of its results and the clarity of its
reasoning.” He believed that to arrive at
truth, one must begin by doubting
everything, including one’s own exis-
tence; this led him to formulate per-
haps the best-known sentence in all of
philosophy:“I think, therefore I am.” In

his book Discourse on Method he described what is now called the
Cartesian plane. This idea of combining algebra and geometry en-

abled mathematicians for the first time to graph functions and thus
“see” the equations they were studying. The philosopher John Stuart
Mill called this invention “the greatest single step ever made in the
progress of the exact sciences.” Descartes liked to get up late and
spend the morning in bed thinking and writing. He invented the coor-
dinate plane while lying in bed watching a fly crawl on the ceiling, rea-
soning that he could describe the exact location of the fly by knowing
its distance from two perpendicular walls. In 1649 Descartes became
the tutor of Queen Christina of Sweden. She liked her lessons at
5 o’clock in the morning, when, she said, her mind was sharpest. How-
ever, the change from his usual habits and the ice-cold library where
they studied proved too much for Descartes. In February 1650, after
just two months of this, he caught pneumonia and died.

F I G U R E  2
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E X A M P L E  3 | Combining Horizontal and Vertical Shifts

Sketch the graph of .

S O L U T I O N We start with the graph of (Example 1(c), Section 2.2) and shift
it to the right 3 units to obtain the graph of . Then we shift the resulting
graph upward 4 units to obtain the graph of shown in Figure 3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 43 ■

▼ Reflecting Graphs
Suppose we know the graph of . How do we use it to obtain the graphs of

and ? The y-coordinate of each point on the graph of is
simply the negative of the y-coordinate of the corresponding point on the graph of

. So the desired graph is the reflection of the graph of in the x-axis. On
the other hand, the value of at x is the same as the value of at �x, so
the desired graph here is the reflection of the graph of in the y-axis. The fol-
lowing box summarizes these observations.

E X A M P L E  4 | Reflecting Graphs

Sketch the graph of each function.

(a) (b)

S O L U T I O N

(a) We start with the graph of y � x2. The graph of is the graph of y � x2

reflected in the x-axis (see Figure 4).
f 1x 2 � �x2

g 1x 2 � 1�xf 1x 2 � �x2

y � f 1x 2
y � f 1x 2y � f 1�x 2

y � f 1x 2y � f 1x 2

y � �f 1x 2y � f 1�x 2y � �f 1x 2
y � f 1x 2

y

x0 3

4

x – 3 + 4f (x)=

(3, 4)

x – 3y=

xy=

f 1x 2 � 1x � 3 � 4
y � 1x � 3

y � 1x

f 1x 2 � 1x � 3 � 4
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Computers
For centuries machines have been de-
signed to perform specific tasks. For ex-
ample, a washing machine washes
clothes, a weaving machine weaves
cloth, an adding machine adds num-
bers, and so on. The computer has
changed all that.

The computer is a machine that
does nothing—until it is given instruc-
tions on what to do. So your computer
can play games, draw pictures, or calcu-
latep to a million decimal places; it all
depends on what program (or instruc-
tions) you give the computer.The com-
puter can do all this because it is able to
accept instructions and logically
change those instructions based on in-
coming data.This versatility makes
computers useful in nearly every aspect
of human endeavor.

The idea of a computer was described
theoretically in the 1940s by the mathe-
matician AllanTuring (see page 105) in
what he called a universal machine.In
1945 the mathematician JohnVon
Neumann,extendingTuring’s ideas,built
one of the first electronic computers.

Mathematicians continue to de-
velop new theoretical bases for the de-
sign of computers. The heart of the
computer is the “chip,” which is capable
of processing logical instructions. To
get an idea of the chip’s complexity,
consider that the Pentium chip has
over 3.5 million logic circuits!

M AT H E M AT I C S  I N  
T H E  M O D E R N  W O R L D

F I G U R E  3

REFLECTING GRAPHS

To graph , reflect the graph of in the x-axis.

To graph , reflect the graph of in the y-axis.

y=Ï

y

x0

y=_Ï

y

x0

y=f(_x)

y=Ï

y � f 1x 2y � f 1�x 2

y � f 1x 2y � �f 1x 2

Pé
te

r G
ud

el
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hu

tte
rs

to
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.c
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(b) We start with the graph of (Example 1(c) in Section 2.2). The graph of
is the graph of reflected in the y-axis (see Figure 5). Note

that the domain of the function .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 35 AND 37 ■

▼ Vertical Stretching and Shrinking
Suppose we know the graph of . How do we use it to obtain the graph of

? The y-coordinate of at x is the same as the corresponding 
y-coordinate of multiplied by c. Multiplying the y-coordinates by c has the ef-
fect of vertically stretching or shrinking the graph by a factor of c.

E X A M P L E  5 | Vertical Stretching and Shrinking of Graphs

Use the graph of to sketch the graph of each function.

(a) (b)

S O L U T I O N

(a) The graph of g is obtained by multiplying the y-coordinate of each point on the
graph of f by 3. That is, to obtain the graph of g, we stretch the graph of f verti-
cally by a factor of 3. The result is the narrower parabola in Figure 6.

(b) The graph of h is obtained by multiplying the y-coordinate of each point on 
the graph of f by . That is, to obtain the graph of h, we shrink the graph of f
vertically by a factor of . The result is the wider parabola in Figure 6.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 39 AND 41 ■

We illustrate the effect of combining shifts, reflections, and stretching in the following
example.

1
3

1
3

h1x 2 � 1
3 x 2g1x 2 � 3x 2

f 1x 2 � x2

y � f 1x 2
y � cf 1x 2y � cf 1x 2

y � f 1x 2

y

x

g(x)= _x

0 1

1
xy=

g 1x 2 � 1�x is 5x 0  x � 06
y � 1xg1x 2 � 1�x

y � 1x
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y

x

y=x™

f(x)=_x™
2

2

F I G U R E  4

F I G U R E  5

VERTIC AL STRETCHING AND SHRINKING OF GRAPHS

To graph :

If c � 1, stretch the graph of vertically by a factor of c.

If 0 � c � 1, shrink the graph of vertically by a factor of c.

y=Ï
y

x0
y=c Ïy=Ï

c>1 0<c<1

y

x0

y=c Ï

y � f 1x 2
y � f 1x 2

y � cf 1x 2

y

x0 1

4

1
3h(x)= x2

f (x)=x2

g(x)=3x2

F I G U R E  6
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E X A M P L E  6 | Combining Shifting, Stretching, and Reflecting

Sketch the graph of the function .

S O L U T I O N Starting with the graph of , we first shift to the right 3 units to get
the graph of . Then we reflect in the x-axis and stretch by a factor of 2 to
get the graph of . Finally, we shift upward 1 unit to get the graph of

shown in Figure 7.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

▼ Horizontal Stretching and Shrinking
Now we consider horizontal shrinking and stretching of graphs. If we know the graph of

, then how is the graph of related to it? The y-coordinate of 
at x is the same as the y-coordinate of at cx. Thus the x-coordinates in the graph
of correspond to the x-coordinates in the graph of multiplied by c.
Looking at this the other way around, we see that the x-coordinates in the graph of

are the x-coordinates in the graph of multiplied by 1/c. In other
words, to change the graph of to the graph of , we must shrink (or
stretch) the graph horizontally by a factor of 1/c, as summarized in the following box.

E X A M P L E  7 | Horizontal Stretching and Shrinking of Graphs

The graph of is shown in Figure 8 on the next page. Sketch the graph of each
function.

(a) (b) y � f A12  
xBy � f 12x 2

y � f 1x 2

y � f 1cx 2y � f 1x 2
y � f 1x 2y � f 1cx 2

y � f 1cx 2y � f 1x 2
y � f 1x 2

y � f 1cx 2y � f 1cx 2y � f 1x 2

y

x1

1

0

(3, 1)

f (x)=1 – 2(x – 3)2

y=–2(x – 3)2

y=(x – 3)2

y=≈

f 1x 2 � 1 � 21x � 3 2 2
y � �21x � 3 2 2

y � 1x � 3 2 2
y � x2

f 1x 2 � 1 � 21x � 3 2 2
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F I G U R E  7

HORIZONTAL SHRINKING AND STRETCHING OF GRAPHS

To graph :

If c � 1, shrink the graph of horizontally by a factor of 1/c.

If 0 � c � 1, stretch the graph of horizontally by a factor of 1/c.

y=Ï

y

x0

y=f(cx)

y=Ï

y

x0

y=f(cx)

c>1 0<c<1

y � f 1x 2
y � f 1x 2

y � f 1cx 2
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S O L U T I O N Using the principles described in the preceding box, we obtain the
graphs shown in Figures 9 and 10.

F I G U R E  9 F I G U R E  1 0

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 69 ■

▼ Even and Odd Functions
If a function f satisfies for every number x in its domain, then f is called
an even function. For instance, the function is even because

The graph of an even function is symmetric with respect to the y-axis (see Figure 11). This
means that if we have plotted the graph of f for x � 0, then we can obtain the entire graph
simply by reflecting this portion in the y-axis.

If f satisfies for every number x in its domain, then f is called an odd
function. For example, the function is odd because

The graph of an odd function is symmetric about the origin (see Figure 12). If we have
plotted the graph of f for x � 0, then we can obtain the entire graph by rotating this por-
tion through 180° about the origin. (This is equivalent to reflecting first in the x-axis and
then in the y-axis.)

f 1�x 2 � 1�x 2 3 � 1�1 2 3x3 � �x3 � �f 1x 2

f 1x 2 � x3
f 1�x 2 � �f 1x 2

f 1�x 2 � 1�x 22 � 1�1 2 2x2 � x2 � f 1x 2

f 1x 2 � x2
f 1�x 2 � f 1x 2

y � f A12  
xBy � f 12x 2

y

x0 1

1

2_1

y

x0 1

1

1
2

y

x0 1

1
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S O N Y A  K O V A L E V S K Y (1850–1891) is
considered the most important woman
mathematician of the 19th century. She
was born in Moscow to an aristocratic
family. While a child, she was exposed
to the principles of calculus in a very
unusual fashion: Her bedroom was
temporarily wallpapered with the
pages of a calculus book. She later
wrote that she “spent many hours in
front of that wall, trying to understand
it.” Since Russian law forbade women
from studying in universities, she en-
tered a marriage of convenience, which
allowed her to travel to Germany and
obtain a doctorate in mathematics
from the University of Göttingen. She
eventually was awarded a full profes-
sorship at the University of Stockholm,
where she taught for eight years before
dying in an influenza epidemic at the
age of 41. Her research was instrumen-
tal in helping to put the ideas and ap-
plications of functions and calculus on
a sound and logical foundation. She re-
ceived many accolades and prizes for
her research work.

Th
e 

Gr
an

ge
r C
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n,
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ew
 Y

or
k

F I G U R E  8 y � f 1x 2

y

x

Ï=x™

0 x_x

0

y

x

Ï=x£

x
_x

F I G U R E  1 1 is an
even function.

f 1x 2 � x2 F I G U R E  1 2 is an odd
function.

f 1x 2 � x3
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E X A M P L E  8 | Even and Odd Functions

Determine whether the functions are even, odd, or neither even nor odd.

(a)

(b)

(c)

S O L U T I O N

(a)

Therefore, f is an odd function.

(b)

So g is even.

(c)

Since and , we conclude that h is neither even 
nor odd.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 81, 83, AND 85 ■

The graphs of the functions in Example 8 are shown in Figure 13. The graph of f is
symmetric about the origin, and the graph of g is symmetric about the y-axis. The graph
of h is not symmetric either about the y-axis or the origin.

h1�x 2 	 �h1x 2h1�x 2 	 h1x 2

h 1�x 2 � 21�x 2 � 1�x 2 2 � �2x � x2

g1�x 2 � 1 � 1�x 2 4 � 1 � x4 � g1x 2

 � �f 1x 2
 � �x5 � x � �1x5 � x 2

 f 1�x 2 � 1�x 2 5 � 1�x 2

h 1x 2 � 2x � x2

g 1x 2 � 1 � x4

f 1x 2 � x5 � x
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EVEN AND ODD FUNCTIONS

Let f be a function.

f is even if for all x in the domain of f.

f is odd if for all x in the domain of f.

y

x0

The graph of an even function is
symmetric with respect to the y-axis.

The graph of an odd function is
symmetric with respect to the origin.

_x x

Ïf(_x)

y

x
_x

x0
Ï

f(_x)

f 1�x 2 � �f 1x 2
f 1�x 2 � f 1x 2

(a) (b) (c)

2.5

_2.5

_1.75 1.75

Ï=x∞+x 2.5

_2.5

_2 2

˝=1-x¢

2.5

_2.5

_1 3

h(x)=2x-x™

F I G U R E  1 3
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S E C T I O N  2 . 5 | Transformations of Functions 219

C O N C E P T S
1–2 ■ Fill in the blank with the appropriate direction (left, right,
up, or down).

1. (a) The graph of is obtained from the graph of 

by shifting 3 units.
(b) The graph of is obtained from the graph of 

by shifting 3 units.

2. (a) The graph of is obtained from the graph of 

by shifting 3 units.
(b) The graph of is obtained from the graph of 

by shifting 3 units.

3. Fill in the blank with the appropriate axis (x-axis or y-axis).
(a) The graph of is obtained from the graph of 

by reflecting in the .
(b) The graph of is obtained from the graph of 

by reflecting in the .

4. A graph of a function f is given. Match each equation with
one of the graphs labeled I–IV.
(a) (b)
(c) (d)

S K I L L S
5–16 ■ Suppose the graph of f is given. Describe how the graph
of each function can be obtained from the graph of f.

5. (a) (b)

6. (a) (b)

7. (a) (b)

8. (a) (b)

9. (a) (b)

10. (a) (b)

11. (a) (b)

12. (a) (b)

13. (a) (b) y � 2f 1x � 1 2 � 3y � 2f 1x � 1 2 � 3

y � f 1x � 4 2 � 3
4y � f 1x � 4 2 � 3

4

y � 3f 1x 2 � 5y � �f 1x 2 � 5

y � f 1x � 7 2 � 3y � f 1x � 3 2 � 2

y � f 1x � 1 2 � 1y � f 1x � 5 2 � 2

y � �1
2  
f 1x 2y � �2f1x 2

y � f1�x 2y � �f1x 2

y � f 1x 2 � 4y � f 1x � 4 2

y � f 1x � 3 2y � f 1x 2 � 3

y

x

f
1

1

I III

II

IV

0

f 1x 2 � 4f 1x � 2 2
f 1x � 3 2f 1x 2 � 2

y � f 1x 2

y � f 1�x 2
y � f 1x 2

y � �f 1x 2

y � f 1x 2

y � f 1x � 3 2
y � f 1x 2

y � f 1x 2 � 3

y � f 1x 2

y � f 1x � 3 2
y � f 1x 2

y � f 1x 2 � 3

14. (a) (b)

15. (a) (b)

16. (a) (b)

17–20 ■ Explain how the graph of g is obtained from the graph of f.

17. (a)
(b)

18. (a)
(b)

19. (a)
(b)

20. (a)
(b)

21. Use the graph of in Figure 4 to graph the following.
(a) (b)
(c) (d)

22. Use the graph of in Figure 5 to graph the following.
(a) (b)
(c) (d)

23–26 ■ Match the graph with the function. (See the graph of 
on page 191.)

23. 24.

25. 26.

27–50 ■ Sketch the graph of the function, not by plotting points,
but by starting with the graph of a standard function and applying
transformations.

27. 28.

29. 30.

31. 32. f 1x 2 � 1x � 1 2 2f 1x 2 � 1x � 5 2 2
f 1x 2 � 0 x 0 � 1f 1x 2 � 1x � 1

f 1x 2 � x2 � 5f 1x 2 � x2 � 1

I y

x
0

2

2

y

x0 2

2

II

y

x
0

2

2

y

x0 2

2

III IV

y � � 0 x 0y � 0 x 0 � 1

y � 0 x � 1 0y � 0 x � 1 0

y � 0 x 0

g 1x 2 � �1x � 1g 1x 2 � 1x � 2 � 2
g 1x 2 � 1x � 1g 1x 2 � 1x � 2

y � 1x

g 1x 2 � 1x � 1 2 2 � 3g 1x 2 � �x2
g 1x 2 � 1x � 1 2 2g 1x 2 � x2 � 1

y � x 2

f 1x 2 � 1x, g 1x 2 � 1�x � 1
f 1x 2 � 1x, g 1x 2 � �1x � 1

f 1x 2 � 0 x 0 , g 1x 2 � 0 x � 2 0 � 2
f 1x 2 � 0 x 0 , g 1x 2 � 0 x � 2 0 � 2

f 1x 2 � x3, g1x 2 � x3 � 4
f 1x 2 � x3, g1x 2 � 1x � 4 2 3
f 1x 2 � x2, g1x 2 � x2 � 2
f 1x 2 � x2, g1x 2 � 1x � 2 2 2

y � 2f A12  
xBy � f 12x 2 � 1

y � f A14  
xBy � f 14x 2

y � 2 � f 1 � x 2y � 3 � 2f 1x 2

2 . 5  E X E R C I S E S
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65. 66.

67–68 ■ The graph of is given. Match each equation
with its graph.

67. (a) (b)
(c) (d)

68. (a) (b)
(c) (d)

69. The graph of f is given. Sketch the graphs of the following
functions.
(a) (b)
(c) (d)
(e) (f)

0

2

2 x

y

y � 1
2f 1x � 1 2y � f 1�x 2

y � �f 1x 2 � 3y � 2f 1x 2
y � f 1x 2 � 2y � f 1x � 2 2

y

x3

3

_3

_3

_6 6

6 ➀

➁

➂

➃
Ï

0

y � f 1�x 2y � f 1x � 4 2 � 3
y � �f 1x � 4 2y � 1

3f 1x 2

y

x3

3

_3

_3

_6 6

6 ➀➁

➂

➃

Ï

0

y � �f 12x 2y � 2f 1x � 6 2
y � f 1x 2 � 3y � f 1x � 4 2

y � f 1x 2

0 x

y

g

f (x)=x2 2

20
1

1 x

y

g

f (x)= x

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51–60 ■ A function f is given, and the indicated transformations
are applied to its graph (in the given order). Write the equation for
the final transformed graph.

51. ; shift upward 3 units

52. ; shift downward 1 unit

53. ; shift 2 units to the left

54. ; shift 1 unit to the right

55. ; shift 3 units to the right and shift upward 1 unit 

56. ; shift 4 units to the left and shift downward 
2 units 

57. ; reflect in the y-axis and shift upward 1 unit

58. ; shift 2 units to the left and reflect in the x-axis 

59. ; stretch vertically by a factor of 2, shift downward 
2 units, and shift 3 units to the right

60. ; shrink vertically by a factor of , shift to the left 
1 unit, and shift upward 3 units

61–66 ■ The graphs of f and g are given. Find a formula for the
function g.

61. 62.

63. 64.

10 x

y
g

f(x)=|x|2

1
1
0 x

y
g

f(x)=|x|

x

y

1

10

g

f(x)=x3

x

y

g
f(x)=x2 1

10

1
 2 

f 1x 2 � 0 x 0

f 1x 2 � x2

f 1x 2 � x2

f 1x 2 � 24 x

f 1x 2 � 0 x 0

f 1x 2 � 0 x 0

f 1x 2 � 23 x

f 1x 2 � 1x

f 1x 2 � x3

f 1x 2 � x2

y � 3 � 21x � 1 2 2y � 1
2 1x � 4 � 3

y � 2 � 0 x 0y � 0 x � 2 0 � 2

y � 2 � 1x � 1y � 3 � 1
2 1x � 1 2 2

y � 1x � 4 � 3y � 1x � 3 2 2 � 5

y � 1
2 0 x 0y � 3 0 x 0

y � �52xy � 1
4 x2

y � 23 �xy � 24 �x

f 1x 2 � � 0 x 0f 1x 2 � �x3

f 1x 2 � 0 x � 3 0f 1x 2 � 1x � 4
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78. Viewing rectangle 3�6, 64 by 3�4, 44

(a) (b)

(c) (d)

79. If , graph the following functions in the
viewing rectangle 3�5, 54 by 3�4, 44. How is each graph re-
lated to the graph in part (a)?
(a) (b) (c)

80. If , graph the following functions in the
viewing rectangle 3�5, 54 by 3�4, 44. How is each graph re-
lated to the graph in part (a)?
(a) (b)
(c) (d)
(e)

81–88 ■ Determine whether the function f is even, odd, or nei-
ther. If f is even or odd, use symmetry to sketch its graph.

81. 82.

83. 84.

85. 86.

87. 88.

89–90 ■ The graph of a function defined for x � 0 is given.
Complete the graph for x � 0 to make (a) an even function and
(b) an odd function.

89. 90.

91–92 ■ These exercises show how the graph of is 
obtained from the graph of .

91. The graphs of and are 
shown. Explain how the graph of g is obtained from the 
graph of f.

y

x2

4

_2

8

0
_4

˝=|≈-4|

y

x2

4

_2

_4

8

0

Ï=≈-4

g 1x 2 � 0 x2 � 4 0f1x 2 � x2 � 4

y � f 1x 2
y � 0 f 1x 2 0

x

y

1
10x

y

1
10

f 1x 2 � x �
1
x

f 1x 2 � 1 � 13 x

f 1x 2 � 3x3 � 2x2 � 1f 1x 2 � x3 � x

f 1x 2 � x4 � 4x2f 1x 2 � x2 � x

f 1x 2 � x3f 1x 2 � x4

y � f A� 
1
2   
xB

y � f 1�2x 2y � �f 1�x 2
y � f 1�x 2y � f 1x 2

f 1x 2 � 22x � x2

y � f  A12  
xBy � f 12x 2y � f 1x 2

f 1x 2 � 22x � x2

y �
1

2 1x � 3
� 3y �

1

2 1x � 3

y �
11x � 3

y �
11x

70. The graph of g is given. Sketch the graphs of the following
functions.
(a) (b)
(c) (d)
(e) (f)

71. The graph of g is given. Use it to graph each of the following
functions.
(a) (b)

72. The graph of h is given. Use it to graph each of the following
functions.
(a) (b)

73–74 ■ Use the graph of described on page 188 
to graph the indicated function.

73. 74.

75–78 ■ Graph the functions on the same screen using the 
given viewing rectangle. How is each graph related to the graph
in part (a)?

75. Viewing rectangle 3�8, 84 by 3�2, 84
(a) (b)
(c) (d)

76. Viewing rectangle 3�8, 84 by 3�6, 64
(a) (b)
(c) (d)

77. Viewing rectangle 3�4, 64 by 3�4, 44
(a) (b)
(c) (d) y � � 

1
3 1x � 4 2 6y � � 

1
3  x 6

y � 1
3 x6y � x6

y � �3 0 x � 5 0y � �3 0 x 0
y � � 0 x 0y � 0 x 0

y � 4 � 214 x � 5y � 214 x � 5
y � 14 x � 5y � 14 x

y � “ 1
4  
x‘y � “2x‘

f 1x 2 � “x‘

y

x

h

0 3
_3

y � hA13   
xBy � h13x 2

x

y

1

10

g

y � gA12 xBy � g12x 2

0

2

2 x

y

y � 2g1x 2y � �g1x 2
y � g1x 2 � 2y � g1x � 2 2
y � g1�x 2y � g1x � 1 2
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96. Changing Temperature Scales The temperature on a cer-
tain afternoon is modeled by the function

where t represents hours after 12 noon and C is
measured in °C.
(a) What shifting and shrinking operations must be performed

on the function to obtain the function ?
(b) Suppose you want to measure the temperature in °F in-

stead. What transformation would you have to apply to the
function to accomplish this? (Use the fact that
the relationship between Celsius and Fahrenheit degrees is
given by .) Write the new function 
that results from this transformation.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
97. Sums of Even and Odd Functions If f and g are both

even functions, is necessarily even? If both are odd, is
their sum necessarily odd? What can you say about the sum if
one is odd and one is even? In each case, prove your answer.

98. Products of Even and Odd Functions Answer the same
questions as in Exercise 97, except this time consider the prod-
uct of f and g instead of the sum.

99. Even and Odd Power Functions What must be true about
the integer n if the function

is an even function? If it is an odd function? Why do you think
the names “even” and “odd” were chosen for these function
properties?

f 1x 2 � x n

f � g

y � F1t 2F � 9
5C � 32

y � C1t 2

y � C1t 2y � t2

10 � t � 6 2

C1t 2 � 1
2 t2 � 2

92. The graph of is shown. Use this graph to
sketch the graph of .

93–94 ■ Sketch the graph of each function.

93. (a) (b)

94. (a) (b)

A P P L I C A T I O N S
95. Sales Growth The annual sales of a certain company can be

modeled by the function , where t represents
years since 1990 and is measured in millions of dollars.
(a) What shifting and shrinking operations must be performed

on the function to obtain the function ?
(b) Suppose you want t to represent years since 2000 instead

of 1990. What transformation would you have to apply to
the function to accomplish this? Write the new
function that results from this transformation.y � g 1t 2

y � f 1t 2

y � f 1t 2y � t2

f 1t 2
f 1t 2 � 4 � 0.01t2

g 1x 2 � 0 x3 0f 1x 2 � x3

g 1x 2 � 0 4x � x2 0f 1x 2 � 4x � x2

1 3

2

4

_1_3

_4

y

x

g 1x 2 � 0 x4 � 4x2 0
f 1x 2 � x4 � 4x2
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In this section we study different ways to combine functions to make new functions.

▼ Sums, Differences, Products, and Quotients
Two functions f and g can be combined to form new functions , , , and 
in a manner similar to the way we add, subtract, multiply, and divide real numbers. For
example, we define the function by

The new function is called the sum of the functions f and g; its value at x is
. Of course, the sum on the right-hand side makes sense only if both and

are defined, that is, if x belongs to the domain of f and also to the domain of g. So if
the domain of f is A and the domain of g is B, then the domain of is the intersec-
tion of these domains, that is, . Similarly, we can define the difference , the
product fg, and the quotient f/g of the functions f and g. Their domains are , but
in the case of the quotient we must remember not to divide by 0.

A � B
f � gA � B

f � g
g1x 2

f 1x 2f 1x 2 � g1x 2
f � g

1f � g 2 1x 2 � f 1x 2 � g1x 2

f � g

f/gfgf � gf � g

2.6 COMBINING FUNCTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find sums, differences, products, and quotients of functions � Add functions
graphically � Find the composition of two functions � Express a given 
function as a composite function

The sum of f and g is defined by

The name of the new function is 
“f � g.” So this � sign stands for the
operation of addition of functions. 
The � sign on the right side, however,
stands for addition of the numbers
and .g1x 2

f1x 2

1f � g 2 1x 2 � f 1x 2 � g1x 2
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E X A M P L E  1 | Combinations of Functions and Their Domains

Let and .

(a) Find the functions , , , and and their domains.

(b) Find , and .

S O L U T I O N

(a) The domain of f is , and the domain of g is . The intersection
of the domains of f and g is

Thus we have

Domain

Domain 

Domain 

Domain 

Note that in the domain of we exclude 0 because .

(b) Each of these values exist because x � 4 is in the domain of each function:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

 a
f
g
b 14 2 �

f 14 2
g14 2

�
1

14 � 2 2  14
�

1

4

 1fg 2 14 2 � f 14 2g14 2 � a
1

4 � 2
b  14 � 1

 1f � g 2 14 2 � f 14 2 � g14 2 �
1

4 � 2
� 14 � � 

3

2

 1f � g 2 14 2 � f 14 2 � g14 2 �
1

4 � 2
� 14 �

5

2

g10 2 � 0f/g

5x 0  x � 0 and x 	 26 a
f
g
b 1x 2 �

f 1x 2
g1x 2

�
1

1x � 2 21x

5x 0  x � 0 and x 	 26 1fg 2 1x 2 � f 1x 2g1x 2 �
1x

x � 2

5x 0  x � 0 and x 	 26 1f � g 2 1x 2 � f 1x 2 � g1x 2 �
1

x � 2
� 1x

5x 0  x � 0 and x 	 26 1f � g 2 1x 2 � f 1x 2 � g1x 2 �
1

x � 2
� 1x

5x 0  x � 0 and x 	 26 � 30, 2 2 � 12, q 2

5x 0  x � 065x 0  x 	 26

1f/g 2 14 21f � g 2 14 2 , 1f � g 2 14 2 , 1fg 2 14 2
f/gfgf � gf � g

g1x 2 � 1xf 1x 2 �
1

x � 2
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ALGEBRA OF FUNCTIONS

Let f and g be functions with domains A and B. Then the functions ,
, , and are defined as follows.

 a
f

g
b 1x 2 �

f 1x 2

g1x 2
      Domain 5x � A � B 0  g1x 2 	 06

 1fg 2 1x 2 � f 1x 2g1x 2     Domain A � B

 1f � g 2 1x 2 � f 1x 2 � g1x 2     Domain A � B

1f � g 2 1x 2 � f 1x 2 � g1x 2     Domain A � B

f/gfgf � g
f � g

To divide fractions, invert the 
denominator and multiply:

 � 
1

1x � 2 21x

 � 
1

x � 2
# 11x

 
1/ 1x � 221x

�
1/ 1x � 2 21x/1
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The graph of the function can be obtained from the graphs of f and g by graph-
ical addition. This means that we add corresponding y-coordinates, as illustrated in the
next example.

E X A M P L E  2 | Using Graphical Addition

The graphs of f and g are shown in Figure 1. Use graphical addition to graph the func-
tion .

S O L U T I O N We obtain the graph of by “graphically adding” the value of 
to as shown in Figure 2. This is implemented by copying the line segment PQ on
top of PR to obtain the point S on the graph of .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

▼ Composition of Functions
Now let’s consider a very important way of combining two functions to get a new func-
tion. Suppose and . We may define a new function h as

The function h is made up of the functions f and g in an interesting way: Given a number x,
we first apply the function g to it, then apply f to the result. In this case, f is the rule “take
the square root,” g is the rule “square, then add 1,” and h is the rule “square, then add 1, then
take the square root.” In other words, we get the rule h by applying the rule g and then the
rule f. Figure 3 shows a machine diagram for h.

In general, given any two functions f and g, we start with a number x in the domain of
g and find its image . If this number is in the domain of f, we can then calculate
the value of . The result is a new function that is obtained by sub-
stituting g into f. It is called the composition (or composite) of f and g and is denoted by

(“f composed with g”).f � g

h1x 2 � f 1g1x 22f 1g1x 22
g1x 2g1x 2

h1x 2 � f 1g1x 22 � f 1x 2 � 1 2 � 2x 2 � 1

g1x 2 � x2 � 1f 1x 2 � 1x

f � g
g1x 2

f 1x 2f � g

f � g

f � g
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y

xP
f(x)

g(x)

y=(f+g)(x)

y=˝

y=Ï

f(x)
S
R

Q

F I G U R E  2 Graphical addition

gx
input

f ≈+1
output

x2+1 

F I G U R E  3 The h machine is composed of the g machine (first) and
then the f machine.

y

x

y=˝

y=Ï

F I G U R E  1
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The domain of is the set of all x in the domain of g such that is in the do-
main of f. In other words, is defined whenever both and are
defined. We can picture using an arrow diagram (Figure 4).

E X A M P L E  3 | Finding the Composition of Functions

Let .

(a) Find the functions and and their domains.

(b) Find and .

S O L U T I O N

(a) We have

Definition of f � g

Definition of g

Definition of f

and Definition of g � f

Definition of f

Definition of g

The domains of both f � g and g � f are .

(b) We have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 25 AND 39 ■

You can see from Example 3 that, in general, . Remember that the nota-
tion means that the function g is applied first and then f is applied second.f � g

f � g 	 g � f

 1g � f 2 17 2 � g1f 17 22 � g149 2 � 49 � 3 � 46

 1f � g 2 15 2 � f 1g15 22 � f 12 2 � 22 � 4

�

 � x 2 � 3

 � g1x 2 2

 1g � f 2 1x 2 � g1f 1x 22

 � 1x � 3 2 2

 � f 1x � 3 2

1f � g 2 1x 2 � f 1g1x 22

1g � f 2 17 21f � g 2 15 2
g � ff � g

f 1x 2 � x2 and g1x 2 � x � 3

f � g
f 1g1x 22g1x 21f � g 2 1x 2

g1x 2f � g
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COMPOSITION OF FUNCTIONS

Given two functions f and g, the composite function (also called the com-
position of f and g) is defined by

1f � g 2 1x 2 � f 1g1x 22

f � g

F I G U R E  4 Arrow diagram for f � g

x g(x) fÓ˝Ô

g f

f$g

In Example 3, f is the rule “square”
and g is the rule “subtract 3.” The 
function f � g first subtracts 3 and then
squares; the function g � f first squares
and then subtracts 3.
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E X A M P L E  4 | Finding the Composition of Functions

If and , find the following functions and their domains.

(a) (b) (c) (d)

S O L U T I O N

(a) Definition of f � g

Definition of g

Definition of f

The domain of is .

(b) Definition of g � f

Definition of f

Definition of g

For to be defined, we must have . For to be defined, we must
have , that is, , or . Thus we have , so the do-
main of is the closed interval 30, 44.

(c) Definition of f � f

Definition of f

Definition of f

The domain of is .

(d) Definition of g � g

Definition of g

Definition of g

This expression is defined when both and . The first
inequality means , and the second is equivalent to , or

, or . Thus , so the domain of is 3�2, 24.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

It is possible to take the composition of three or more functions. For instance, the com-
posite function is found by first applying h, then g, and then f as follows:

E X A M P L E  5 | A Composition of Three Functions

Find if , and .

S O L U T I O N

Definition of f � g � h

Definition of h

Definition of g

Definition of f

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 49 ■

 � 
1x � 3 2 10

1x � 3 2 10 � 1

 � f 11x � 3 2 10 2

 � f 1g1x � 3 22

1f � g � h 2 1x 2 � f 1g1h1x 222

h1x 2 � x � 3f 1x 2 � x/ 1x � 1 2 , g1x 2 � x10f � g � h

1f � g � h 2 1x 2 � f 1g1h1x 222

f � g � h

g � g�2 � x � 2x � �22 � x � 4
12 � x � 2x � 2

2 � 12 � x � 02 � x � 0

 � 32 � 12 � x

 � g112 � x 2

1g � g 2 1x 2 � g1g1x 22

30,  q 2f � f

 � 14 x

 � 31x

 � f 11x 2

1f � f 2 1x 2 � f 1f 1x 22

g � f
0 � x � 4x � 41x � 22 � 1x � 0

32 � 1xx � 01x

 � 32 � 1x

 � g11x 2

1g � f 2 1x 2 � g1f 1x 22

5x 0  2 � x � 06 � 5x 0  x � 26 � 1�q,  2 4f � g
 � 14 2 � x

 � 312 � x

 � f 112 � x 2

 1f � g 2 1x 2 � f 1g1x 22

g � gf � fg � ff � g
g1x 2 � 12 � xf 1x 2 � 1x

226 C H A P T E R  2 | Functions

Unless otherwise noted, all content on this page is © Cengage Learning.

f$g

g$f

f$f

g$g

The graphs of f and g of Example 4, as
well as those of f � g, g � f, f � f, and 
g � g, are shown below. These graphs
indicate that the operation of composi-
tion can produce functions that are quite
different from the original functions.

fg
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So far, we have used composition to build complicated functions from simpler ones.
But in calculus it is useful to be able to “decompose” a complicated function into simpler
ones, as shown in the following example.

E X A M P L E  6 | Recognizing a Composition of Functions

Given , find functions f and g such that .

S O L U T I O N Since the formula for F says to first add 9 and then take the fourth root,
we let

Then

Definition of f � g

Definition of g

Definition of f

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

E X A M P L E  7 | An Application of Composition of Functions

A ship is traveling at 20 mi/h parallel to a straight shoreline. The ship is 5 mi from shore.
It passes a lighthouse at noon.

(a) Express the distance s between the lighthouse and the ship as a function of d, the
distance the ship has traveled since noon; that is, find f so that .

(b) Express d as a function of t, the time elapsed since noon; that is, find g so that
.

(c) Find . What does this function represent?

S O L U T I O N We first draw a diagram as in Figure 5.

(a) We can relate the distances s and d by the Pythagorean Theorem. Thus s can be ex-
pressed as a function of d by

(b) Since the ship is traveling at 20 mi/h, the distance d it has traveled is a function of t
as follows:

(c) We have

Definition of f � g

Definition of g

Definition of f

The function gives the distance of the ship from the lighthouse as a function 
of time.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 65 ■

f � g

 � 225 � 120t 2 2

 � f 120t 2

 1f � g 2 1t 2 � f 1g1t 22

d � g1t 2 � 20t

s � f 1d 2 � 225 � d2

f � g
d � g1t 2

s � f 1d 2

 � F1x 2

 � 14 x � 9

 � f 1x � 9 2

 1f � g 2 1x 2 � f 1g1x 22

g1x 2 � x � 9  and  f 1x 2 � 14 x

F � f � gF1x 2 � 14 x � 9
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5 mi
time=noon

time=t

s d

F I G U R E  5

distance � rate � time

90169_Ch02_173-256.qxd  11/23/11  2:13 PM  Page 227



Unless otherwise noted, all content on this page is © Cengage Learning.

228 C H A P T E R  2 | Functions

C O N C E P T S
1. From the graphs of f and g in the figure, we find

2. By definition, . So if and 

, then .

3. If the rule of the function f is “add one” and the rule of the
function g is “multiply by 2,” then the rule of is 

“ ,”
and the rule of is

“ .”

4. We can express the functions in Exercise 3 algebraically as 

S K I L L S
5–14 ■ Find , , , and and their domains.

5. , 6. ,

7. , 8. ,

9. ,

10. ,

11. ,

12. ,

13. ,

14. ,

15–18 ■ Find the domain of the function.

15. 16.

17. 18. k1x 2 �
1x � 3

x � 1
h1x 2 � 1x � 3 2�1/4

g1x 2 � 1x � 1 �
1
x

f 1x 2 � 1x � 11 � x

g1x 2 �
x

x � 1
f 1x 2 �

2

x � 1

g1x 2 �
4

x � 4
f 1x 2 �

2
x

g1x 2 � 2x2 � 4f 1x 2 � 29 � x2

g1x 2 � 11 � xf 1x 2 � 24 � x2

g1x 2 � 3x2 � 1f 1x 2 � x2 � 2x

g1x 2 � x2f 1x 2 � x � 3

g1x 2 � x 3f 1x 2 � xg1x 2 � x 2f 1x 2 � x

g1x 2 � 2xf 1x 2 � xg1x 2 � 2xf 1x 2 � x

f/gfgf � gf � g

g � f1x 2 �f � g1x 2 �

g1x 2 �f 1x 2 �

g � f

f � g

f � g12 2 �f 15 2 � 12

g12 2 � 5f � g1x 2 �

0 

2 

2 x 

g 

f 

y 

a
f
g
b 12 2 �1fg 2 12 2 �

1f � g 2 12 2 �1f � g 2 12 2 �

19–20 ■ Use graphical addition to sketch the graph of .

19. 20.

21–24 ■ Draw the graphs of f, g, and on a common screen
to illustrate graphical addition.

21. ,

22. ,

23. ,

24. ,

25–30 ■ Use and to evaluate the
expression.

25. (a) (b)

26. (a) (b)

27. (a) (b)

28. (a) (b)

29. (a) (b)

30. (a) (b)

31–36 ■ Use the given graphs of f and g to evaluate the expression.

31. 32.

33. 34.

35. 36.

37–48 ■ Find the functions , , , and and their
domains.

37. ,

38. , g1x 2 �
x

2
f 1x 2 � 6x � 5

g1x 2 � 4x � 1f 1x 2 � 2x � 3

g � gf � fg � ff � g

1f � f 2 14 21g � g 2 1�2 2

1f � g 2 10 21g � f 2 14 2

g1f 10 22f 1g12 22

x

y

0

f
g

2

2

1g � g 2 1x 21f � f 2 1x 2

1g � f 2 1x 21f � g 2 1x 2

1g � g 2 12 21f � f 2 1�1 2

1g � f 2 1�2 21f � g 2 1�2 2

g1g13 22f 1f 14 22

g1f 10 22f 1g10 22

g1x 2 � 2 � x2f 1x 2 � 3x � 5

g1x 2 � B1 �
x2

9
f 1x 2 � 14 1 � x

g1x 2 � 1
3  

x 3f 1x 2 � x2

g1x 2 � 1xf 1x 2 � x2

g1x 2 � 11 � xf 1x 2 � 11 � x

f � g

0

f

g x

y

0
f

g

x

y

f � g

2 . 6  E X E R C I S E S
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63. Use the fact that

� �

to express , the revenue from an order of x stickers, as a
product of two functions of x.

64. Use the fact that 

� �

to express , the profit on an order of x stickers, as a differ-
ence of two functions of x.

65. Area of a Ripple A stone is dropped in a lake, creating a
circular ripple that travels outward at a speed of 60 cm/s.
(a) Find a function g that models the radius as a function of

time.
(b) Find a function f that models the area of the circle as a

function of the radius.
(c) Find . What does this function represent?

66. Inflating a Balloon A spherical balloon is being inflated.
The radius of the balloon is increasing at the rate of 
1 cm/s.
(a) Find a function f that models the radius as a function of

time.
(b) Find a function g that models the volume as a function of

the radius.
(c) Find . What does this function represent?

67. Area of a Balloon A spherical weather balloon is being
inflated. The radius of the balloon is increasing at the rate of 
2 cm/s. Express the surface area of the balloon as a function of
time t (in seconds).

68. Multiple Discounts You have a $50 coupon from the man-
ufacturer good for the purchase of a cell phone. The store
where you are purchasing your cell phone is offering a 20%
discount on all cell phones. Let x represent the regular price of
the cell phone.
(a) Suppose only the 20% discount applies. Find a function f

that models the purchase price of the cell phone as a func-
tion of the regular price x.

(b) Suppose only the $50 coupon applies. Find a function g
that models the purchase price of the cell phone as a func-
tion of the sticker price x.

(c) If you can use the coupon and the discount, then the pur-
chase price is either or , depending on the
order in which they are applied to the price. Find both

and . Which composition gives the lower
price?

g � f 1x 2f � g1x 2

g � f 1x 2f � g1x 2

g � f

f � g

P1x 2

costrevenueprofit

R1x 2

number of items soldprice per itemrevenue

39. ,

40. ,

41. ,

42. ,

43. ,

44. ,

45. ,

46. ,

47. ,

48. ,

49–52 ■ Find .

49. , ,

50. , ,

51. , ,

52. , ,

53–58 ■ Express the function in the form .

53.

54.

55.

56.

57.

58.

59–62 ■ Express the function in the form .

59.

60.

61.

62.

A P P L I C A T I O N S
63–64 ■ Revenue, Cost, and Profit A print shop makes
bumper stickers for election campaigns. If x stickers are ordered
(where ), then the price per bumper sticker is

dollars, and the total cost of producing the 
order is dollars.0.095x � 0.0000005x2
0.15 � 0.000002x

x � 10,000

G1x 2 �
2

13 � 1x 2 2

G1x 2 � 14 � 13 x 2 9

F1x 2 � 33 1x � 1

F1x 2 �
1

x2 � 1

f � g � h

H1x 2 � 31 � 1x

H1x 2 � 0 1 � x3 0

G1x 2 �
1

x � 3

G1x 2 �
x2

x2 � 4

F1x 2 � 1x � 1

F1x 2 � 1x � 9 2 5
f � g

h1x 2 � 13 xg1x 2 �
x

x � 1
f 1x 2 � 1x

h1x 2 � 1xg1x 2 � x � 5f 1x 2 � x4 � 1

h1x 2 � x2 � 2g1x 2 � x3f 1x 2 �
1
x

h1x 2 � x � 1g1x 2 � 1xf 1x 2 � x � 1

f � g � h

g1x 2 �
x

x � 2
f 1x 2 �

2
x

g1x 2 �
1
x

f 1x 2 �
x

x � 1

g1x 2 � x2 � 4xf 1x 2 �
11x

g1x 2 � 2x � 1f 1x 2 �
x

x � 1

g1x 2 � 0 x � 4 0f 1x 2 � x � 4

g1x 2 � 2x � 3f 1x 2 � 0 x 0

g1x 2 � 1x � 3f 1x 2 � x2

g1x 2 � 2x � 4f 1x 2 �
1
x

g1x 2 � 13 xf 1x 2 � x3 � 2

g1x 2 � x � 1f 1x 2 � x2
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Find

What do these compositions represent? Find a formula for
what you get when you compose n copies of A.

72. Composing Linear Functions The graphs of the 
functions

are lines with slopes m1 and m2, respectively. Is the graph of
a line? If so, what is its slope?

73. Solving an Equation for an Unknown Function
Suppose that

Find a function f such that . (Think about what oper-
ations you would have to perform on the formula for g to end
up with the formula for h.) Now suppose that

Use the same sort of reasoning to find a function g such that
.

74. Compositions of Odd and Even Functions Suppose that

If g is an even function, is h necessarily even? If g is odd, is 
h odd? What if g is odd and f is odd? What if g is odd and 
f is even?

h � f � g

f � g � h

h1x 2 � 3x2 � 3x � 2

f 1x 2 � 3x � 5

f � g � h

h1x 2 � 4x2 � 4x � 7

g1x 2 � 2x � 1

f � g

g1x 2 � m2x � b2

f 1x 2 � m1x � b1

A � A � A � A

A � A � A

A � A
69. Multiple Discounts An appliance dealer advertises a 

10% discount on all his washing machines. In addition, the
manufacturer offers a $100 rebate on the purchase of a 
washing machine. Let x represent the sticker price of the
washing machine.
(a) Suppose only the 10% discount applies. Find a function f

that models the purchase price of the washer as a function
of the sticker price x.

(b) Suppose only the $100 rebate applies. Find a function g
that models the purchase price of the washer as a function
of the sticker price x.

(c) Find and . What do these functions represent?
Which is the better deal?

70. Airplane Trajectory An airplane is flying at a speed of 
350 mi/h at an altitude of one mile. The plane passes directly
above a radar station at time t � 0.
(a) Express the distance s (in miles) between the plane and

the radar station as a function of the horizontal distance d
(in miles) that the plane has flown.

(b) Express d as a function of the time t (in hours) that the
plane has flown.

(c) Use composition to express s as a function of t.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
71. Compound Interest A savings account earns 5% interest

compounded annually. If you invest x dollars in such an ac-
count, then the amount of the investment after one year is
the initial investment plus 5%; that is,

A1x 2 � x � 0.05x � 1.05x

A1x 2

s

d

1 mi 

g � ff � g
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Iteration and Chaos

In this project we explore the process of repeatedly com-
posing a function with itself; the result can be regular or 
chaotic. You can find the project at the book companion 
website: www.stewartmath.com

❍ DISCOVERY
PROJECT

2.7 ONE-TO-ONE FUNCTIONS AND THEIR INVERSES

LEARNING OBJECTIVES After completing this section, you will be able to:

Determine whether a function is one-to-one � Find the inverse of a 
one-to-one function � Draw the graph of the inverse of a function

The inverse of a function is a rule that acts on the output of the function and produces the
corresponding input. So the inverse “undoes” or reverses what the function has done. Not
all functions have inverses; those that do are called one-to-one.
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▼ One-to-One Functions
Let’s compare the functions f and g whose arrow diagrams are shown in Figure 1. Note
that f never takes on the same value twice (any two numbers in A have different images),
whereas g does take on the same value twice (both 2 and 3 have the same image, 4). In
symbols, but whenever x1 	 x2. Functions that have this latter
property are called one-to-one.

F I G U R E  1

An equivalent way of writing the condition for a one-to-one function is this:

.

If a horizontal line intersects the graph of f at more than one point, then we see from Fig-
ure 2 that there are numbers x1 	 x2 such that . This means that f is not one-
to-one. Therefore, we have the following geometric method for determining whether a
function is one-to-one.

E X A M P L E  1 | Deciding Whether a Function Is One-to-One

Is the function one-to-one?

S O L U T I O N  1 If x1 	 x2, then (two different numbers cannot have the same
cube). Therefore, is one-to-one.

S O L U T I O N  2 From Figure 3 we see that no horizontal line intersects the graph of
more than once. Therefore, by the Horizontal Line Test, f is one-to-one.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

f 1x 2 � x3

f 1x 2 � x3
x3

1 	 x3
2

f 1x 2 � x3

f 1x1 2 � f 1x2 2

If f 1x1 2 � f 1x2 2 , then x1 � x2

10
7

4
2

B

f is one-to-one

f

A

4
3

2
1

10

4
2

B

g is not one-to-one

g

A

4
3

2
1

f 1x1 2 	 f 1x2 2g 12 2 � g 13 2
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DEFINITION OF A ONE-TO-ONE FUNCTION

A function with domain A is called a one-to-one function if no two elements of
A have the same image, that is,

f 1x1 2 	 f 1x2 2 whenever x1 	 x2

HORIZONTAL LINE TEST

A function is one-to-one if and only if no horizontal line intersects its graph more
than once.

y

xx⁄

y=Ï

0 x¤

f(x⁄) f(x¤)

F I G U R E  2 This function is not 
one-to-one because .f 1x1 2 � f 1x2 2

1

y

x0

1

F I G U R E  3 is one-to-one.f 1x 2 � x3
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Notice that the function f of Example 1 is increasing and is also one-to-one. In
fact, it can be proved that every increasing function and every decreasing function is
one-to-one.

E X A M P L E  2 | Deciding Whether a Function Is One-to-One

Is the function one-to-one?

S O L U T I O N  1 This function is not one-to-one because, for instance,

so 1 and �1 have the same image.

S O L U T I O N  2 From Figure 4 we see that there are horizontal lines that intersect the
graph of g more than once. Therefore, by the Horizontal Line Test, g is not one-to-one.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

Although the function g in Example 2 is not one-to-one, it is possible to restrict its do-
main so that the resulting function is one-to-one. In fact, if we define

then h is one-to-one, as you can see from Figure 5 and the Horizontal Line Test.

E X A M P L E  3 | Showing That a Function Is One-to-One

Show that the function is one-to-one.

S O L U T I O N Suppose there are numbers x1 and x2 such that . Then

Suppose

Subtract 4

Divide by 3

Therefore f is one-to-one.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 13 ■

▼ The Inverse of a Function
One-to-one functions are important because they are precisely the functions that possess
inverse functions according to the following definition.

This definition says that if f takes x to y, then f�1 takes y back to x. (If f were not one-
to-one, then f�1 would not be defined uniquely.) The arrow diagram in Figure 6 indicates
that f�1 reverses the effect of f. From the definition we have

 range of f�1 � domain of f

 domain of f�1 � range of f

 x1 � x2

 3x1 � 3x2

f 1x 1 2 � f 1x 2 2 3x1 � 4 � 3x2 � 4

f 1x1 2 � f 1x2 2

f 1x 2 � 3x � 4

h1x 2 � x2  x � 0

g 11 2 � 1  and  g 1�1 2 � 1

g 1x 2 � x2
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y

x10

1

F I G U R E  4 is not 
one-to-one.

g 1x 2 � x 2

y

x10

1

F I G U R E  5 is 
one-to-one.

h 1x 2 � x 2 1x � 0 2

y=Ï

BA

x
f

f_ 1

F I G U R E  6

DEFINITION OF THE INVERSE OF A FUNCTION

Let f be a one-to-one function with domain A and range B. Then its inverse func-
tion f�1 has domain B and range A and is defined by

for any y in B.

f�1 1y 2 � x 3  f 1x 2 � y

90169_Ch02_173-256.qxd  11/23/11  2:13 PM  Page 232



E X A M P L E  4 | Finding f�1 for Specific Values

If , and , find , and .

S O L U T I O N From the definition of f�1 we have

Figure 7 shows how f�1 reverses the effect of f in this case.

F I G U R E  7

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 23 ■

E X A M P L E  5 | Finding Values of f�1 Graphically

The graph of a function f is given in Figure 8. Use the graph to find 

(a) (b)

S O L U T I O N

(a) From the graph we see that , so . (See Figure 9.)

(b) From the graph we see that , so . (See Figure 9.)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27 ■

By definition the inverse function f�1 undoes what f does: If we start with x, apply f,
and then apply f�1, we arrive back at x, where we started. Similarly, f undoes what f�1

does. In general, any function that reverses the effect of f in this way must be the inverse
of f. These observations are expressed precisely as follows.

f 
�115 2 � 7f 17 2 � 5

f 
�113 2 � 4f 14 2 � 3

f 
�115 2f 

�113 2

B

5
7
_10

f

A

1
3
8

A

1
3
8

f_ 1

B

5
7
_10

 f�11�10 2 � 8 because f 18 2 � �10

 f�117 2 � 3 because f 13 2 � 7

 f�115 2 � 1 because f 11 2 � 5

f�11�10 2f�115 2 , f�117 2f 18 2 � �10f 11 2 � 5, f 13 2 � 7
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Don’t mistake the �1 in f�1 for
an exponent.

The reciprocal is written as
.1f 1x 2 2�1

1/f 1x 2

f�11x 2 does not mean 
1

f 1x 2

x0
1

3

5

1 4 7

f

y

F I G U R E  9 Finding values of f�1

from the graph of f

x0
1

1

f

y

F I G U R E  8 Graph of f
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These properties indicate that f is the inverse function of f�1, so we say that f and f�1

are inverses of each other.

E X A M P L E  6 | Verifying That Two Functions Are Inverses

Show that and are inverses of each other.

S O L U T I O N Note that the domain and range of both f and g is . We have

So by the Property of Inverse Functions, f and g are inverses of each other. These equa-
tions simply say that the cube function and the cube root function, when composed,
cancel each other.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

▼ Finding the Inverse of a Function
Now let’s examine how we compute inverse functions. We first observe from the defini-
tion of f�1 that

So if and if we are able to solve this equation for x in terms of y, then we must
have . If we then interchange x and y, we have , which is the desired
equation.

Note that Steps 2 and 3 can be reversed. In other words, we can interchange x and y
first and then solve for y in terms of x.

E X A M P L E  7 | Finding the Inverse of a Function

Find the inverse of the function .

S O L U T I O N First we write .

y � 3x � 2

y � f 1x 2

f 1x 2 � 3x � 2

y � f�11x 2x � f�11y 2
y � f 1x 2

y � f 1x 2 3  f�11  y 2 � x

 f 1g 1x 2 2 � f 1x1/3 2 � 1x1/3 2 3 � x

 g 1f 1x 2 2 � g 1x3 2 � 1x3 2 1/3 � x

�

g1x 2 � x1/3f 1x 2 � x3
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HOW TO FIND THE INVERSE OF A ONE-TO-ONE FUNCTION

1. Write 

2. Solve this equation for x in terms of y (if possible).

3. Interchange x and y. The resulting equation is .y � f�11x 2

y � f 1x 2 .

In Example 7 note how f�1 reverses 
the effect of f. The function f is the 
rule “Multiply by 3, then subtract 2,”
whereas f�1 is the rule “Add 2, then
divide by 3.”

INVERSE FUNCTION PROPERT Y

Let f be a one-to-one function with domain A and range B. The inverse function
f�1 satisfies the following cancellation properties:

Conversely, any function f�1 satisfying these equations is the inverse of f.

f1f �11x 2 2 � x for every x in B

f �11f 1x 2 2 � x for every x in A
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Then we solve this equation for x:

Add 2

Divide by 3

Finally, we interchange x and y:

Therefore, the inverse function is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

E X A M P L E  8 | Finding the Inverse of a Function

Find the inverse of the function .

S O L U T I O N We first write and solve for x:

Equation defining function

Multiply by 2

Add 3 (and switch sides)

Take fifth root of each side

Then we interchange x and y to get . Therefore the inverse function is 

.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

A rational function is a function defined by a rational expression. In the next exam-
ple we find the inverse of a rational function.

E X A M P L E  9 | Finding the Inverse of a Rational Function 

Find the inverse of the function .  

S O L U T I O N We first write and solve for x:

Equation defining function

Multiply by x � 1

Expand

Bring x-terms to LHS

Factor x

Divide by y � 2

Therefore the inverse function is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 49 ■

f �11x 2 �
x � 3

x � 2

 x �
y � 3

y � 2

 x1y � 2 2 � y � 3

 yx � 2x � y � 3

 yx � y � 2x � 3

 y1x � 1 2 � 2x � 3

 y �
2x � 3

x � 1

y � 12x � 3 2 / 1x � 1 2

f 1x 2 �
2x � 3

x � 1

f�11x 2 � 12x � 3 2 1/5

y � 12x � 3 2 1/5

 x � 12y � 3 2 1/5

 x5 � 2y � 3

 2y � x5 � 3

 y �
x5 � 3

2

y � 1x5 � 3 2 /2

f 1x 2 �
x5 � 3

2

f�11x 2 �
x � 2

3

y �
x � 2

3

 x �
y � 2

3

 3x � y � 2
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C H E C K  Y O U R  A N S W E R

We use the Inverse Function Property:

✓ � x � 2 � 2 � x

 � 3 a
x � 2

3
b � 2

 f1f �11x 2 2 � f a
x � 2

3
b

 �
3x

3
� x

 �
13x � 2 2 � 2

3

 f �11f 1x 2 2 � f �113x � 2 2

In Example 8 note how f�1 reverses
the effect of f. The function f is the
rule “Take the fifth power, subtract 3,
then divide by 2,” whereas f�1 is the
rule “Multiply by 2, add 3, then take
the fifth root.”

Rational functions are studied in 
Section 3.7.

C H E C K  Y O U R  A N S W E R

We use the Inverse Function Property:

✓ �
2x

2
� x

 �
2x � 3 � 3

2

 �
3 12x � 3 2 1/5 4 5 � 3

2

 f1f �11x 2 2 � f 1 12x � 3 2 1/5 2

 � 1x5 2 1/5 � x

 � 1x5 � 3 � 3 2 1/5

 � c2 a
x5 � 3

2
b � 3 d

1/5

 f �11f 1x 2 2 � f �1 a
x5 � 3

2
b
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▼ Graphing the Inverse of a Function
The principle of interchanging x and y to find the inverse function also gives us a method
for obtaining the graph of f�1 from the graph of f. If , then . Thus the
point is on the graph of f if and only if the point is on the graph of f�1. But we
get the point from the point by reflecting in the line y � x (see Figure 10).
Therefore, as Figure 11 illustrates, the following is true.

F I G U R E  1 0 F I G U R E  1 1

E X A M P L E  1 0 | Graphing the Inverse of a Function

(a) Sketch the graph of .

(b) Use the graph of f to sketch the graph of f�1.

(c) Find an equation for f�1.

S O L U T I O N

(a) Using the transformations from Section 2.5, we sketch the graph of 
by plotting the graph of the function (Example 1(c) in Section 2.2) and
shifting it to the right 2 units.

(b) The graph of f�1 is obtained from the graph of f in part (a) by reflecting it in the
line y � x, as shown in Figure 12.

(c) Solve for x, noting that y � 0:

Square each side

Add 2

Interchange x and y:

Thus

This expression shows that the graph of f�1 is the right half of the parabola 
y � x2 � 2, and from the graph shown in Figure 12 this seems reasonable.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 67 ■

 f �11x 2 � x2 � 2  x � 0

y � x 2 � 2  x � 0

 x � y2 � 2  y � 0

 x � 2 � y2

 1x � 2 � y

y � 1x � 2

y � 1x
y � 1x � 2

f 1x 2 � 1x � 2

y=x

f

f _¡

y

x

y=x

(b, a)

(a, b)

y

x

The graph of f�1 is obtained by reflecting the graph of f in the line y � x.

1a, b 21b, a 2
1b, a 21a, b 2

f�11b 2 � af 1a 2 � b
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y

x2

2

y=f–¡(x)

y=Ï= x-2

y=x

F I G U R E  1 2

In Example 10 note how f�1 reverses
the effect of f. The function f is the
rule “Subtract 2, then take the square
root,” whereas f�1 is the rule “Square,
then add 2.”
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11. 12.

13–22 ■ Determine whether the function is one-to-one.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23–26 ■ Assume that f is a one-to-one function.

23. (a) If , find .
(b) If , find .

24. (a) If , find .
(b) If , find .

25. If , find .

26. If with x � �2, find .

27–28 ■ A graph of a function is given. Use the graph to find the
indicated values.

27. (a) (b) (c)

28. (a) (b) (c)

29–40 ■ Use the Inverse Function Property to show that f and g
are inverses of each other.

29.

30. f 1x 2 � 3x; g1x 2 �
x

3

f 1x 2 � x � 6; g 1x 2 � x � 6

0 4

4 g

y

x

g�116 2g�115 2g�112 2

0 4

4
f

y

x

f 
�116 2f 

�115 2f 
�112 2

g�115 2g 1x 2 � x2 � 4x

f�113 2f 1x 2 � 5 � 2x

f 12 2f�114 2 � 2
f�1118 2f 15 2 � 18

f 1�1 2f�113 2 � �1
f�117 2f 12 2 � 7

f 1x 2 �
1
x

f 1x 2 �
1

x2

f 1x 2 � x4 � 5, 0 � x � 2f 1x 2 � x4 � 5

h1x 2 � x3 � 8h1x 2 � x2 � 2x

g1x 2 � 0 x 0g 1x 2 � 1x

f 1x 2 � 3x � 2f 1x 2 � �2x � 4

y

x0

y

x0

C O N C E P T S
1. A function f is one-to-one if different inputs produce 

outputs. You can tell from the graph that a function 

is one-to-one by using the Test.

2. (a) For a function to have an inverse, it must be .
So which one of the following functions has an inverse?

(b) What is the inverse of the function that you chose in part (a)?

3. A function f has the following verbal description: “Multiply 
by 3, add 5, and then take the third power of the result.”
(a) Write a verbal description for f�1.
(b) Find algebraic formulas that express f and f�1 in terms of

the input x.

4. A graph of a function f is given.  Does f have an inverse?  If 

so, find and .

5. If the point (3, 4) is on the graph of the function f, then the 

point ( , ) is on the graph of .

6. True or false?

(a) If f has an inverse, then is the same as .

(b) If f has an inverse, then .

S K I L L S
7–12 ■ A graph of a function f is given. Determine whether f is
one-to-one.

7. 8.

9. 10. y

x0

y

x0

y

x0

y

x0

f �11f 1x 2 2 � x

1

f 1x 2
f �11x 2

f 
�1

0 1
1 f

x

y

f 
�113 2 �f 

�111 2 �

f 1x 2 � x2  g 1x 2 � x3
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2 . 7  E X E R C I S E S
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75–78 ■ A one-to-one function is given. (a) Find the inverse of
the function. (b) Graph both the function and its inverse on the
same screen to verify that the graphs are reflections of each other
in the line y � x.

75. 76.

77. 78.

79–82 ■ The given function is not one-to-one. Restrict its domain
so that the resulting function is one-to-one. Find the inverse of 
the function with the restricted domain. (There is more than one
correct answer.)

79. 80.

81. 82.

83–84 ■ Use the graph of f to sketch the graph of f�1.

83. 84.

A P P L I C A T I O N S
85. Fee for Service For his services, a private investigator re-

quires a $500 retention fee plus $80 per hour. Let x represent
the number of hours the investigator spends working on a
case.
(a) Find a function f that models the investigator’s fee as a

function of x.
(b) Find f �1. What does f �1 represent?
(c) Find f �111220 2. What does your answer represent?

x

y

0 1
1

x

y

0 1
1

y

x0 1

1

y

x0_1

1

k1x 2 � 0 x � 3 0h1x 2 � 1x � 2 2 2

y

x0 1

1
x0 1

1

y

g1x 2 � 1x � 1 2 2f 1x 2 � 4 � x2

g1x 2 � x2 � 1, x � 0g1x 2 � 2x � 3

f  1x 2 � 2 � 1
2  xf 1x 2 � 2 � x

31.

32.

33. 34.

35. ;

36.

37. ;

38. ;

39. ;

40. ;

41–64 ■ Find the inverse function of f.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65–68 ■ A function f is given. (a) Sketch the graph of f. (b) Use
the graph of f to sketch the graph of f�1. (c) Find f�1.

65. 66.

67. 68.

69–74 ■ Draw the graph of f and use it to determine whether the
function is one-to-one.

69. 70.

71. 72.

73. 74. f 1x 2 � x # 0 x 0f 1x 2 � 0 x 0 � 0 x � 6 0

f 1x 2 � 2x3 � 4x � 1f 1x 2 �
x � 12

x � 6

f 1x 2 � x3 � xf 1x 2 � x3 � x

f 1x 2 � x3 � 1f 1x 2 � 2x � 1

f 1x 2 � 16 � x2, x � 0f 1x 2 � 3x � 6

f 1x 2 � 1 � x3f 1x 2 � x4, x � 0

f 1x 2 � 29 � x2, 0 � x � 3f 1x 2 � 1 � 21 � x

f 1x 2 � 12 � x3 2 5f 1x 2 � 4 � 13 x

f 1x 2 � 22x � 1f 1x 2 � 4 � x2, x � 0

f 1x 2 � x2 � x, x � � 
1
2f 1x 2 � 22 � 5x

f 1x 2 �
2x � 1

x � 3
f 1x 2 �

1 � 3x

5 � 2x

f 1x 2 �
4x � 2

3x � 1
f 1x 2 �

2x � 5

x � 7

f 1x 2 �
3x

x � 2
f 1x 2 �

x

x � 4

f 1x 2 �
x � 2

x � 2
f 1x 2 �

1

x � 2

f 1x 2 �
1

x2, x � 0f 1x 2 � 5 � 4x3

f 1x 2 � 3 � 5xf 1x 2 � 4x � 7

f 1x 2 � 6 � xf 1x 2 � 2x � 1

g1x 2 �
5 � 4x

1 � 3x
f 1x 2 �

x � 5

3x � 4

g1x 2 �
2x � 2

x � 1
f1x 2 �

x � 2

x � 2

g1x 2 � 24 � x2, 0 � x � 2

f 1x 2 � 24 � x2, 0 � x � 2

g 1x 2 �
1
x

� 1f 1x 2 �
1

x � 1

f 1x 2 � x3 � 1; g 1x 2 � 1x � 1 2 1/3

 g1x 2 � 1x � 4, x � �4f 1x 2 � x2 � 4, x � 0

f 1x 2 � x5; g 1x 2 � 15 xf 1x 2 �
1
x

; g1x 2 �
1
x

f 1x 2 �
3 � x

4
; g1x 2 � 3 � 4x

f 1x 2 � 2x � 5; g 1x 2 �
x � 5

2
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92. Multiple Discounts A car dealership advertises a 15% dis-
count on all its new cars. In addition, the manufacturer offers a
$1000 rebate on the purchase of a new car. Let x represent the
sticker price of the car.
(a) Suppose that only the 15% discount applies. Find a 

function f that models the purchase price of the car as a
function of the sticker price x.

(b) Suppose that only the $1000 rebate applies. Find a 
function g that models the purchase price of the car as a
function of the sticker price x.

(c) Find a formula for H � f � g.
(d) Find H�1. What does H�1 represent?
(e) Find H�1113,0002. What does your answer represent?

93. Pizza Cost Marcello’s Pizza charges a base price of $7 for a
large pizza plus $2 for each topping. Thus if you order a large
pizza with x toppings, the price of your pizza is given by the
function . Find f�1. What does the function f�1

represent?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
94. Determining When a Linear Function Has an 

Inverse For the linear function to be 
one-to-one, what must be true about its slope? If it is one-to-
one, find its inverse. Is the inverse linear? If so, what is its
slope?

95. Finding an Inverse “in Your Head” In the margin notes 
in this section we pointed out that the inverse of a function 
can be found by simply reversing the operations that make 
up the function. For instance, in Example 7 we saw that the 
inverse of

because the “reverse” of “Multiply by 3 and subtract 2” is
“Add 2 and divide by 3.” Use the same procedure to find the
inverse of the following functions.

(a) (b)

(c) (d)

Now consider another function:

Is it possible to use the same sort of simple reversal of opera-
tions to find the inverse of this function? If so, do it. If not, ex-
plain what is different about this function that makes this task
difficult.

96. The Identity Function The function is called the
identity function. Show that for any function f we have

, and . (This means
that the identity function I behaves for functions and composi-
tion just the way the number 1 behaves for real numbers and
multiplication.)

f � f�1 � f�1 � f � If � I � f, I � f � f

I1x 2 � x

f 1x 2 � x3 � 2x � 6

f 1x 2 � 12x � 5 2 3f 1x 2 � 2x3 � 2

f 1x 2 � 3 �
1
x

f 1x 2 �
2x � 1

5

f 1x 2 � 3x � 2  is  f�11x 2 �
x � 2

3

f 1x 2 � mx � b

f 1x 2 � 7 � 2x

86. Toricelli’s Law A tank holds 100 gallons of water, which
drains from a leak at the bottom, causing the tank to empty in
40 minutes. Toricelli’s Law gives the volume of water remain-
ing in the tank after t minutes as

(a) Find V �1. What does V �1 represent?
(b) Find V �1115 2. What does your answer represent?

87. Blood Flow As blood moves through a vein or artery, its
velocity √ is greatest along the central axis and decreases as 
the distance r from the central axis increases (see the figure
below). For an artery with radius 0.5 cm, √ (in cm/s) is given
as a function of r (in cm) by

(a) Find √�1. What does √�1 represent?
(b) Find √�1130 2. What does your answer represent?

88. Demand Function The amount of a commodity that 
is sold is called the demand for the commodity. The 
demand D for a certain commodity is a function of the price
given by

(a) Find D�1. What does D�1 represent?
(b) Find D�1130 2. What does your answer represent?

89. Temperature Scales The relationship between the Fahren-
heit (F) and Celsius (C) scales is given by

(a) Find F �1. What does F �1 represent?
(b) Find F �11862. What does your answer represent?

90. Exchange Rates The relative value of currencies fluctuates
every day. When this problem was written, one Canadian dol-
lar was worth 1.0573 U.S. dollars.
(a) Find a function f that gives the U.S. dollar value of 

x Canadian dollars.
(b) Find f�1. What does f�1 represent?
(c) How much Canadian money would $12,250 in U.S. cur-

rency be worth?

91. Income Tax In a certain country, the tax on incomes less
than or equal to €20,000 is 10%. For incomes that are more
than €20,000, the tax is €2000 plus 20% of the amount over
€20,000.
(a) Find a function f that gives the income tax on an income x.

Express f as a piecewise defined function.
(b) Find f�1. What does f�1 represent?
(c) How much income would require paying a tax of

€10,000?

f 1x 2

F1C 2 � 9
5  
C � 32

D1 p 2 � �3p � 150

r

√ 1r 2 � 18,50010.25 � r2 2

V1t 2 � 100 a1 �
t

40
b

2
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Vertical and Horizontal Shifts of Graphs (pp. 211–213)

Let c be a positive constant.

To graph , shift the graph of upward by 
c units.

To graph , shift the graph of downward by
c units.

To graph , shift the graph of to the right
by c units.

To graph , shift the graph of to the left by 
c units.

Reflecting Graphs (p. 214)

To graph , reflect the graph of in the x-axis.

To graph , reflect the graph of in the y-axis.

Vertical and Horizontal Stretching and Shrinking
of Graphs (pp. 215, 216)

If , then to graph , stretch the graph of 
vertically by a factor of c.

If , then to graph , shrink the graph of
vertically by a factor of c.

If , then to graph , shrink the graph of 
horizontally by a factor of 1/c.

If , then to graph , stretch the graph of
horizontally by a factor of 1/c.

Even and Odd Functions (p. 217)

A function f is

even if 

odd if 

for every x in the domain of f.

f 1�x 2 � �f 1x 2

f 1�x 2 � f 1x 2

y � f 1x 2
y � f 1cx 20 � c � 1

y � f 1x 2y � f 1cx 2c � 1

y � f 1x 2
y � cf 1x 20 � c � 1

y � f 1x 2y � cf 1x 2c � 1

y � f 1x 2y � f 1�x 2

y � f 1x 2y � �f 1x 2

y � f 1x 2y � f 1x � c 2

y � f 1x 2y � f 1x � c 2

y � f 1x 2y � f 1x 2 � c

y � f 1x 2y � f 1x 2 � c

Function Notation (p. 175)

If a function is given by the formula , then x is the inde-
pendent variable and denotes the input; y is the dependent variable
and denotes the output; the domain is the set of all possible inputs
x; the range is the set of all possible outputs y.

Net Change (p. 177)

The net change in the value of the function f between x � a and 
x � b is 

The Graph of a Function (p. 185)

The graph of a function f is the graph of the equation 
that defines f.

The Vertical Line Test (p. 189)

A curve in the coordinate plane is the graph of a function if and
only if no vertical line intersects the graph more than once.

Increasing and Decreasing Functions (p. 196)

A function f is increasing on an interval if when-
ever in the interval.

A function f is decreasing on an interval if when-
ever in the interval.

Local Maximum and Minimum Values (p. 198)

The function value is a local maximum value of the function
f if for all x near a. In this case we also say that f has
a local maximum at x � a. 

The function value is a local minimum value of the function
f if for all x near b. In this case we also say that f has
a local minimum at x � b.

Average Rate of Change (p. 205)

The average rate of change of the function f between x � a
and x � b is the slope of the secant line between and 

:

average rate of change �
f 1b 2 � f 1a 2

b � a

1b, f 1b 2 2
1a, f 1a 2 2

f 1b 2 � f 1x 2
f 1b 2

f 1a 2 � f 1x 2
f 1a 2

x1 � x2

f 1x1 2 � f 1x2 2

x1 � x2

f 1x1 2 � f 1x2 2

y � f 1x 2

net change � f 1b 2 � f 1a 2

y � f 1x 2
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97. Solving an Equation for an Unknown Function In
Exercise 73 of Section 2.6 you were asked to solve equations
in which the unknowns were functions. Now that we know
about inverses and the identity function (see Exercise 96),
we can use algebra to solve such equations. For instance, to
solve for the unknown function f, we perform the
following steps:

Problem: Solve for f
Compose with g�1 on the right
Because g � g�1 = I
Because f � I = f f � h � g�1

 f � I � h � g�1

 f � g � g�1 � h � g�1

 f � g � h

f � g � h

So the solution is . Use this technique to solve the
equation for the indicated unknown function.
(a) Solve for f, where and

.
(b) Solve for g, where and

.h1x 2 � 3x2 � 3x � 2

f 1x 2 � 3x � 5
h1x 2 � 4x2 � 4x � 7

g1x 2 � 2x � 1
f � g � h

f � h � g�1

■ P R O P E R T I E S  A N D  F O R M U L A S
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Inverse of a Function (p. 233)

Let f be a one-to-one function with domain A and range B.

The inverse of f is the function defined by

The inverse function has domain B and range A.

The functions f and satisfy the following cancellation
properties:

 f 1f �11x 2 2 � x for every x in B

f �11f 1x 2 2 � x for every x in A

f�1

f�1

f�11  y 2 � x 3  f 1x 2 � y

f�1

Composition of Functions (p. 225)

Given two functions f and g, the composition of f and g is the
function defined by

The domain of is the set of all x for which both and
are defined.

One-to-One Functions (p. 231)

A function f is one-to-one if whenever and are
different elements of the domain of f.

Horizontal Line test (p. 231)

A function is one-to-one if and only if no horizontal line intersects
its graph more than once.

x2x1f 1x1 2 	 f 1x2 2

f 1g 1x 2 2
g 1x 2f � g

1f � g 2 1x 2 � f 1g 1x 2 2

f � g
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Section After completing this chapter, you should be able to . . . Review Exercises

2.1 ■ Recognize functions in the real world 7–8
■ Work with function notation 9–10
■ Evaluate functions 5–10
■ Find net change 7–8, 11–12, 14, 57–60
■ Find domains of functions 15–24
■ Represent functions verbally, algebraically, graphically, and numerically 1–6, 25–42

2.2 ■ Graph functions by plotting points 25–42
■ Graph functions with a graphing calculator 47–54
■ Graph piecewise defined functions 39–42
■ Use the Vertical Line Test 13
■ Determine whether an equation defines a function 43–46

2.3 ■ Find function values from a graph 14
■ Find domain and range from a graph 14, 49–54
■ Find where a function is increasing or decreasing from a graph 14, 55–56
■ Find local maxima and minima from a graph 14, 69–74

2.4 ■ Find average rates of change 57–60
■ Interpret average rate of change in real-world situations 61–62
■ Recognize that a function with constant average rate of change is linear 63–64

2.5 ■ Shift graphs vertically 65–66
■ Shift graphs horizontally   65–66
■ Stretch or shrink graphs vertically 65–66
■ Stretch or shrink graphs horizontally  65–66
■ Reflect graphs  65–66
■ Determine whether a function is even or odd 67–68

2.6 ■ Find sums, differences, products, and quotients of functions 77
■ Add functions graphically 75–76
■ Find the composition of two functions 77–80
■ Express a given function as a composite function 81–82

2.7 ■ Determine whether a function is one-to-one  13–14, 83–88, 93–94
■ Find the inverse of a one-to-one function 89–92, 93–96
■ Draw the graph of the inverse of a function 93–96
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13. Which of the following figures are graphs of functions? Which
of the functions are one-to-one?

(a) (b)

(c) (d)

14. A graph of a function f is given.
(a) Find and .
(b) Find the net change in the value of f from x � �2 to 

x � 2.
(c) Find the domain and range of f.
(d) On what intervals is f increasing? On what intervals is f

decreasing?
(e) What are the local maximum values of f?
(f) Is f one-to-one?

15–16 ■ Find the domain and range of the function.

15. 16.

17–24 ■ Find the domain of the function.

17. 18.

19. 20.

21. 22.

23. 24. f 1x 2 �
23 2x � 123 2x � 2

h1x 2 � 14 � x � 2x2 � 1

g 1x 2 �
2x2 � 5x � 3

2x2 � 5x � 3
f 1x 2 �

1
x

�
1

x � 1
�

1

x � 2

f 1x 2 � 3x �
21x � 1

f 1x 2 � 1x � 4

f 1x 2 �
2x � 1

2x � 1
f 1x 2 � 7x � 15

F 1t 2 � t2 � 2t � 5f 1x 2 � 1x � 3

f 12 2f 1�2 2

1–2 ■ A verbal description of a function f is given. Find a for-
mula that expresses f in function notation.

1. “Square, then subtract 5.”

2. “Divide by 2, then add 9.”

3–4 ■ A formula for a function f is given. Give a verbal descrip-
tion of the function.

3.

4.

5–6 ■ Complete the table of values for the given function.

5. 6.

7. A publisher estimates that the cost C(x) of printing a run of x
copies of a certain mathematics textbook is given by the func-
tion .
(a) Find C(1000) and C(10,000).
(b) What do your answers in part (a) represent?
(c) Find C(0). What does this number represent?
(d) Find the net change in the cost C as x changes from 1000

to 10,000.

8. Reynalda works as a salesperson in the electronics division 
of a department store. She earns a base weekly salary plus 
a commission based on the retail price of the goods she 
has sold. If she sells x dollars worth of goods in a week,
her earnings for that week are given by the function

.
(a) Find E(2000) and E(15,000).
(b) What do your answers in part (a) represent?
(c) Find E(0). What does this number represent?
(d) Find the net change in earnings E as x changes from 2000

to 15,000.
(e) From the formula for E, determine what percentage 

Reynalda earns on the goods that she sells.

9. If , find , , , , ,
, and .

10. If , find , , , ,
and .

11–12 ■ Find the net change in the value of the function between
the given inputs.

11.

12. f 1x 2 � x 4 � 3x 2; from 0 to 1

f 1x 2 � x 4 � 3x 2; from �2 to 1

f 1x2 2
f 1�x 2f 1a � 2 2f 19 2f 15 2f 1x 2 � 4 � 13x � 6

f 12x 2f 1x � 1 2
f 1�a 2f 1a 2f 1�2 2f 12 2f 10 2f 1x 2 � x2 � 4x � 6

E1x 2 � 400 � 0.03x

C1x 2 � 5000 � 30x � 0.001x2

h1x 2 � 3x2 � 2x � 5g 1x 2 � x2 � 4x

f 1x 2 � 16x � 10

f 1x 2 � 31x � 10 2
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x hh 11x22

�2
�1

0
1
2

x gg 11x22

�1
0
1
2
3

y

x0

y

x0

y

x0

y

x0

x

y

0 2

2

f

90169_Ch02_173-256.qxd  11/23/11  2:13 PM  Page 242



57–60 ■ Find the net change and the average rate of change of the
function between the given points.

57.

58.

59.

60.

61. The population of a planned seaside community in Florida is
given by the function , where t
represents the number of years since the community was in-
corporated in 1985.
(a) Find and . What do these values represent?
(b) Find the average rate of change of P between t � 10 and 

t � 20. What does this number represent?

62. Ella is saving for her retirement by making regular deposits into
a 401(k) plan. As her salary rises, she finds that she can deposit
increasing amounts each year. Between 1995 and 2008, the an-
nual amount (in dollars) that she deposited was given by the
function , where t represents the year of the
deposit measured from the start of the plan (so 1995 corresponds
to t � 0 and 1996 corresponds to t � 1, and so on).
(a) Find and . What do these values represent?
(b) Assuming that her deposits continue to be modeled by the

function D, in what year will she deposit $17,000?
(c) Find the average rate of change of D between t � 0 and 

t � 15. What does this number represent?

63–64 ■ A function f is given. (a) Find the average rate of change
of f between x � 0 and x � 2, and the average rate of change of f
between x � 15 and x � 50. (b) Were the two average rates of
change that you found in part (a) the same? Explain why or why not.

63. 64.

65. Suppose the graph of f is given. Describe how the graphs 
of the following functions can be obtained from the graph 
of f.
(a) (b)
(c) (d)
(e) (f)
(g) (h)

66. The graph of f is given. Draw the graphs of the following 
functions.
(a) (b)
(c) (d)
(e) (f)

y

x0 1

1

y � f 1�x 2y � f �11x 2
y � 1

2 f 1x 2 � 1y � 3 � f 1x 2
y � �f 1x 2y � f 1x � 2 2

y � f�11x 2y � �f 1x 2
y � �f 1�x 2y � f 1�x 2
y � f 1x � 2 2 � 2y � 1 � 2f 1x 2
y � f 1x � 8 2y � f 1x 2 � 8

f 1x 2 � 8 � 3xf 1x 2 � 1
2   
x � 6

D115 2D10 2

D1t 2 � 3500 � 15t2

P120 2P110 2

P1t 2 � 3000 � 200t � 0.1t2

f 1x 2 � 1x � 1 2 2; x � a, x � a � h

f 1x 2 �
1
x

; x � 3, x � 3 � h

f 1x 2 �
1

x � 2
; x � 4, x � 8

f 1x 2 � x2 � 3x; x � 0, x � 2

25–42 ■ Sketch the graph of the function.

25.

26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40.

41.

42.

43–46 ■ Determine whether the equation defines y as a function 
of x.

43. 44.

45. 46.

47. Determine which viewing rectangle produces the most
appropriate graph of the function

ii(i) 3�2, 24 by 3�2, 24 (ii) 3�8, 84 by 3�8, 84

(iii) 3�4, 44 by 3�12, 124 (iv) 3�100, 1004 by 3�100, 1004

48. Determine which viewing rectangle produces the most
appropriate graph of the function .
ii(i) 3�4, 44 by 3�4, 44
i(ii) 3�10, 104 by 3�10, 104
(iii) 3�10, 104 by 3�10, 404
(iv) 3�100, 1004 by 3�100, 1004

49–54 ■ A function f is given. (a) Use a graphing calculator to
draw the graph of f. (b) Find the domain and range of f from the
graph.

49.

50.

51.

52.

53.

54.

55–56 ■ Draw a graph of the function f, and determine the inter-
vals on which f is increasing and on which f is decreasing.

55. 56. f1x 2 � 0 x4 � 16 0f1x 2 � x3 � 4x2

f1x 2 � x 4 � x 3 � x 2 � 3x � 6

f1x 2 � 2x 3 � 4x � 1

f1x 2 � 2x � 3

f1x 2 � �2, �2 � x � 3

f1x 2 � �2x 2 � 3

f1x 2 � 29 � x 2

f 1x 2 � 2100 � x3

f 1x 2 � 6x 3 � 15x 2 � 4x � 1

2x � y4 � 16x3 � y3 � 27

3x � 2y � 8x � y2 � 14

f 1x 2 � c
�x if x � 0

x2 if 0 � x � 2

1 if x � 2

f 1x 2 � e
x � 6  if x � �2

x2  if x � �2

f 1x 2 � e
1 � 2x if x � 0

2x � 1 if x � 0

f 1x 2 � e
1 � x  if x � 0

1  if x � 0

G1x 2 �
1

1x � 3 2 2
g 1x 2 �

1

x2

H1x 2 � x3 � 3x2h1x 2 � 13 x

h1x 2 � 1x � 3h1x 2 � 1
2  x3

g 1x 2 � � 0 x 0g1x 2 � 1 � 1x

f 1x 2 � 3 � 8x � 2x2f 1x 2 � x2 � 6x � 6

g 1t 2 � t 
2 � 2tf 1t 2 � 1 � 1

2 t 
2

f 1x 2 � 1
3 1x � 5 2 , 2 � x � 8

f 1x 2 � 1 � 2x
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y

x0

y

x0

0

y

x

y

x0

67. Determine whether f is even, odd, or neither.
(a) (b)

(c) (d)

68. Determine whether the function in the figure is even, odd, or
neither.
(a) (b)

(c) (d)

69. Find the minimum value of the function .

70. Find the maximum value of the function .

71. A stone is thrown upward from the top of a building. Its height
(in feet) above the ground after t seconds is given by 

What maximum height does it reach?

72. The profit P (in dollars) generated by selling x units of a cer-
tain commodity is given by

What is the maximum profit, and how many units must be sold
to generate it?

73–74 ■ Find the local maximum and minimum values of the
function and the values of x at which they occur. State each answer
rounded to two decimal places.

73.

74.

75–76 ■ Two functions, f and g, are given. Draw graphs of f, g,
and f � g on the same graphing calculator screen to illustrate the
concept of graphical addition.

75.

76.

77. If and , find the following
functions.
(a) f � g (b) f � g (c) fg
(d) f/g (e) (f) g � ff � g

g 1x 2 � 4 � 3xf 1x 2 � x2 � 3x � 2

f 1x 2 � x2 � 1, g 1x 2 � 3 � x2

f 1x 2 � x � 2, g 1x 2 � x2

f 1x 2 � x2/316 � x 2 1/3

f 1x 2 � 3.3 � 1.6x � 2.5x3

P1x 2 � �1500 � 12x � 0.0004x2

h1t 2 � �16t2 � 48t � 32

f 1x 2 � 1 � x � x2

g1x 2 � 2x2 � 4x � 5

f 1x 2 �
1

x � 2
f 1x 2 �

1 � x 2

1 � x 2

f 1x 2 � x3 � x7f 1x 2 � 2x 5 � 3x 2 � 2
78. If and , find the following.

(a) (b) (c)
(d) (e) (f)

79–80 ■ Find the functions , and and their
domains.

79.

80.

81. Find , where , and 

.

82. If , find functions f, g, and h such that 

.

83–88 ■ Determine whether the function is one-to-one.

83.

84.

85.

86.

87.

88.

89–92 ■ Find the inverse of the function.

89. 90.

91. 92.

93–94 ■ A graph of a function f is given. Does f have an inverse?
If so, find and .

93. 94.

95. (a) Sketch the graph of the function

(b) Use part (a) to sketch the graph of f�1.
(c) Find an equation for f�1.

96. (a) Show that the function is one-to-one.
(b) Sketch the graph of f.
(c) Use part (b) to sketch the graph of f�1.
(d) Find an equation for f�1.

f 1x 2 � 1 � 14 x

f 1x 2 � x2 � 4  x � 0

0 1
1

f

x

y

0 1
1

f

x

y

f 
�114 2f 

�110 2

f 1x 2 � 1 � 15 x � 2f 1x 2 � 1x � 1 2 3

f 1x 2 �
2x � 1

3
f 1x 2 � 3x � 2

q1x 2 � 3.3 � 1.6x � 2.5x3

p1x 2 � 3.3 � 1.6x � 2.5x3

r 1x 2 � 2 � 1x � 3

h1x 2 �
1

x4

g 1x 2 � 2 � 2x � x2

f 1x 2 � 3 � x3

f � g � h � T

T1x 2 �
131 � 2x

h1x 2 � 1 � 1x

f 1x 2 � 11 � x, g 1x 2 � 1 � x2f � g � h

f 1x 2 � 1x, g 1x 2 �
2

x � 4

f 1x 2 � 3x � 1, g 1x 2 � 2x � x2

g � gf � g, g � f, f � f

g � f � gf � g � f1f � f 2 12 2
1f � g 2 12 2g � ff � g

g 1x 2 � 1x � 1f 1x 2 � 1 � x2
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1. Which of the following are graphs of functions? If the graph is that of a function, is it 
one-to-one?

(a) (b)

(c) (d)

2. Let .

(a) Evaluate , and .

(b) Find the domain of f.

3. A function f has the following verbal description: “Subtract 2, then cube the result.”

(a) Find a formula that expresses f algebraically.

(b) Make a table of values of f, for the inputs �1, 0, 1, 2, 3, and 4.

(c) Sketch a graph of f, using the table of values from part (b) to help you.

(d) How do we know that f has an inverse? Give a verbal description for .

(e) Find a formula that expresses algebraically.

4. A graph of a function f is given.

(a) Find the local minimum and maximum values of f and the values of x at which they occur.

(b) Find the intervals on which f is increasing and on which f is decreasing.

5. A school fund-raising group sells chocolate bars to help finance a swimming pool for their
physical education program. The group finds that when they set their price at x dollars per
bar (where ), their total sales revenue (in dollars) is given by the function

.

(a) Evaluate R(2) and R(4). What do these values represent?

(b) Use a graphing calculator to draw a graph of R. What does the graph tell us about what
happens to revenue as the price increases from 0 to 5 dollars?

(c) What is the maximum revenue, and at what price is it achieved?

R1x 2 � �500x2 � 3000x
0 � x � 5

y

x

f

1

20

f �1

f �1

f 1a � 1 2f 13 2 , f 15 2

f 1x 2 �
1x � 1

x

y

x0

y

x

y

x0

y

x0

C H A P T E R  2 T E S T
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6. Determine the net change and the average rate of change for the function 
between t � 2 and t � 5.

7. (a) Sketch the graph of the function .

(b) Use part (a) to graph the function .

8. (a) How is the graph of obtained from the graph of f?

(b) How is the graph of obtained from the graph of f?

9. Let 

(a) Evaluate and .

(b) Sketch the graph of f.

10. If and , find the following.

(a) (b)

(c) (d)

(e) (f)

(g)

11. (a) If , find the inverse function .

(b) Sketch the graphs of f and on the same coordinate axes.

12–17 ■ A graph of a function f is given.

12. Find the domain and range of f.

13. Find and .

14. Graph and .

15. Find the net change and the average rate of change of f between x � 2 and x � 6.

16. Find and .

17. Sketch the graph of .

18. Let .

(a) Draw the graph of f in an appropriate viewing rectangle.

(b) Is f one-to-one?

(c) Find the local maximum and minimum values of f and the values of x at which they 
occur. State each answer correct to two decimal places.

(d) Use the graph to determine the range of f.

(e) Find the intervals on which f is increasing and on which f is decreasing.

f 1x 2 � 3x4 � 14x2 � 5x � 3

x

y

0 1

1

f�1

f 
�113 2f 

�111 2

f 1x 2 � 2f 1x � 2 2

f 14 2f 10 2

f�1

f�1f 1x 2 � 13 � x

g � g � g
g 1f 12 2 2f 1g12 2 2
g � ff � g
f � gf � g

g1x 2 � x � 3f 1x 2 � x 2 � x � 1

f 11 2f 1�2 2

f 1x 2 � b1 � x if x � 1

2x � 1 if x � 1

y � f 1�x 2

y � f 1x � 3 2 � 2

g1x 2 � 1x � 1 23 � 2

f 1x 2 � x3

f 1t 2 � t2 � 2t
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Modeling with Functions 247

Many of the processes that are studied in the physical and social sciences involve under-
standing how one quantity varies with respect to another. Finding a function that describes
the dependence of one quantity on another is called modeling. For example, a biologist
observes that the number of bacteria in a certain culture increases with time. He tries to
model this phenomenon by finding the precise function (or rule) that relates the bacteria
population to the elapsed time.

In this Focus on Modeling we will learn how to find models that can be constructed us-
ing geometric or algebraic properties of the object under study. Once the model is found,
we use it to analyze and predict properties of the object or process being studied.

▼ Modeling with Functions
We begin with a simple real-life situation that illustrates the modeling process.

E X A M P L E  1 | Modeling the Volume of a Box

A breakfast cereal company manufactures boxes to package their product. For aesthetic
reasons, the box must have the following proportions: Its width is 3 times its depth, and
its height is 5 times its depth.

(a) Find a function that models the volume of the box in terms of its depth.

(b) Find the volume of the box if the depth is 1.5 in.

(c) For what depth is the volume 90 in3?

(d) For what depth is the volume greater than 60 in3?

THINKING ABOUT THE PROBLEM

Let’s experiment with the problem. If the depth is 1 in., then the width is 3 in. and
the height is 5 in. So in this case, the volume is V � 1 � 3 � 5 � 15 in3. The
table gives other values. Notice that all the boxes have the same shape, and the
greater the depth, the greater the volume.

S O L U T I O N

(a) To find the function that models the volume of the box, we use the following 
steps.

F O C U S  O N  M O D E L I N G

Modeling with Func tions

Depth Volume

1 1 � 3 � 5 � 15
2 2 � 6 � 10 � 120
3 3 � 9 � 15 � 405
4 4 � 12 � 20 � 96

3x

5x

x

247
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248 Focus on Modeling

� E x p r e s s  t h e  M o d e l  i n  Wo r d s

We know that the volume of a rectangular box is

� � �

� C h o o s e  t h e  V a r i a b l e

There are three varying quantities: width, depth, and height. Because the function we want
depends on the depth, we let

Then we express the other dimensions of the box in terms of x:

In Words In Algebra

Depth x
Width 3x
Height 5x

� S e t  U p  t h e  M o d e l

The model is the function V that gives the volume of the box in terms of the depth x.

� � �

The volume of the box is modeled by the function . The function V is
graphed in Figure 1.

� U s e  t h e  M o d e l

We use the model to answer the questions in parts (b), (c), and (d).

(b) If the depth is 1.5 in., the volume is .

(c) We need to solve the equation or

.

The volume is 90 in3 when the depth is about 1.82 in. (We can also solve this equa-
tion graphically, as shown in Figure 2.)

(d) We need to solve the inequality or

The volume will be greater than 60 in3 if the depth is greater than 1.59 in. (We can
also solve this inequality graphically, as shown in Figure 3.) ■

 x � 23 4 � 1.59

 x 
3 � 4

 15x 
3 � 60

V1x 2 � 60

 x � 23 6 � 1.82 in

 x 
3 � 6

 15x 
3 � 90

V1x 2 � 90

V11.5 2 � 1511.5 2 3 � 50.625 in3

V1x 2 � 15x 
3

 V1x 2 � 15x 
3

 V1x 2 � x # 3x # 5x

heightwidthdepthvolume

x � depth of the box

heightwidthdepthvolume

0

400

3

F I G U R E  1

0

400

3

15x£=90

y=15x£

y=90

F I G U R E  2

F I G U R E  3

0

400

3

15x£≥60

y=15x£

y=60
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E X A M P L E  2 | Fencing a Garden

A gardener has 140 feet of fencing to fence in a rectangular vegetable garden.

(a) Find a function that models the area of the garden she can fence.

(b) For what range of widths is the area greater than 825 ft2?

(c) Can she fence a garden with area 1250 ft2?

(d) Find the dimensions of the largest area she can fence.

S O L U T I O N

(a) The model that we want is a function that gives the area she can fence.

� E x p r e s s  t h e  M o d e l  i n  Wo r d s

We know that the area of a rectangular garden is

� � lengthwidtharea

Modeling with Functions 249

GUIDELINES FOR MODELING WITH FUNCTIONS

1. Express the Model in Words. Identify the quantity you want to model, and
express it, in words, as a function of the other quantities in the problem.

2. Choose the Variable. Identify all the variables that are used to express the
function in Step 1. Assign a symbol, such as x, to one variable, and express the
other variables in terms of this symbol.

3. Set up the Model. Express the function in the language of algebra by writ-
ing it as a function of the single variable chosen in Step 2.

4. Use the Model. Use the function to answer the questions posed in the prob-
lem. (To find a maximum or a minimum, use the methods described in Sec-
tion 2.3.)

THINKING ABOUT THE PROBLEM

If the gardener fences a plot with width 10 ft, then the length must be 60 ft,
because 10 � 10 � 60 � 60 � 140. So the area is

The table shows various choices for fencing the garden. We see that as the
width increases, the fenced area increases, then decreases.

A � width � length � 10 # 60 � 600 ft2

Width Length Area

10 60 600
20 50 1000
30 40 1200
40 30 1200
50 20 1000
60 10 600

length

width

The steps in Example 1 are typical of how we model with functions. They are summa-
rized in the following box.
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250 Focus on Modeling

� C h o o s e  t h e  V a r i a b l e

There are two varying quantities: width and length. Because the function we want depends
on only one variable, we let

Then we must express the length in terms of x. The perimeter is fixed at 140 ft, so the
length is determined once we choose the width. If we let the length be l, as in Figure 4,
then 2x � 2l � 140, so l � 70 � x. We summarize these facts:

In Words In Algebra

Width x
Length 70 � x

� S e t  U p  t h e  M o d e l

The model is the function A that gives the area of the garden for any width x.

� �

The area that she can fence is modeled by the function .

� U s e  t h e  M o d e l

We use the model to answer the questions in parts (b)–(d).

(b) We need to solve the inequality . To solve graphically, we graph 
y � 70x � x2 and y � 825 in the same viewing rectangle (see Figure 5). We see
that 15 � x � 55.

(c) From Figure 6 we see that the graph of always lies below the line y � 1250,
so an area of 1250 ft2 is never attained.

(d) We need to find where the maximum value of the function oc-
curs. The function is graphed in Figure 7. Using the feature on a graphing
calculator, we find that the function achieves its maximum value at . So the
maximum area that she can fence is that when the garden’s width is 35 ft and its
length is ft. The maximum area then is .

F I G U R E  5 F I G U R E  6

F I G U R E  7

1500 

_100 
_5 75 

y=70x-x™ 

(35, 1225) 

1500

_100
_5 75

y=70x-≈

y=1250
1500

_100
_5 75

y=70x-≈

y=825

35 � 35 �  1225 ft270 � 35 � 35

x � 35
TRACE

A1x 2 � 70x � x2

A1x 2

A1x 2 � 825

A1x 2 � 70x � x 
2

 A1x 2 � 70x � x 
2

 A1x 2 � x170 � x 2

lengthwidtharea

x � width of the garden

F I G U R E  4

x

l

x

l

Maximum values of functions are
discussed on page 198.

■
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E X A M P L E  3 | Minimizing the Metal in a Can

A manufacturer makes a metal can that holds 1 L (liter) of oil. What radius minimizes
the amount of metal in the can?

S O L U T I O N The model that we want is a function that gives the surface area of 
the can.

� E x p r e s s  t h e  M o d e l  i n  Wo r d s

We know that for a cylindrical can

� �

� C h o o s e  t h e  V a r i a b l e

There are two varying quantities: radius and height. Because the function we want de-
pends on the radius, we let

Next, we must express the height in terms of the radius r. Because the volume of a cylin-
drical can is V � pr2h and the volume must be 1000 cm3, we have

Volume of can is 1000 cm3

Solve for h h �
1000

pr 
2

 pr 
2h � 1000

r � radius of can

area of sidesarea of top and bottomsurface area

Modeling with Functions 251

THINKING ABOUT THE PROBLEM

To use the least amount of metal, we must minimize the surface area of the can, that
is, the area of the top, bottom, and the sides. The area of the top and bottom is 2pr2

and the area of the sides is 2prh (see Figure 8), so the surface area of the can is

The radius and height of the can must be chosen so that the volume is exactly 
1 L, or 1000 cm3. If we want a small radius, say r � 3, then the height must be just
tall enough to make the total volume 1000 cm3. In other words, we must have

Volume of the can is pr2h

Solve for h

Now that we know the radius and height, we can find the surface area of the can:

If we want a different radius, we can find the corresponding height and surface
area in a similar fashion.

surface area � 2p13 2 2 � 2p13 2 135.4 2 � 723.8 cm3

 h �
1000

9p
� 35.4 cm

 p13 2 2h � 1000

S � 2pr 
2 � 2prh

h

r 2πr

h

r

r

F I G U R E  8
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252 Focus on Modeling

We can now express the areas of the top, bottom, and sides in terms of r only:

In Words In Algebra

Radius of can r

Height of can

Area of top and bottom 2pr2

Area of sides (2prh)

� S e t  U p  t h e  M o d e l

The model is the function S that gives the surface area of the can as a function of the 
radius r.

� �

� U s e  t h e  M o d e l

We use the model to find the minimum surface area of the can. We graph S in Figure 9
and zoom in on the minimum point to find that the minimum value of S is about 554 cm2

and occurs when the radius is about 5.4 cm.

P R O B L E M S
1–18 ■ In these problems you are asked to find a function that models a real-life situation. Use
the principles of modeling described in this Focus to help you.

1. Area A rectangular building lot is three times as long as it is wide. Find a function that
models its area A in terms of its width „.

2. Area A poster is 10 inches longer than it is wide. Find a function that models its area A in
terms of its width „.

3. Volume A rectangular box has a square base. Its height is half the width of the base. Find
a function that models its volume V in terms of its width „.

4. Volume The height of a cylinder is four times its radius. Find a function that models the
volume V of the cylinder in terms of its radius r.

5. Area A rectangle has a perimeter of 20 ft. Find a function that models its area A in terms
of the length x of one of its sides.

6. Perimeter A rectangle has an area of 16 m2. Find a function that models its perimeter P in
terms of the length x of one of its sides.

 S1r 2 � 2pr 
2 �

2000
r

 S1r 2 � 2pr 
2 � 2pr a

1000

pr 
2 b

area of sidesarea of top and bottomsurface area

2pr a
1000

pr 
2 b

1000

pr 
2

0

1000

15

F I G U R E  9 S1r 2 � 2pr 
2 �

2000
r ■
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7. Area Find a function that models the area A of an equilateral triangle in terms of the length
x of one of its sides.

8. Area Find a function that models the surface area S of a cube in terms of its volume V.

9. Radius Find a function that models the radius r of a circle in terms of its area A.

10. Area Find a function that models the area A of a circle in terms of its circumference C.

11. Area A rectangular box with a volume of 60 ft3 has a square base. Find a function that
models its surface area S in terms of the length x of one side of its base.

12. Length A woman 5 ft tall is standing near a street lamp that is 12 ft tall, as shown in the
figure. Find a function that models the length L of her shadow in terms of her distance d from
the base of the lamp.

13. Distance Two ships leave port at the same time. One sails south at 15 mi/h, and the other
sails east at 20 mi/h. Find a function that models the distance D between the ships in terms of
the time t (in hours) elapsed since their departure.

14. Product The sum of two positive numbers is 60. Find a function that models their product
P in terms of x, one of the numbers.

15. Area An isosceles triangle has a perimeter of 8 cm. Find a function that models its area A
in terms of the length of its base b.

16. Perimeter A right triangle has one leg twice as long as the other. Find a function that
models its perimeter P in terms of the length x of the shorter leg.

17. Area A rectangle is inscribed in a semicircle of radius 10, as shown in the figure. Find a
function that models the area A of the rectangle in terms of its height h.

18. Height The volume of a cone is 100 in3. Find a function that models the height h of the
cone in terms of its radius r.

h h

10

A

D

L d

12 ft

5 ft

Modeling with Functions 253

P Y T H A G O R A S (circa 580–500 B.C.)
founded a school in Croton in southern
Italy, devoted to the study of arithmetic,
geometry, music, and astronomy.The
Pythagoreans, as they were called, were
a secret society with peculiar rules and
initiation rites.They wrote nothing
down and were not to reveal to anyone
what they had learned from the Master.
Although women were barred by law
from attending public meetings,
Pythagoras allowed women in his
school, and his most famous student
was Theano (whom he later married).

According to Aristotle, the
Pythagoreans were convinced that “the
principles of mathematics are the prin-
ciples of all things.”Their motto was
“Everything is Number,” by which they
meant whole numbers. The outstand-
ing contribution of Pythagoras is the
theorem that bears his name: In a right
triangle the area of the square on the
hypotenuse is equal to the sum of the
areas of the square on the other two
sides.

The converse of Pythagoras’s Theo-
rem is also true; that is, a triangle whose
sides a, b, and c satisfy a2 � b2 � c2 is a
right triangle.

c™=a™+b™

c

b

a
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254 Focus on Modeling

19–32 ■ In these problems you are asked to find a function that models a real-life situation, and then
use the model to answer questions about the situation. Use the guidelines on page 249 to help you.

19. Maximizing a Product Consider the following problem: Find two numbers whose sum is
19 and whose product is as large as possible.

(a) Experiment with the problem by making a table like the one following, showing the
product of different pairs of numbers that add up to 19. On the basis of the evidence in
your table, estimate the answer to the problem.

(b) Find a function that models the product in terms of one of the two numbers.

(c) Use your model to solve the problem, and compare with your answer to part (a).

20. Minimizing a Sum Find two positive numbers whose sum is 100 and the sum of whose
squares is a minimum.

21. Fencing a Field Consider the following problem: A farmer has 2400 ft of fencing and wants
to fence off a rectangular field that borders a straight river. He does not need a fence along the
river (see the figure). What are the dimensions of the field of largest area that he can fence?

(a) Experiment with the problem by drawing several diagrams illustrating the situation.
Calculate the area of each configuration, and use your results to estimate the dimensions
of the largest possible field.

(b) Find a function that models the area of the field in terms of one of its sides.

(c) Use your model to solve the problem, and compare with your answer to part (a).

22. Dividing a Pen A rancher with 750 ft of fencing wants to enclose a rectangular area and
then divide it into four pens with fencing parallel to one side of the rectangle (see the figure).

(a) Find a function that models the total area of the four pens.

(b) Find the largest possible total area of the four pens.

23. Fencing a Garden Plot A property owner wants to fence a garden plot adjacent to a road,
as shown in the figure. The fencing next to the road must be sturdier and costs $5 per foot,
but the other fencing costs just $3 per foot. The garden is to have an area of 1200 ft2.

(a) Find a function that models the cost of fencing the garden.

(b) Find the garden dimensions that minimize the cost of fencing.

(c) If the owner has at most $600 to spend on fencing, find the range of lengths he can fence
along the road.

x

x xA

First number Second number Product

1 18 18
2 17 34
3 16 48

ooo
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24. Maximizing Area A wire 10 cm long is cut into two pieces, one of length x and the other
of length 10 � x, as shown in the figure. Each piece is bent into the shape of a square.

(a) Find a function that models the total area enclosed by the two squares.

(b) Find the value of x that minimizes the total area of the two squares.

25. Light from a Window A Norman window has the shape of a rectangle surmounted by a
semicircle, as shown in the figure to the left. A Norman window with perimeter 30 ft is to be
constructed.

(a) Find a function that models the area of the window.

(b) Find the dimensions of the window that admits the greatest amount of light.

26. Volume of a Box A box with an open top is to be constructed from a rectangular piece of
cardboard with dimensions 12 in. by 20 in. by cutting out equal squares of side x at each cor-
ner and then folding up the sides (see the figure).

(a) Find a function that models the volume of the box.

(b) Find the values of x for which the volume is greater than 200 in3.

(c) Find the largest volume that such a box can have.

27. Area of a Box An open box with a square base is to have a volume of 12 ft3.

(a) Find a function that models the surface area of the box.

(b) Find the box dimensions that minimize the amount of material used.

28. Inscribed Rectangle Find the dimensions that give the largest area for the rectangle
shown in the figure. Its base is on the x-axis and its other two vertices are above the x-axis,
lying on the parabola y � 8 � x2.

29. Minimizing Costs A rancher wants to build a rectangular pen with an area of 100 m2.

(a) Find a function that models the length of fencing required.

(b) Find the pen dimensions that require the minimum amount of fencing.

y=8-≈

0

(x, y)

x

y

x
x

x
x x

x

x

x
12 in.

20 in.

x

10 cm

x 10-x

Modeling with Functions 255

x
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256 Focus on Modeling

30. Minimizing Time A man stands at a point A on the bank of a straight river, 2 mi wide. To
reach point B, 7 mi downstream on the opposite bank, he first rows his boat to point P on the
opposite bank and then walks the remaining distance x to B, as shown in the figure. He can
row at a speed of 2 mi/h and walk at a speed of 5 mi/h.

(a) Find a function that models the time needed for the trip.

(b) Where should he land so that he reaches B as soon as possible?

31. Bird Flight A bird is released from point A on an island, 5 mi from the nearest point B on
a straight shoreline. The bird flies to a point C on the shoreline and then flies along the
shoreline to its nesting area D (see the figure). Suppose the bird requires 10 kcal/mi of
energy to fly over land and 14 kcal/mi to fly over water.

(a) Use the fact that

to show that the total energy used by the bird is modeled by the function

(b) If the bird instinctively chooses a path that minimizes its energy expenditure, to what
point does it fly?

32. Area of a Kite A kite frame is to be made from six pieces of wood. The four pieces that
form its border have been cut to the lengths indicated in the figure. Let x be as shown in the
figure.

(a) Show that the area of the kite is given by the function

(b) How long should each of the two crosspieces be to maximize the area of the kite?

A1x 2 � xA225 � x 
2 � 2144 � x 

2 B

C D

5 mi

nesting
area

B

12 mi

A

x

island

E1x 2 � 142x2 � 25 � 10112 � x 2

energy used � energy per mile � miles flown

A

P B

7 mi
x

12

5

x x

12

5
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3.5 Complex Numbers
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Modeling Variability Functions defined by polynomial expressions are called
polynomial functions. The graphs of polynomial functions can have many
peaks and valleys. This property makes them suitable models for many real-
world situations. For example, a factory owner notices that if she increases the
number of workers, productivity increases, but if there are too many workers,
productivity begins to decrease. This situation is modeled by a polynomial
function of degree 2 (a quadratic function).  The growth of many animal
species follows a predictable pattern, beginning with a period of rapid growth,
followed by a period of slow growth and then a final growth spurt. This
variability in growth is modeled by a polynomial of degree 3. Polynomials of
higher degree are used for modeling situations with even more variability. We
also study how to model real-world situations where direct or inverse variation
is involved. Inverse variation is modeled by rational functions, which are
functions defined by rational expressions. 

In the Focus on Modeling at the end of this chapter we explore different
ways of using polynomial functions to model real-world situations.
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A polynomial function is a function that is defined by a polynomial expression. So a poly-
nomial function of degree n is a function of the form

We have already studied polynomial functions of degree 0 and 1. These are functions of
the form and respectively, whose graphs are lines. In this
section we study polynomial functions of degree 2. These are called quadratic functions. 

We see in this section how quadratic functions model many real-world phenomena. We
begin by analyzing the graphs of quadratic functions.

▼ Graphing Quadratic Functions Using the Standard Form
If we take and in the quadratic function , we get
the quadratic function , whose graph is the parabola graphed in Example 1 of
Section 2.2. In fact, the graph of any quadratic function is a parabola; it can be obtained
from the graph of by the transformations given in Section 2.5.f 1x 2 � x 2

f 1x 2 � x 
2

f 1x 2 � ax 
2 � bx � cb � c � 0a � 1

P 1x 2 � a1x � a0,P 1x 2 � a 0

P 1x 2 � anxn � an�1x
n�1 � p � a1x � a 0
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3.1 QUADRATIC FUNCTIONS AND MODELS

LEARNING OBJECTIVES After completing this section, you will be able to:

Express quadratic functions in standard form � Graph quadratic functions
using the standard form � Find maximum or minimum values of quadratic
functions � Model with quadratic functions

GET READY Prepare for this section by reviewing Section 1.6 on how to solve quadratic

equations.

QUADRATIC FUNCTIONS

A quadratic function is a polynomial function of degree 2. So a quadratic func-
tion is a function of the form

f 1x 2 � ax 
2 � bx � c,  a � 0

STANDARD FORM OF A QUADRATIC FUNCTION

A quadratic function can be expressed in the standard form

by completing the square. The graph of f is a parabola with vertex ; the
parabola opens upward if a � 0 or downward if a � 0.

1h,  k 2

f 1x 2 � a1x � h 2 2 � k

f 1x 2 � ax 
2 � bx � c

y

x0

Ï=a(x-h)™+k,  a>0

y

x0

Ï=a(x-h)™+k,  a<0

h

k

h

Vertex (h, k)

Vertex (h, k)

k

Polynomial expressions are defined in
Section P.5.

For a geometric definition of parabolas,
see Section 7.1.
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E X A M P L E  1 Standard Form of a Quadratic Function

Let .

(a) Express f in standard form. (b) Sketch the graph of f.

S O L U T I O N

(a) Since the coefficient of x2 is not 1, we must factor this coefficient from the terms
involving x before we complete the square:

Factor 2 from the x-terms

Factor and simplify

The standard form is .

(b) The standard form tells us that we get the graph of f by taking the parabola y � x2,
shifting it to the right 3 units, stretching it by a factor of 2, and moving it upward 
5 units. The vertex of the parabola is at and the parabola opens upward. We
sketch the graph in Figure 1 after noting that the y-intercept is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

▼ Maximum and Minimum Values of Quadratic Functions
If a quadratic function has vertex , then the function has a minimum value at the ver-
tex if its graph opens upward and a maximum value at the vertex if its graph opens down-
ward. For example, the function graphed in Figure 1 has minimum value 5 when x � 3,
since the vertex is the lowest point on the graph.

E X A M P L E  2 Minimum Value of a Quadratic Function

Consider the quadratic function .

(a) Express f in standard form.

(b) Sketch the graph of f.

(c) Find the minimum value of f.

f 1x 2 � 5x2 � 30x � 49

13,  5 2

1h,  k 2

f 10 2 � 23
13,  5 2 ,

f 1x 2 � 21x � 3 2 2 � 5

 � 21x � 3 2 2 � 5

 � 21x 2 � 6x � 9 2 � 23 � 2 # 9

 � 21x2 � 6x 2 � 23

 f 1x 2 � 2x2 � 12x � 23

f 1x 2 � 2x 
2 � 12x � 23
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Completing the square is discussed 
in Section 1.6.

MA XIMUM OR MINIMUM VALUE OF A QUADRATIC FUNCTION

Let f be a quadratic function with standard form . The
maximum or minimum value of f occurs at x � h.

If a � 0, then the minimum value of f is 

If a � 0, then the maximum value of f is f 1h 2 � k.

f 1h 2 � k.

f 1x 2 � a1x � h 22 � k

y

x0

y

x0 h

k

h

Minimum

Maximum

k

Ï=a(x-h)™+k, a>0 Ï=a(x-h)™+k, a<0

Complete the square: Add 9 inside
parentheses, subtract 2 9 outside#

F I G U R E  1 The graph of

with vertex at 
13, 5 2
f 1x 2 � 21x � 3 2 2 � 5,

y

x

25

Vertex (3, 5)

23

15

5

30
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S O L U T I O N

(a) To express this quadratic function in standard form, we complete the square:

Factor 5 from the x-terms

Factor and simplify

(b) The graph is a parabola that has its vertex at and opens upward, as sketched
in Figure 2.

(c) Since the coefficient of x2 is positive, f has a minimum value. The minimum value
is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

E X A M P L E  3 Maximum Value of a Quadratic Function

Consider the quadratic function .

(a) Express f in standard form.

(b) Sketch the graph of f.

(c) Find the maximum value of f.

S O L U T I O N

(a) To express this quadratic function in standard form, we complete the square:

Factor �1 from the x-terms

Factor and simplify

(b) From the standard form we see that the graph is a parabola that opens downward 
and has vertex . As an aid to sketching the graph, we find the intercepts. The 
y-intercept is . To find the x-intercepts, we set and solve the re-
sulting quadratic equation. We can solve a quadratic equation by any of the meth-
ods we studied in Section 1.6. In this case we solve the equation by factoring.

Set y = 0

Multiply by –1

Factor

Thus, the x-intercepts are x � 2 and x � �1. The graph of f is sketched in Figure 3.

 1x � 2 2 1x � 1 2 � 0

 x2 � x � 2 � 0

 �x2 � x � 2 � 0

f 1x 2 � 0f 10 2 � 2
A12,  

9
4B

 � �Ax � 1
2B

2 � 9
4

 � �Ax 2 � x � 1
4B � 2 � 1�1 2 14

 � �1x 2 � x 2 � 2

 y � �x 2 � x � 2

f 1x 2 � �x2 � x � 2

f 13 2 � 4

13,  4 2

 � 51x � 3 2 2 � 4

Complete the square: Add 9 inside
parentheses, subtract 5 � 9 outside � 51x 2 � 6x � 9 2 � 49 � 5 # 9

 � 51x2 � 6x 2 � 49

 f 1x 2 � 5x2 � 30x � 49
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y

x3

4

Ï=5(x-3)™+4

(3, 4)

0

49

Minimum
value 4

F I G U R E  2

y

x

1

10

!   ,    @1
2

9
4 9

4

2_1

Maximum value

F I G U R E  3 Graph of
f 1x 2 � �x2 � x � 2

Complete the square: Add inside 
parentheses, subtract outside1�1 2 14

1
4
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(c) Since the coefficient of x2 is negative, f has a maximum value, which is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

Expressing a quadratic function in standard form helps us to sketch its graph as well
as to find its maximum or minimum value. If we are interested only in finding the maxi-
mum or minimum value, then a formula is available for doing so. This formula is obtained
by completing the square for the general quadratic function as follows:

Factor a from the x-terms

Factor

This equation is in standard form with and . Since the
maximum or minimum value occurs at x � h, we have the following result.

E X A M P L E  4 Finding Maximum and Minimum Values
of Quadratic Functions

Find the maximum or minimum value of each quadratic function.

(a)

(b)

S O L U T I O N

(a) This is a quadratic function with a � 1 and b � 4. Thus the maximum or minimum
value occurs at

Since a � 0, the function has the minimum value

f 1�2 2 � 1�2 2 2 � 41�2 2 � �4

x � � 

b

2a
� � 

4

2 # 1
� �2

g1x 2 � �2x2 � 4x � 5

f 1x 2 � x2 � 4x

k � c � b2/ 14a 2h � �b/ 12a 2

 � a a x �
b

2a
b

2

� c �
b2

4a

 � a a x 2 �
b
a

x �
b2

4a2 b � c � a a
b2

4a2 b

 � a a x 2 �
b
a

x b � c

 f 1x 2 � ax 2 � bx � c

f A12B � 9
4
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Complete the square: Add 

inside parentheses, subtract 

a outsidea
b2

4a2
b

b2

4a2

MA XIMUM OR MINIMUM VALUE OF A QUADRATIC FUNCTION

The maximum or minimum value of a quadratic function 
occurs at

If a � 0, then the minimum value is .

If a � 0, then the maximum value is .f a� 

b

2a
b

f a� 

b

2a
b

x � � 

b

2a

f 1x 2 � ax2 � bx � c

4

_6

_5 2

The minimum value
occurs at x = _2.

G A L I L E O  G A L I L E I (1564–1642) was
born in Pisa, Italy. He studied medi-
cine but later abandoned this in favor
of science and mathematics. At the
age of 25, by dropping cannonballs
of various sizes from the Leaning
Tower of Pisa, he demonstrated that
light objects fall at the same rate as
heavier ones. This contradicted the
then-accepted view of Aristotle that
heavier objects fall more quickly. He
also showed that the distance an ob-
ject falls is proportional to the square
of the time it has been falling, and
from this he was able to prove that
the path of a projectile is a parabola.

Galileo constructed the first tele-
scope and, using it, discovered the
moons of Jupiter. His advocacy of the
Copernican view that the earth re-
volves around the sun (rather than be-
ing stationary) led to his being called
before the Inquisition. By then an old
man, he was forced to recant his views,
but he is said to have muttered under
his breath,“Nevertheless, it does move.”
Galileo revolutionized science by ex-
pressing scientific principles in the lan-
guage of mathematics. He said,“The
great book of nature is written in math-
ematical symbols.”
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(b) This is a quadratic function with a � �2 and b � 4. Thus the maximum or mini-
mum value occurs at

Since a � 0, the function has the maximum value

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 37 AND 39 ■

▼ Modeling with Quadratic Functions
We study some examples of real-world phenomena that are modeled by quadratic func-
tions. These examples and the Applications exercises for this section show some of the va-
riety of situations that are naturally modeled by quadratic functions.

E X A M P L E  5 Maximum Gas Mileage for a Car

Most cars get their best gas mileage when traveling at a relatively modest speed. The
gas mileage M for a certain new car is modeled by the function

where s is the speed in mi/h and M is measured in mi/gal. What is the car’s best gas
mileage, and at what speed is it attained?

S O L U T I O N The function M is a quadratic function with and b � 3. Thus its
maximum value occurs when

The maximum is . So the car’s best gas
mileage is 32 mi/gal, when it is traveling at 42 mi/h.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 59 ■

E X A M P L E  6 Maximizing Revenue from Ticket Sales

A hockey team plays in an arena that has a seating capacity of 15,000 spectators. With
the ticket price set at $14, average attendance at recent games has been 9500. A market
survey indicates that for each dollar the ticket price is lowered, the average attendance
increases by 1000.

(a) Find a function that models the revenue in terms of ticket price. 

(b) Find the price that maximizes revenue from ticket sales.

(c) What ticket price is so high that no one attends and so no revenue is generated?

S O L U T I O N  

(a) Express the model in words. The model that we want is a function that gives the
revenue for any ticket price:

� � attendanceticket pricerevenue

M142 2 � � 
1
28 142 2 2 � 3142 2 � 31 � 32

s � � 

b

2a
� � 

3

2A� 
1
28B

� 42

a � � 1
28

M1s 2 � � 

1

28
 s2 � 3s � 31,  15 	 s 	 70

f 11 2 � �211 2 2 � 411 2 � 5 � �3

x � � 

b

2a
� � 

4

2 # 1�2 2
� 1
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15 70

40

0
The maximum gas
mileage occurs at 42 mi/h.

1

_6

_2 4

The maximum value
occurs at x = 1.
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Choose the variable. There are two varying quantities: ticket price and atten-
dance. Since the function we want depends on price, we let

x � ticket price

Next, we express attendance in terms of x.

In Words In Algebra

Ticket price x
Amount ticket price is lowered
Increase in attendance
Attendance

Set up the model. The model that we want is the function R that gives the rev-
enue for a given ticket price x:

� �

(b) Use the model. Since R is a quadratic function with and
the maximum occurs at

So a ticket price of $11.75 gives the maximum revenue. 

(c) Use the model. We want to find the ticket price for which .

Set R(x) = 0

Divide by 1000

Factor

Solve for x

So according to this model, a ticket price of $23.50 is just too high; at that price,
no one attends to watch this team play. (Of course, revenue is also zero if the ticket
price is zero.) 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 69 ■

x � 0 or x � 23.5

 x 123.5 � x 2 � 0

 23.5x � x 
2 � 0

 23,500x � 1000x 
2 � 0

R1x 2 � 0

x � � 

b

2a
� � 

23,500

21�1000 2
� 11.75

b � 23,500,
a � �1000

 R 1x 2 � 23,500x � 1000x 
2

 R 1x 2 � x 123,500 � 1000x 2

 R 1x 2 � x � 39500 � 1000114 � x 2 4

attendanceticket pricerevenue

9500 � 1000114 � x 2
1000114 � x 2
14 � x
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150,000

250

Maximum attendance occurs 
when ticket price is $11.75. 

C O N C E P T S
1. To put the quadratic function in standard 

form, we complete the .

2. The quadratic function is in standard
form.

f 1x 2 � a1x � h 2 2 � k

f 1x 2 � ax 
2 � bx � c

(a) The graph of is a parabola with vertex 1 , 2.

(b) If the graph of opens . In this case 

is the value of .

(c) If the graph of opens . In this case 

is the value of .ff 1h 2 � k

fa � 0,

ff 1h 2 � k

fa � 0,

f

3 . 1  E X E R C I S E S
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27–36 ■ A quadratic function is given. (a) Express the quadratic
function in standard form. (b) Sketch its graph. (c) Find its maxi-
mum or minimum value.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37–46 ■ Find the maximum or minimum value of the function.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. Find a function whose graph is a parabola with vertex 
and that passes through the point .

48. Find a function whose graph is a parabola with vertex 
and that passes through the point .

49–52 ■ Find the domain and range of the function.

49. 50.

51. 52.

53–54 ■ A quadratic function is given. (a) Use a graphing device to
find the maximum or minimum value of the quadratic function f,
rounded to two decimal places. (b) Find the exact maximum or min-
imum value of f, and compare it with your answer to part (a).

53.

54.

A P P L I C A T I O N S
55. Height of a Ball If a ball is thrown directly upward with a

velocity of 40 ft/s, its height (in feet) after t seconds is given 
by y � 40t � 16t2. What is the maximum height attained by
the ball?

56. Path of a Ball A ball is thrown across a playing field from a
height of 5 ft above the ground at an angle of 45º to the hori-
zontal at a speed of 20 ft/s. It can be deduced from physical
principles that the path of the ball is modeled by the function

where x is the distance in feet that the ball has traveled
horizontally.
(a) Find the maximum height attained by the ball.

y � � 

32

120 2 2
 x 

2 � x � 5

f 1x 2 � 1 � x � 12x2

f 1x 2 � x2 � 1.79x � 3.21

f 1x 2 � �3x2 � 6x � 4f 1x 2 � 2x2 � 6x � 7

f 1x 2 � x2 � 2x � 3f 1x 2 � �x2 � 4x � 3

11,  �8 2
13,  4 2

14, 16 2
11,  �2 2

g1x 2 � 2x1x � 4 2 � 7f 1x 2 � 3 � x � 1
2 x2

f 1x 2 � �
x2

3
� 2x � 7h1x 2 � 1

2 x2 � 2x � 6

g1x 2 � 100x2 � 1500xf 1s 2 � s2 � 1.2s � 16

f 1t 2 � 10t2 � 40t � 113f 1t 2 � 100 � 49t � 7t2

f 1x 2 � 1 � 3x � x2f 1x 2 � x2 � x � 1

h1x 2 � 3 � 4x � 4x2h1x 2 � 1 � x � x2

g1x 2 � 2x2 � 8x � 11g1x 2 � 3x2 � 12x � 13

f 1x 2 � 1 � 6x � x2f 1x 2 � �x2 � 3x � 3

f 1x 2 � 5x2 � 30x � 4f 1x 2 � 3x2 � 6x � 1

f 1x 2 � x2 � 8x � 8f 1x 2 � x2 � 2x � 1

3. The graph of is a parabola that opens 

, with its vertex at 1 , 2, and 

is the (minimum/maximum) 
value of .

4. The graph of is a parabola that 

opens , with its vertex at 1 , 2, and 

is the (minimum/maximum) 
value of .

S K I L L S
5–8 ■ The graph of a quadratic function is given. (a) Find the
coordinates of the vertex. (b) Find the maximum or minimum 
value of f. (c) Find the domain and range of f.

5. 6.

7. 8.

9–26 ■ A quadratic function is given. (a) Express the quad-
ratic function in standard form. (b) Find its vertex and its x- and 
y-intercept(s). (c) Sketch its graph.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. f1x 2 � 3x 2 � 2x � 2f1x 2 � �4x 2 � 12x � 1

f 1x 2 � 2x2 � x � 6f 1x 2 � 2x2 � 20x � 57

f 1x 2 � �3x2 � 6x � 2f 1x 2 � 2x2 � 4x � 3

f 1x 2 � �x2 � 4x � 4f 1x 2 � �x2 � 6x � 4

f 1x 2 � x2 � 2x � 2f 1x 2 � x2 � 4x � 3

f1x 2 � �x 2 � 10xf1x 2 � �x 2 � 6x

f1x 2 � 2x 2 � 16xf1x 2 � 3x 2 � 6x

f 1x 2 � x2 � 8xf 1x 2 � x2 � 6x

f1x 2 � x 2 � 4x � 1f1x 2 � x 2 � 2x � 3

1

10 x

y

1

10 x

y
f 1x 2 � 3x2 � 6x � 1f 1x 2 � 2x2 � 4x � 1

5

10 x

y

1

10 x

y

f 1x 2 � � 
1
2 x2 � 2x � 6f 1x 2 � �x2 � 6x � 5

f

f
f 13 2 �

f 1x 2 � �21x � 3 2 2 � 5

f
f 13 2 �

f 1x 2 � 21x � 3 2 2 � 5
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62. Agriculture At a certain vineyard it is found that each
grape vine produces about 10 pounds of grapes in a season
when about 700 vines are planted per acre. For each additional
vine that is planted, the production of each vine decreases by
about 1 percent. So the number of pounds of grapes produced
per acre is modeled by

where n is the number of additional vines planted. Find the
number of vines that should be planted to maximize grape
production.

63–66 ■ Use the formulas of this section to give an alternative
solution to the indicated problem in Focus on Modeling: Modeling
with Functions on pages 254–255.

63. Problem 21 64. Problem 22

65. Problem 25 66. Problem 24

67. Fencing a Horse Corral Carol has 2400 ft of fencing to
fence in a rectangular horse corral.
(a) Find a function that models the area of the corral in terms

of the width x of the corral.
(b) Find the dimensions of the rectangle that maximize the

area of the corral.

68. Making a Rain Gutter A rain gutter is formed by bending
up the sides of a 30-inch-wide rectangular metal sheet as
shown in the figure.
(a) Find a function that models the cross-sectional area of the

gutter in terms of x.
(b) Find the value of x that maximizes the cross-sectional area

of the gutter.
(c) What is the maximum cross-sectional area for the gutter?

69. Stadium Revenue A baseball team plays in a stadium that
holds 55,000 spectators. With the ticket price at $10, the aver-
age attendance at recent games has been 27,000. A market sur-
vey indicates that for every dollar the ticket price is lowered,
attendance increases by 3000.
(a) Find a function that models the revenue in terms of ticket

price.
(b) Find the price that maximizes revenue from ticket sales.
(c) What ticket price is so high that no revenue is generated?

x

30 in.

x 1200 – x

A1n 2 � 1700 � n 2 110 � 0.01n 2

(b) Find the horizontal distance the ball has traveled when it
hits the ground.

57. Revenue A manufacturer finds that the revenue generated
by selling x units of a certain commodity is given by the func-
tion , where the revenue is measured
in dollars. What is the maximum revenue, and how many units
should be manufactured to obtain this maximum?

58. Sales A soft-drink vendor at a popular beach analyzes his
sales records and finds that if he sells x cans of soda pop in
one day, his profit (in dollars) is given by

What is his maximum profit per day, and how many cans must
he sell for maximum profit?

59. Advertising The effectiveness of a television commercial
depends on how many times a viewer watches it. After some
experiments an advertising agency found that if the effective-
ness E is measured on a scale of 0 to 10, then

where n is the number of times a viewer watches a given com-
mercial. For a commercial to have maximum effectiveness,
how many times should a viewer watch it?

60. Pharmaceuticals When a certain drug is taken orally,
the concentration of the drug in the patient’s bloodstream 
after t minutes is given by , where 
0 	 t 	 240 and the concentration is measured in mg/L. When
is the maximum serum concentration reached, and what is that
maximum concentration?

61. Agriculture The number of apples produced by each tree in
an apple orchard depends on how densely the trees are
planted. If n trees are planted on an acre of land, then each
tree produces 900 � 9n apples. So the number of apples 
produced per acre is

How many trees should be planted per acre to obtain the maxi-
mum yield of apples?

A1n 2 � n1900 � 9n 2

C1t 2 � 0.06t � 0.0002t2

E1n 2 � 2
3  
n � 1

90 
 
n2

P1x 2 � �0.001x2 � 3x � 1800

R1x 2R1x 2 � 80x � 0.4x2

x

5 ft
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In this section we study polynomial functions of any degree. But before we work with
polynomial functions, we must agree on some terminology.

We often refer to polynomial functions simply as polynomials. The following polyno-
mial has degree 5, leading coefficient 3, and constant term �6.

3x5 � 6x4 � 2x3 � x2 � 7x � 6

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
71. Vertex and x-Intercepts We know that the graph of the

quadratic function is a parabola.
Sketch a rough graph of what such a parabola would look like.
What are the x-intercepts of the graph of Can you tell from
your graph the x-coordinate of the vertex in terms of m and n?
(Use the symmetry of the parabola.) Confirm your answer by
expanding and using the formulas of this section.

72. Maximum of a Fourth-Degree Polynomial Find the
maximum value of the function

[Hint: Let t � x2.]

f 1x 2 � 3 � 4x2 � x4

f?

f1x 2 � 1x � m 2 1x � n 2

70. Maximizing Profit A community bird-watching society
makes and sells simple bird feeders to raise money for its
conservation activities. The materials for each feeder cost $6,
and the society sells an average of 20 per week at a price of
$10 each. The society has been considering raising the price,
so it conducts a survey and finds that for every dollar increase,
it loses 2 sales per week.
(a) Find a function that models weekly profit in terms of price

per feeder.
(b) What price should the society charge for each feeder to

maximize profits? What is the maximum weekly profit?
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3.2 POLYNOMIAL FUNCTIONS AND THEIR GRAPHS

LEARNING OBJECTIVES After completing this section, you will be able to:

Graph basic polynomial functions � Describe the end behavior of a 
polynomial function � Graph a polynomial function using its zeroes
� Use multiplicity to help graph a polynomial function � Find local 
maxima and minima of polynomial functions

GET READY Prepare for this section by reviewing Section P.6 on factoring.

POLYNOMIAL FUNCTIONS

A polynomial function of degree n is a function of the form

where n is a nonnegative integer and .

The numbers a0, a1, a2, p , an are called the coefficients of the polynomial. 

The number a0 is the constant coefficient or constant term. 

The number an, the coefficient of the highest power, is the leading coefficient, and
the term an xn is the leading term.

an � 0

P1x 2 � an 
x 

n � an�1x
n�1 � . . . � a1x � a0

Degree 5Leading
coefficient 3

Leading term 3x5

Coefficients 3, 6, �2, 1, 7, and �6

Constant term �6
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Here are some more examples of polynomials:

If a polynomial consists of just a single term, then it is called a monomial. For example,
and are monomials.

▼ Graphing Basic Polynomial Functions
The simplest polynomial functions are the monomials , whose graphs are
shown in Figure 1. As the figure suggests, the graph of has the same general
shape as the graph of y � x2 when n is even and the same general shape as the graph of
y � x3 when n is odd. However, as the degree n becomes larger, the graphs become flat-
ter around the origin and steeper elsewhere.

E X A M P L E  1 Transformations of Monomials

Sketch the graphs of the following functions.

(a) (b)

(c) R1x 2 � �2x5 � 4

Q1x 2 � 1x � 2 2 4P1x 2 � �x3

P1x 2 � xn
P1x 2 � xn

Q1x 2 � �6x5P1x 2 � x3
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F I G U R E  1 Graphs of monomials

y

0 x1

1

(e)  y=x∞

y

0 x1

1

(d)  y=x¢

y

0 x1

1

(c)  y=x£

y

0 x1

1

(b)  y=≈

y

0 x1

1

(a)  y=x

Polynomial Degree Leading term Constant term

1 4x
2 0
3 10
4 �2�5x4P1x 2 � �5x4 � x � 2

2x3P1x 2 � 2x3 � 6x2 � 10
x2P1x 2 � x2 � x

�7P1x 2 � 4x � 7

Splines

A spline is a long strip of wood that is curved while held fixed at certain
points. In the old days shipbuilders used splines to create the curved
shape of a boat’s hull. Splines are also used to make the curves of a pi-
ano, a violin, or the spout of a teapot.

Mathematicians discovered that the shapes of splines can be ob-
tained by piecing together parts of polynomials. For example, the
graph of a cubic polynomial can be made to fit specified points by ad-
justing the coefficients of the polynomial (see Example 10, page 277).

Curves obtained in this way are called cubic splines. In modern
computer design programs, such as Adobe Illustrator or Microsoft
Paint, a curve can be drawn by fixing two points, then using the mouse
to drag one or more anchor points. Moving the anchor points amounts
to adjusting the coefficients of a cubic polynomial.

M AT H E M AT I C S  I N  T H E  M O D E R N  W O R L D
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S O L U T I O N We use the graphs in Figure 1 and transform them using the techniques
of Section 2.5.

(a) The graph of is the reflection of the graph of y � x3 in the x-axis, as
shown in Figure 2(a) below.

(b) The graph of is the graph of y � x4 shifted to the right 2 units, as
shown in Figure 2(b).

(c) We begin with the graph of y � x5. The graph of y � �2x5 is obtained by stretch-
ing the graph vertically and reflecting it in the x-axis (see the dashed blue graph in
Figure 2(c)). Finally, the graph of is obtained by shifting upward
4 units (see the red graph in Figure 2(c)).

F I G U R E  2

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

▼ Graphs of Polynomial Functions: End Behavior
The graphs of polynomials of degree 0 or 1 are lines (Section 1.3), and the graphs of poly-
nomials of degree 2 are parabolas (Section 3.1). The greater the degree of a polynomial,
the more complicated its graph can be. However, the graph of a polynomial function is
continuous. This means that the graph has no breaks or holes (see Figure 3). Moreover,
the graph of a polynomial function is a smooth curve; that is, it has no corners or sharp
points (cusps) as shown in Figure 3.

The domain of a polynomial function is the set of all real numbers, so we can sketch
only a small portion of the graph. However, for values of x outside the portion of the graph
we have drawn, we can describe the behavior of the graph.

y

0 x

Q(x)=(x-2)¢

8

16

2 4

y

0 x1

1

P(x)=_x£ y

0 x

R(x)=_2x∞+44

8

1_1_2

(a) (b) (c)

R1x 2 � �2x5 � 4

Q1x 2 � 1x � 2 2 4

P1x 2 � �x3
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Not the graph of a
polynomial function

y y y

x x x

break

hole

Not the graph of a
polynomial function

corner

cusp

Graph of a polynomial
function

smooth and
continuous

y

x

Graph of a polynomial
function

smooth and
continuous

F I G U R E  3
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The end behavior of a polynomial is a description of what happens as x becomes large 
in the positive or negative direction. To describe end behavior, we use the following 
notation:

For example, the monomial y � x2 in Figure 1(b) has the following end behavior:

The monomial y � x3 in Figure 1(c) has the following end behavior:

For any polynomial the end behavior is determined by the term that contains the highest
power of x, because when x is large, the other terms are relatively insignificant in size. The
following box shows the four possible types of end behavior, based on the highest power
and the sign of its coefficient.

E X A M P L E  2 End Behavior of a Polynomial

Determine the end behavior of the polynomial

S O L U T I O N The polynomial P has degree 4 and leading coefficient �2. Thus P has
even degree and negative leading coefficient, so it has the following end behavior:

y � �q as x � q  and  y � �q as x � �q

P1x 2 � �2x4 � 5x3 � 4x � 7

y � q as x � q  and  y � �q as x � �q

y � q as x � q  and  y � q as x � �q

x � �q means “x becomes large in the negative direction”

x � q means “x becomes large in the positive direction”
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END BEHAVIOR OF POLYNOMIALS

The end behavior of the polynomial is determined by the degree n and the
sign of the leading coefficient an, as indicated in the following graphs.

P has odd degree P has even degree

Leading coefficient positive Leading coefficient negative Leading coefficient positive Leading coefficient negative

P1x 2 � anxn � an�1x
n�1 � . . . � a1x � a0

y

0 x

y

0 x

y

0 x

y

0 x

y  ` as
x  `

y  ` as
x  _`

y  ` as
x  _`

y  ` as
x  `

y  _` as
x  `

y  _` as
x  `

y  _` as
x  _`

y  _` as
x  _`
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The graph in Figure 4 illustrates the end behavior of P.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 11 ■

E X A M P L E  3 | End Behavior of a Polynomial

(a) Determine the end behavior of the polynomial .

(b) Confirm that P and its leading term have the same end behavior by
graphing them together.

S O L U T I O N

(a) Since P has odd degree and positive leading coefficient, it has the following end
behavior:

(b) Figure 5 shows the graphs of P and Q in progressively larger viewing rectangles.
The larger the viewing rectangle, the more the graphs look alike. This confirms that
they have the same end behavior.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 43 ■

To see algebraically why P and Q in Example 3 have the same end behavior, factor P
as follows and compare with Q.

When x is large, the terms 5/ 3x2 and 2/ 3x4 are close to 0 (see Exercise 95 on page 17).
So for large x, we have

So when x is large, P and Q have approximately the same values. We can also see this
numerically by making a table like the one shown below.

By the same reasoning we can show that the end behavior of any polynomial is deter-
mined by its leading term.

� 3x5 � Q1x 2 P1x 2 � 3x511 � 0 � 0 2

2121

 Q1x 2 � 3x5 P1x 2 � 3x5 a1 �
5

3x2 �
2

3x4 b

y � q as x � q  and  y � �q as x � �q

Q1x 2 � 3x5

P1x 2 � 3x5 � 5x3 � 2x

30

_50

_3 5

y  _` as
x  _`

y  _` as
x  `
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10,000

_10,000

_10 10

50

_50

_3 3

2

_2

_2 2

Q P
1

_1

_1 1

Q

P

PQ PQ

F I G U R E  5

 Q1x 2 � 3x5

 P1x 2 � 3x5 � 5x3 � 2x

x P11x22 Q11x22

15 2,261,280 2,278,125
30 72,765,060 72,900,000
50 936,875,100 937,500,000

F I G U R E  4

P1x 2 � �2x4 � 5x3 � 4x � 7
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▼ Using Zeros to Graph Polynomials
If P is a polynomial function, then c is called a zero of P if . In other words, the
zeros of P are the solutions of the polynomial equation . Note that if ,
then the graph of P has an x-intercept at x � c, so the x-intercepts of the graph are the
zeros of the function.

To find the zeros of a polynomial P, we factor and then use the Zero-Product Property
(see page 121). For example, to find the zeros of , we factor P to get

From this factored form we easily see that

1. 2 is a zero of P.

2. x � 2 is a solution of the equation x2 � x � 6 � 0.

3. x � 2 is a factor of x2 � x � 6.

4. 2 is an x-intercept of the graph of P.

The same facts are true for the other zero, �3.
The following theorem has many important consequences. (See, for instance, the Discov-

ery Project referenced on page 297.) Here we use it to help us graph polynomial functions.

We will not prove this theorem, but Figure 6 shows why it is intuitively plausible.
One important consequence of this theorem is that between any two successive zeros

the values of a polynomial are either all positive or all negative. That is, between two suc-
cessive zeros the graph of a polynomial lies entirely above or entirely below the x-axis. To
see why, suppose c1 and c2 are successive zeros of P. If P has both positive and negative
values between c1 and c2, then by the Intermediate Value Theorem P must have another
zero between c1 and c2. But that’s not possible because c1 and c2 are successive zeros. This
observation allows us to use the following guidelines to graph polynomial functions.

P1x 2 � 1x � 2 2 1x � 3 2

P1x 2 � x2 � x � 6

P1c 2 � 0P1x 2 � 0
P1c 2 � 0
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INTERMEDIATE VALUE THEOREM FOR POLYNOMIALS

If P is a polynomial function and and have opposite signs, then there
exists at least one value c between a and b for which .P1c 2 � 0

P1b 2P1a 2

GUIDELINES FOR GRAPHING POLYNOMIAL FUNCTIONS

1. Zeros. Factor the polynomial to find all its real zeros; these are the x-intercepts
of the graph.

2. Test Points. Make a table of values for the polynomial. Include test points to
determine whether the graph of the polynomial lies above or below the x-axis on
the intervals determined by the zeros. Include the y-intercept in the table.

3. End Behavior. Determine the end behavior of the polynomial.

4. Graph. Plot the intercepts and other points you found in the table. Sketch a
smooth curve that passes through these points and exhibits the required end
behavior.

F I G U R E  6

0 x

y

P(b)

P(a)

a
c b

y=P(x)

REAL ZEROS OF POLYNOMIALS

If P is a polynomial and c is a real number, then the following are equivalent:

1. c is a zero of P.

2. x � c is a solution of the equation .

3. x � c is a factor of .

4. c is an x-intercept of the graph of P.

P1x 2

P1x 2 � 0
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E X A M P L E  4 Using Zeros to Graph a Polynomial Function

Sketch the graph of the polynomial function .

S O L U T I O N The zeros are x � �2, 1, and 3. These determine the intervals
, , and . Using test points in these intervals, we get the information

in the following sign diagram (see Section 1.8).

Plotting a few additional points and connecting them with a smooth curve helps us to
complete the graph in Figure 7.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

E X A M P L E  5 Finding Zeros and Graphing a Polynomial Function

Let 

(a) Find the zeros of P.

(b) Sketch a graph of P.

S O L U T I O N  

(a) To find the zeros, we factor completely:

Factor x

Factor quadratic

Thus the zeros are x � 0, x � 3, and x � �1.

(b) The x-intercepts are x � 0, x � 3, and x � �1. The y-intercept is . We
make a table of values of , making sure that we choose test points between
(and to the right and left of) successive zeros.

Since P is of odd degree and its leading coefficient is positive, it has the follow-
ing end behavior:

y � q as x � q  and  y � �q as x � �q

P1x 2
P10 2 � 0

 � x1x � 3 2 1x � 1 2

 � x1x2 � 2x � 3 2

 P1x 2 � x3 � 2x2 � 3x

P1x 2 � x3 � 2x2 � 3x.

Test point
P (–1) > 0

Test point
P (4) > 0

Test point
P (2) < 0

Test point
P (–3) < 0

x

5

1

y

0

_2 1

+-

below
x-axis

above
x-axis

below
x-axis

above
x-axis

+

3

-

Test point
x = –3

P(–3) < 0

Test point
x = –1

P(–1) > 0

Test point
x = 2

P (2) < 0

Test point
x = 4

P (3) > 0

13,  q 211,  3 21�2,  1 2
1�q,  �2 2 ,

P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2
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F I G U R E  7 P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2

Test point �

Test point �

Test point �

Test point �

x P11x22

�3 �24
�2 0
�1 8

0 6
1 0
2 �4
3 0
4 18

Automotive Design
Computer-aided design (CAD) has
completely changed the way in which
car companies design and manufac-
ture cars. Before the 1980s automotive
engineers would build a full-scale “nuts
and bolts” model of a proposed new
car; this was really the only way to tell
whether the design was feasible. Today
automotive engineers build a mathe-
matical model, one that exists only in
the memory of a computer. The model
incorporates all the main design fea-
tures of the car. Certain polynomial
curves, called splines (see page 267), are
used in shaping the body of the car.
The resulting “mathematical car” can be
tested for structural stability, handling,
aerodynamics, suspension response,
and more. All this testing is done be-
fore a prototype is built. As you can
imagine, CAD saves car manufacturers
millions of dollars each year. More im-
portantly, CAD gives automotive engi-
neers far more flexibility in design; de-
sired changes can be created and
tested within seconds. With the help of
computer graphics, designers can see
how good the “mathematical car” looks
before they build the real one. More-
over, the mathematical car can be
viewed from any perspective; it can be
moved, rotated, or seen from the inside.
These manipulations of the car on the
computer monitor translate mathemat-
ically into solving large systems of lin-
ear equations.

M AT H E M AT I C S  I N  
T H E  M O D E R N  W O R L D

3D
P

ro
fi

/S
hu

tt
er

st
oc

k.
co

m

Sign of

Graph of P

P1x 2 � 1x � 2 2 1x � 1 2 1x � 3 2
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We plot the points in the table and connect them by a smooth curve to complete the
graph, as shown in Figure 8.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

E X A M P L E  6 Finding Zeros and Graphing a Polynomial Function

Let .

(a) Find the zeros of P. (b) Sketch a graph of P.

S O L U T I O N

(a) To find the zeros, we factor completely:

Factor �x2

Factor quadratic

Thus the zeros are x � 0, , and x � 1.

(b) The x-intercepts are x � 0, , and x � 1. The y-intercept is . We
make a table of values of , making sure that we choose test points between
(and to the right and left of) successive zeros.

Since P is of even degree and its leading coefficient is negative, it has the follow-
ing end behavior:

We plot the points from the table and connect the points by a smooth curve to com-
plete the graph in Figure 9.

F I G U R E  9

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

P1x 2 � �2x4 � x3 � 3x2

y

0 x1

2

_12

y � �q as x � q  and  y � �q as x � �q

P1x 2
P10 2 � 0x � � 

3
2

x � � 
3
2

 � �x212x � 3 2 1x � 1 2

 � �x212x2 � x � 3 2

 P1x 2 � �2x4 � x3 � 3x2

P1x 2 � �2x4 � x3 � 3x2

y

0 x
1

5
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x P11x22

�2 �12
�1.5 0
�1 2
�0.5 0.75

0 0
0.5 0.5
1 0
1.5 �6.75

A table of values is most easily calcu-
lated by using a programmable calcula-
tor or a graphing calculator.

x P11x22

�2 �10
�1 0

�
0 0

�1 �4
�2 �6

3 0
�4 �20

7
8� 1

2

Test point �

Test point �

Test point �

Test point �

F I G U R E  8 P1x 2 � x3 � 2x2 � 3x
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E X A M P L E  7 Finding Zeros and Graphing a Polynomial Function

Let .

(a) Find the zeros of P.

(b) Sketch a graph of P.

S O L U T I O N

(a) To find the zeros, we factor completely:

Group and factor

Factor x � 2

Difference of squares

Simplify

Thus the zeros are x � �2 and x � 2.

(b) The x-intercepts are x � �2 and x � 2. The y-intercept is . The table
gives additional values of .

Since P is of odd degree and its leading coefficient is positive, it has the follow-
ing end behavior:

We connect the points by a smooth curve to complete the graph in Figure 10.

F I G U R E  1 0

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

▼ Shape of the Graph Near a Zero
Although x � 2 is a zero of the polynomial in Example 7, the graph does not cross 
the x-axis at the x-intercept 2. This is because the factor corresponding to 
that zero is raised to an even power, so it doesn’t change sign as we test points on 
either side of 2. In the same way the graph does not cross the x-axis at x � 0 in 
Example 6.

In general, if c is a zero of P and the corresponding factor x � c occurs exactly m times
in the factorization of P, then we say that c is a zero of multiplicity m. By considering
test points on either side of the x-intercept c, we conclude that the graph crosses the x-axis
at c if the multiplicity m is odd and does not cross the x-axis if m is even. Moreover, it can 
be shown by using calculus that near x � c the graph has the same general shape as the
graph of y � A1x � c 2m.

1x � 2 2 2

P1x 2 � x3 � 2x2 � 4x � 8

y

0 x1

5

y � q as x � q  and  y � �q as x � �q

P1x 2
P10 2 � 8

 � 1x � 2 2 1x � 2 22

 � 1x � 2 2 1x � 2 2 1x � 2 2

 � 1x2 � 4 2 1x � 2 2

 � x21x � 2 2 � 41x � 2 2

 P1x 2 � x3 � 2x2 � 4x � 8

P1x 2 � x3 � 2x2 � 4x � 8
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x P 11x22

�3 �25
�2 0
�1 9

0 8
1 3
2 0
3 5
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E X A M P L E  8 Graphing a Polynomial Function Using Its Zeros

Graph the polynomial .

S O L U T I O N The zeros of P are �1, 0, and 2 with multiplicities 2, 4, and 3, respectively:

The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2. But
the zeros 0 and �1 have even multiplicity, so the graph does not cross the x-axis at the 
x-intercepts 0 and �1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has the
following end behavior:

With this information and a table of values we sketch the graph in Figure 11.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27 ■

▼ Local Maxima and Minima of Polynomials
Recall from Section 2.3 that if the point is the highest point on the graph of f
within some viewing rectangle, then is a local maximum value of f, and if 1b,  f 1b 22f 1a 2

1a, f 1a 22

y � q as x � q  and  y � �q as x � �q

P1x 2 � x41x � 2 2 31x � 1 2 2

P1x 2 � x41x � 2 2 31x � 1 2 2
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SHAPE OF THE GRAPH NEAR A ZERO OF MULTIPLICIT Y m

If c is a zero of P of multiplicity m, then the shape of the graph of P near c is as
follows.

Multiplicity of c Shape of the graph of P near the x-intercept c

m odd, m � 1

m even, m � 1

OR

y

xc

y

xc

OR

y

xc

y

xc

0 is a zero of
multiplicity 4

2 is a zero of
multiplicity 3

–1 is a zero of
multiplicity 2

x P 11x22

�1.3 �9.2
�1 0
�0.5 �3.9

0 0
1 �4
2 0
2.3 8.2

y

0 x
1

5
Even
multiplicities

Odd multiplicity

F I G U R E  1 1 P1x 2 � x41x � 2 2 31x � 1 2 2
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is the lowest point on the graph of f within a viewing rectangle, then is a local min-
imum value (see Figure 12). We say that such a point is a local maximum point
on the graph and that is a local minimum point. The local maximum and min-
imum points on the graph of a function are called its local extrema.

F I G U R E  1 2

For a polynomial function the number of local extrema must be less than the degree, as
the following principle indicates. (A proof of this principle requires calculus.)

A polynomial of degree n may in fact have less than n � 1 local extrema. For exam-
ple, (graphed in Figure 1) has no local extrema, even though it is of degree 5.
The preceding principle tells us only that a polynomial of degree n can have no more than 
n � 1 local extrema.

E X A M P L E  9 The Number of Local Extrema

Graph the polynomial and determine how many local extrema it has.

(a)

(b) (c)

S O L U T I O N The graphs are shown in Figure 13.

(a) P1 has two local minimum points and one local maximum point, for a total of three
local extrema.

(b) P2 has two local minimum points and two local maximum points, for a total of four
local extrema.

(c) P3 has just one local extremum, a local minimum.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 63 AND 65 ■

P31x 2 � 7x4 � 3x2 � 10xP21x 2 � x5 � 3x4 � 5x3 � 15x2 � 4x � 15

P11x 2 � x4 � x3 � 16x2 � 4x � 48

P1x 2 � x5

0 a b

Ób, f(b)Ô
Local minimum point

Óa, f(a)Ô
Local maximum point

y=Ï

x

y

1b, f 1b 22
1a, f 1a 22

f 1b 2
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LOC AL EX TREMA OF POLYNOMIALS

If is a polynomial of degree n, then
the graph of P has at most n � 1 local extrema.

P1x 2 � anxn � an�1x
n�1 � . . . � a1x � a0

100

_100

_5 5

(a)

100

_100

_5 5

(b)

100

_100

_5 5

P⁄(x)=x¢+x£-16≈-4x+48 P¤(x)=x∞+3x¢-5x£-15≈+4x-15 P‹(x)=7x¢+3≈-10x

(c)

F I G U R E  1 3
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With a graphing calculator we can quickly draw the graphs of many functions at once,
on the same viewing screen. This allows us to see how changing a value in the definition
of the functions affects the shape of its graph. In the next example we apply this principle
to a family of third-degree polynomials.

E X A M P L E  1 0 A Family of Polynomials

Sketch the family of polynomials for c � 0, 1, 2, and 3. How does
changing the value of c affect the graph?

S O L U T I O N The polynomials

are graphed in Figure 14. We see that increasing the value of c causes the graph to develop
an increasingly deep “valley” to the right of the y-axis, creating a local maximum at the
origin and a local minimum at a point in Quadrant IV. This local minimum moves lower
and farther to the right as c increases. To see why this happens, factor .
The polynomial P has zeros at 0 and c, and the larger c gets, the farther to the right the
minimum between 0 and c will be.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 73 ■

P1x 2 � x21x � c 2

P31x 2 � x3 � 3x2P21x 2 � x3 � 2x2

P11x 2 � x3 � x2P01x 2 � x3

P1x 2 � x3 � cx2
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10

_10

_2 4

c=0 c=1 c=2 c=3

F I G U R E  1 4 A family of polynomials
P1x 2 � x3 � cx2

C O N C E P T S
1. Only one of the following graphs could be the graph of a poly-

nomial function. Which one? Why are the others not graphs of
polynomials?

3. If c is a zero of the polynomial P, then

(a) .

(b) is a of .

(c) c is a(n) -intercept of the graph of P.

4. Which of the following statements couldn’t possibly be true
about the polynomial function P?
(a) P has degree 3, two local maxima, and two local minima.
(b) P has degree 3 and no local maxima or minima.
(c) P has degree 4, one local maximum, and no local minima.

S K I L L S
5–8 ■ Sketch the graph of each function by transforming the
graph of an appropriate function of the form y � xn from Figure 1.
Indicate all x- and y-intercepts on each graph.

5. (a) (b)
(c) (d)

6. (a) (b)
(c) (d)

7. (a) (b)
(c) (d)

8. (a) (b)
(c) (d)

9–14 ■ A polynomial function is given. (a) Describe the end be-
havior of the polynomial function. (b) Match the polynomial func-
tion with one of the graphs I–VI.

9. 10. Q1x 2 � �x21x2 � 4 2P1x 2 � x 1x2 � 4 2

S1x 2 � � 
1
2  
1x � 2 2 5 � 16R1x 2 � � 

1
2  
1x � 2 2 5

Q1x 2 � 21x � 3 2 5 � 64P1x 2 � 1x � 3 2 5
S1x 2 � 1

2 1x � 1 2 3 � 4R1x 2 � �1x � 2 2 3
Q1x 2 � �x3 � 27P1x 2 � x3 � 8

S1x 2 � �21x � 2 2 4R1x 2 � 1x � 2 2 4 � 16

Q1x 2 � 1x � 2 2 4P1x 2 � x4 � 16

S1x 2 � 21x � 2 2 2R1x 2 � 2x2 � 2

Q1x 2 � 1x � 4 2 2P1x 2 � x2 � 4

P1x 2x � c

P1c 2 �

3 . 2  E X E R C I S E S

I
y

x

II
y

x

III
y

x

IV
y

x

2. Describe the end behavior of each polynomial.
(a)

End behavior: as

as

(b)

End behavior: as

as x � �qy �

x � qy �

y � �2x 4 � 12x � 100

x � �qy �

x � qy �

y � x 3 � 8x 2 � 2x � 15
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37.

38.

39.

40.

41. 42.

43–48 ■ Determine the end behavior of P. Compare the graphs of
P and Q in large and small viewing rectangles, as in Example 3(b).

43.

44.

45.

46.

47.

48.

49–52 ■ The graph of a polynomial function is given. From the
graph, find (a) the x- and y-intercepts, and (b) the coordinates of all
local extrema.

49. 50.

51. 52.

53–60 ■ Graph the polynomial in the given viewing rectangle. Find
the coordinates of all local extrema. State each answer rounded to
two decimal places.

53. y � �x2 � 8x, 3�4, 124 by 3�50, 304

54. y � x3 � 3x2, 3�2, 54 by 3�10, 104

55. y � x3 � 12x � 9, 3�5, 54 by 3�30, 304

56. y � 2x3 � 3x2 � 12x � 32, 3�5, 54 by 3�60, 304

57. y � x4 � 4x3, 3�5, 54 by 3�30, 304

58. y � x4 � 18x2 � 32, 3�5, 54 by 3�100, 1004

59. y � 3x5 � 5x3 � 3, 3�3, 34 by 3�5, 104

60. y � x5 � 5x2 � 6, 3�3, 34 by 3�5, 104

0

y

x2

1

0

y

x
11

P1x 2 � 1
9 x4 � 4

9 x3P1x 2 � �1
2 x3 � 3

2 x � 1

0

y

x1

1

y

0 1

1
x

P1x 2 � 2
9 x3 � x2P1x 2 � �x2 � 4x

P1x 2 � 2x2 � x12; Q1x 2 � �x12

P1x 2 � x11 � 9x9; Q1x 2 � x11

P1x 2 � �x5 � 2x2 � x; Q1x 2 � �x5

P1x 2 � x4 � 7x2 � 5x � 5; Q1x 2 � x4

P1x 2 � �1
8 x3 � 1

4 x2 � 12x; Q1x 2 � �1
8 x3

P1x 2 � 3x3 � x2 � 5x � 1; Q1x 2 � 3x3

P1x 2 � x6 � 2x3 � 1P1x 2 � x4 � 3x2 � 4

P1x 2 � x4 � 2x3 � 8x � 16

P1x 2 � x4 � 2x3 � 8x � 16

P1x 2 � 1
8 12x4 � 3x3 � 16x � 24 2 2

P1x 2 � 2x3 � x2 � 18x � 911. 12.

13. 14.

15–28 ■ Sketch the graph of the polynomial function. Make sure
your graph shows all intercepts and exhibits the proper end behavior.

15.

16.

17.

18.

19.

20.

21. 22.

23.

24.

25. 26.

27. 28.

29–42 ■ Factor the polynomial and use the factored form to find
the zeros. Then sketch the graph.

29. 30.

31. 32.

33. 34.

35. 36. P1x 2 � x3 � 3x2 � 4x � 12P1x 2 � x3 � x2 � x � 1

P1x 2 � x5 � 9x3P1x 2 � x4 � 3x3 � 2x2

P1x 2 � �2x3 � x2 � xP1x 2 � �x3 � x2 � 12x

P1x 2 � x3 � 2x2 � 8xP1x 2 � x3 � x2 � 6x

P1x 2 � 1x � 3 2 21x � 1 2 2P1x 2 � x31x � 2 2 1x � 3 2 2

P1x 2 � 1x � 1 2 21x � 2 2 3P1x 2 � 1
12 1x � 2 2 21x � 3 2 2

P1x 2 � 1
4 1x � 1 2 31x � 3 2

P1x 2 � �1x � 4 2 1x � 3 2 1x � 5 22

P1x 2 � 1
5 x 1x � 5 2 2P1x 2 � �2x1x � 2 2 2

P1x 2 � 1x � 3 2 1x � 2 2 13x � 2 2

P1x 2 � �12x � 1 2 1x � 1 2 1x � 3 2

P1x 2 � �x1x � 3 2 1x � 2 2

P1x 2 � x 1x � 3 2 1x � 2 2

P1x 2 � 12 � x 2 1x � 5 2

P1x 2 � 1x � 1 2 1x � 2 2

I II

III IV

y

x0 1
1

y

x0 1
1

y

x0 1
1

y

x0 1
1

V VI

y

x0 1

1

y

x0 1

1

U1x 2 � �x3 � 2x2T1x 2 � x4 � 2x3

S1x 2 � 1
2 x6 � 2x4R1x 2 � �x5 � 5x3 � 4x
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80. (a) Graph the function and
find all local extrema, correct to the nearest tenth.

(b) Graph the function

and use your answers to part (a) to find all local extrema,
correct to the nearest tenth.

81. (a) Graph the function and
determine how many local extrema it has.

(b) If a � b � c, explain why the function

must have two local extrema.

82. (a) How many x-intercepts and how many local extrema does
the polynomial have?

(b) How many x-intercepts and how many local extrema does
the polynomial have?

(c) If a � 0, how many x-intercepts and how many local ex-
trema does each of the polynomials and

have? Explain your answer.

A P P L I C A T I O N S
83. Market Research A market analyst working for a small-

appliance manufacturer finds that if the firm produces and 
sells x blenders annually, the total profit (in dollars) is

Graph the function P in an appropriate viewing rectangle and
use the graph to answer the following questions.
(a) When just a few blenders are manufactured, the firm loses

money (profit is negative). (For example,
so the firm loses $263.30 if it produces and sells only 10
blenders.) How many blenders must the firm produce to
break even?

(b) Does profit increase indefinitely as more blenders are pro-
duced and sold? If not, what is the largest possible profit
the firm could have?

84. Population Change The rabbit population on a small is-
land is observed to be given by the function

where t is the time (in months) since observations of the 
island began.
(a) When is the maximum population attained, and what is

that maximum population?
(b) When does the rabbit population disappear from the

island?

t

P

0

P1t 2 � 120t � 0.4t4 � 1000

P110 2 � �263.3,

P1x 2 � 8x � 0.3x2 � 0.0013x3 � 372

Q1x 2 � x3 � ax
P1x 2 � x3 � ax

Q1x 2 � x3 � 4x

P1x 2 � x3 � 4x

P1x 2 � 1x � a 2 1x � b 2 1x � c 2

P1x 2 � 1x � 2 2 1x � 4 2 1x � 5 2

Q1x 2 � 1x � 1 2 1x � 3 2 1x � 4 2 � 5

P1x 2 � 1x � 1 2 1x � 3 2 1x � 4 261–70 ■ Graph the polynomial and determine how many local
maxima and minima it has.

61. y � �2x2 � 3x � 5 62. y � x3 � 12x

63. y � x3 � x2 � x 64. y � 6x3 � 3x � 1

65. y � x4 � 5x2 � 4

66. y � 1.2x5 � 3.75x4 � 7x3 � 15x2 � 18x

67. 68.

69. 70.

71–76 ■ Graph the family of polynomials in the same viewing
rectangle, using the given values of c. Explain how changing the
value of c affects the graph.

71.

72.

73.

74.

75.

76.

77. (a) On the same coordinate axes, sketch graphs (as accurately
as possible) of the functions

(b) On the basis of your sketch in part (a), at how many
points do the two graphs appear to intersect?

(c) Find the coordinates of all intersection points.

78. Portions of the graphs of y � x2, y � x3, y � x4, y � x5, and 
y � x6 are plotted in the figures. Determine which function
belongs to each graph.

79. Recall that a function f is odd if or even if
for all real x.

(a) Show that a polynomial that contains only odd pow-
ers of x is an odd function.

(b) Show that a polynomial that contains only even pow-
ers of x is an even function.

(c) Show that if a polynomial contains both odd and 
even powers of x, then it is neither an odd nor an even
function.

(d) Express the function

as the sum of an odd function and an even function.

P1x 2 � x5 � 6x3 � x2 � 2x � 5

P1x 2

P1x 2

P1x 2

f 1�x 2 � f 1x 2
f 1�x 2 � �f 1x 2

y

0 x1

1

y

0 x1

1

y � x3 � 2x2 � x � 2  and  y � �x2 � 5x � 2

P1x 2 � xc; c � 1, 3, 5, 7

P1x 2 � x4 � cx; c � 0, 1, 8, 27

P1x 2 � x3 � cx; c � 2, 0, �2, �4

P1x 2 � x4 � c; c � �1, 0, 1, 2

P1x 2 � 1x � c 2 4; c � �1, 0, 1, 2

P1x 2 � cx3; c � 1, 2, 5, 12

y � 1
3 x7 � 17x2 � 7y � x8 � 3x4 � x

y � 1x2 � 2 2 3y � 1x � 2 2 5 � 32
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So far in this chapter we have been studying polynomial functions graphically. In this sec-
tion we begin to study polynomials algebraically. Most of our work will be concerned
with factoring polynomials, and to factor, we need to know how to divide polynomials.

▼ Long Division of Polynomials
Dividing polynomials is much like the familiar process of dividing numbers. When we di-
vide 38 by 7, the quotient is 5 and the remainder is 3. We write

38

7
� 5 �

3

7

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
87. Graphs of Large Powers Graph the functions y � x2,

y � x3, y � x4, and y � x5, for �1 	 x 	 1, on the same 
coordinate axes. What do you think the graph of y � x100

would look like on this same interval? What about y � x101?
Make a table of values to confirm your answers.

88. Maximum Number of Local Extrema What is the small-
est possible degree that the polynomial whose graph is shown
can have? Explain.

89. Possible Number of Local Extrema Is it possible for 
a third-degree polynomial to have exactly one local extre-
mum? Can a fourth-degree polynomial have exactly two local
extrema? How many local extrema can polynomials of third,
fourth, fifth, and sixth degree have? (Think about the end 
behavior of such polynomials.) Now give an example of a
polynomial that has six local extrema.

90. Impossible Situation? Is it possible for a polynomial to
have two local maxima and no local minimum? Explain.

0 x

y

85. Volume of a Box An open box is to be constructed from a
piece of cardboard 20 cm by 40 cm by cutting squares of side
length x from each corner and folding up the sides, as shown
in the figure.
(a) Express the volume V of the box as a function of x.
(b) What is the domain of V? (Use the fact that length and

volume must be positive.)
(c) Draw a graph of the function V, and use it to estimate the

maximum volume for such a box.

86. Volume of a Box A cardboard box has
a square base, with each edge of the base
having length x inches, as shown in the
figure. The total length of all 12 edges of
the box is 144 in.
(a) Show that the volume of the box is

given by the function
.

(b) What is the domain of V? (Use the
fact that length and volume must be
positive.)

(c) Draw a graph of the function V and
use it to estimate the maximum vol-
ume for such a box.

V1x 2 � 2x2118 � x 2

20 cm

40 cm

x
x
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3.3 DIVIDING POLYNOMIALS

LEARNING OBJECTIVES After completing this section, you will be able to:

Use long division to divide polynomials � Use synthetic division to divide
polynomials � Use the Remainder Theorem to find values of a polynomial
� Use the Factor Theorem to factor a polynomial � Find a polynomial with
specified zeros

Dividend

Quotient

Remainder

Divisor

x
x
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To divide polynomials, we use long division, as follows.

E X A M P L E  1 Long Division of Polynomials

Divide 6x2 � 26x � 12 by x � 4. Express the result in each of the two forms shown in
the above box.

S O L U T I O N The dividend is 6x2 � 26x � 12, and the divisor is x � 4. We begin by
arranging them as follows:

Next we divide the leading term in the dividend by the leading term in the divisor to get
the first term of the quotient: 6x2/x � 6x. Then we multiply the divisor by 6x and sub-
tract the result from the dividend:

We repeat the process using the last line �2x � 12 as the dividend.

The division process ends when the last line is of lesser degree than the divisor. The last
line then contains the remainder, and the top line contains the quotient. The result of the
division can be interpreted in either of two ways:

6x 2 � 2oo

x � 4�6x 2 � 26x � 12

6x 2 � 24x

�2x � 12

�2x � 8

4

6x

x � 4�6x 2 � 26x � 12

6x 2 � 24x

�2x � 12

x � 4�6x2 � 26x � 12
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DIVISION ALGORITHM

If and are polynomials, with , then there exist unique polyno-
mials and , where is either 0 or of degree less than the degree of

, such that

or

The polynomials and are called the dividend and divisor, respectively,
is the quotient, and is the remainder.R1x 2Q1x 2

D1x 2P1x 2

P1x 2 � D1x 2 # Q1x 2 � R1x 2
P1x 2

D1x 2
� Q1x 2 �

R1x 2

D1x 2

D1x 2
R1x 2R1x 2Q1x 2

D1x 2 � 0D1x 2P1x 2

Dividend Divisor Quotient
Remainder

Divide leading terms:

Multiply:

Subtract and “bring down” 12

6x1x � 4 2 � 6x 2 � 24x

6x 2

x
� 6x

Divide leading terms:

Multiply:

Subtract

�21x � 4 2 � �2x � 8

�2x

x
� �2

Dividend Divisor Quotient

Dividend
Quotient Remainder

or 6x2 � 26x � 12 � 1x � 4 2 16x � 2 2 � 4
6x2 � 26x � 12

x � 4
� 6x � 2 �

4

x � 4

Remainder

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 3 AND 9 ■

Divisor
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Quotient

Remainder

E X A M P L E  2 Long Division of Polynomials

Let and . Find polynomials and
such that .

S O L U T I O N We use long division after first inserting the term 0x3 into the dividend to
ensure that the columns line up correctly.

The process is complete at this point because �7x � 1 is of lesser degree than the divi-
sor 2x2 � x � 2. From the above long division we see that and

, so

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

▼ Synthetic Division
Synthetic division is a quick method of dividing polynomials; it can be used when the 
divisor is of the form x � c. In synthetic division we write only the essential parts of the
long division. Compare the following long and synthetic divisions, in which we divide 
2x3 � 7x2 � 5 by x � 3. (We’ll explain how to perform the synthetic division in 
Example 3.)

Long Division Synthetic Division

Note that in synthetic division we abbreviate 2x3 � 7x2 � 5 by writing only the
coefficients: 2 �7 0 5, and instead of x � 3, we simply write 3. (Writing 3 instead
of �3 allows us to add instead of subtract, but this changes the sign of all the numbers
that appear in the gold boxes.)

The next example shows how synthetic division is performed.

E X A M P L E  3 Synthetic Division

Use synthetic division to divide 2x3 � 7x2 � 5 by x � 3.

S O L U T I O N We begin by writing the appropriate coefficients to represent the divisor
and the dividend:

3 � 2 �7 0 5

2x2 � x � 3

x � 3�2x3 � 7x2 � 0x � 5

2x3 � 6x2

�x2 � 0x

�x2 � 3x

�3x � 5

�3x � 9

�4

8x4 � 6x2 � 3x � 1 � 12x2 � x � 2 2 14x2 � 2x 2 � 1�7x � 1 2

R1x 2 � �7x � 1
Q1x 2 � 4x2 � 2x

Multiply divisor by 4x2

Subtract

Multiply divisor by 2x

Subtract

4x 2 � 2x

2x 2 � x � 2�8x 4 � 0x 3 � 6x 2 � 3x � 1

8x 4 � 4x 3 � 8x 2

4x 3 � 2x 2 � 3x

4x 3 � 2x 2 � 4x

�7x � 1

P1x 2 � D1x 2 # Q1x 2 � R1x 2R1x 2
Q1x 2D1x 2 � 2x2 � x � 2P1x 2 � 8x4 � 6x2 � 3x � 1

282 C H A P T E R  3 | Polynomial and Rational Functions

3 2 �7 0 5

6 �3 �9

2 �1 �3 �4
144424443

Quotient Remainder

Dividend 
2x3 – 7x2 + 0x + 5

Divisor x – 3
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We bring down the 2, multiply 3 
 2 � 6, and write the result in the middle row. Then 
we add:

We repeat this process of multiplying and then adding until the table is complete.

From the last line of the synthetic division we see that the quotient is 2x2 � x � 3 and
the remainder is �4. Thus

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

▼ The Remainder and Factor Theorems
The next theorem shows how synthetic division can be used to evaluate polynomials easily.

P R O O F If the divisor in the Division Algorithm is of the form x � c for some real
number c, then the remainder must be a constant (since the degree of the remainder is
less than the degree of the divisor). If we call this constant r, then

Replacing x by c in this equation, we get , that
is, is the remainder r. ■

E X A M P L E  4 Using the Remainder Theorem to Find the Value 
of a Polynomial

Let .

(a) Find the quotient and remainder when is divided by x � 2.

(b) Use the Remainder Theorem to find .P1�2 2

P1x 2

P1x 2 � 3x5 � 5x4 � 4x3 � 7x � 3

P1c 2
P1c 2 � 1c � c 2 # Q1x 2 � r � 0 � r � r

P1x 2 � 1x � c 2 # Q1x 2 � r

2x3 � 7x2 � 5 � 1x � 3 2 12x2 � x � 3 2 � 4

3 2

2

−7

−3 −9

0 5

6

−3 −4−1

Quotient
2x2 – x – 3

Remainder
–4

3 2

2

−7

−3

0 5

6

−3−1

Multiply: 3 · 2 � 6

Add: �7 � 6 � �1

3 2

2

-7 0 5

6

-1

S E C T I O N  3 . 3 | Dividing Polynomials 283

Multiply: 3(�1) � �3

Add: 0 � (�3) � �3

Multiply: 3(�3) � �9

Add: 5 � (�9) � �4

REMAINDER THEOREM

If the polynomial is divided by x � c, then the remainder is the value .P1c 2P1x 2
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S O L U T I O N

(a) Since , the synthetic division for this problem takes the 
following form:

�2 � 3 �5 �4 �0 �7 �3 ,

�6 2 4 �8 2

3 �1 �2 4 �1 5

The quotient is 3x4 � x3 � 2x2 � 4x � 1, and the remainder is 5.

(b) By the Remainder Theorem, is the remainder when is divided by 
x � 1�22 � x � 2. From part (a) the remainder is 5, so .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

The next theorem says that zeros of polynomials correspond to factors; we used this
fact in Section 3.2 to graph polynomials.

P R O O F If factors as , then

Conversely, if , then by the Remainder Theorem

so x � c is a factor of    . ■

E X A M P L E  5 Factoring a Polynomial Using the Factor Theorem

Let . Show that , and use this fact to factor completely.

S O L U T I O N Substituting, we see that . By the Factor 
Theorem this means that x � 1 is a factor of . Using synthetic or long division
(shown in the margin), we see that

Given polynomial

See margin

Factor quadratic x2 � x � 6

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 53 AND 57 ■

E X A M P L E  6 Finding a Polynomial with Specified Zeros

Find a polynomial of degree 4 that has zeros �3, 0, 1, and 5.

S O L U T I O N By the Factor Theorem, , x � 0, x � 1, and x � 5 must all be
factors of the desired polynomial.

x � 1�3 2

 � 1x � 1 2 1x � 2 2 1x � 3 2

 � 1x � 1 2 1x2 � x � 6 2

 P1x 2 � x3 � 7x � 6

P1x 2
P11 2 � 13 � 7 # 1 � 6 � 0

P1x 2P11 2 � 0P1x 2 � x3 � 7x � 6

P1x 2

P1x 2 � 1x � c 2 # Q1x 2 � 0 � 1x � c 2 # Q1x 2

P1c 2 � 0

P1c 2 � 1c � c 2 # Q1c 2 � 0 # Q1c 2 � 0

P1x 2 � 1x � c 2 # Q1x 2P1x 2

P1�2 2 � 5
P1x 2P1�2 2

x � 2 � x � 1�2 2

284 C H A P T E R  3 | Polynomial and Rational Functions

Remainder is 5,
so P(–2) = 5

FACTOR THEOREM

c is a zero of P if and only if x � c is a factor of .P1x 2

x2 � x � 6

x � 1�x3 � 0x2 � 7x � 6

x3 � x2

x2 � 7x

x2 � x

�6x � 6

�6x � 6

0

1 � 1 0 �7 6

1 1 �6

1 1 �6 0
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Let

Since is of degree 4, it is a solution of the problem. Any other solution of the prob-
lem must be a constant multiple of , since only multiplication by a constant does
not change the degree.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 59 ■

The polynomial P of Example 6 is graphed in Figure 1. Note that the zeros of P cor-
respond to the x-intercepts of the graph.

P1x 2
P1x 2

 � x4 � 3x3 � 13x2 � 15x

 P1x 2 � 1x � 3 2 1x � 0 2 1x � 1 2 1x � 5 2
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C O N C E P T S
1. If we divide the polynomial P by the factor and we ob-

tain the equation then we say that

is the divisor, is the , and is the

.

2. (a) If we divide the polynomial by the factor and
we obtain a remainder of 0, then we know that c is a 

of P.
(b) If we divide the polynomial by the factor 

and we obtain a remainder of k, then we know that 

.

S K I L L S
3–8 ■ Two polynomials P and D are given. Use either synthetic or
long division to divide by , and express the quotient

in the form

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,

9–14 ■ Two polynomials P and D are given. Use either synthetic
or long division to divide by , and express P in the form

.

9. , D1x 2 � x � 3P1x 2 � 3x2 � 5x � 4

P1x 2 � D1x 2 # Q1x 2 � R1x 2
D1x 2P1x 2

D1x 2 � x2 � x � 1P1x 2 � x5 � x4 � 2x3 � x � 1

D1x 2 � x2 � 4P1x 2 � 2x4 � x3 � 9x2

D1x 2 � 3x � 4P1x 2 � 6x3 � x2 � 12x � 5

D1x 2 � 2x � 1P1x 2 � 4x2 � 3x � 7

D1x 2 � x � 4P1x 2 � x3 � 6x � 5

D1x 2 � x � 3P1x 2 � x2 � 4x � 8

P1x 2

D1x 2
� Q1x 2 �

R1x 2

D1x 2

P1x 2 /D1x 2
D1x 2P1x 2

P1c 2 �

x � cP1x 2

x � cP1x 2

R1x 2Q1x 2x � c

P1x 2 � 1x � c 2Q1x 2 � R1x 2 ,
x � c

10. ,

11. ,

12. ,

13. ,

14. ,

15–24 ■ Find the quotient and remainder using long division.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25–38 ■ Find the quotient and remainder using synthetic division.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.
x3 � 9x2 � 27x � 27

x � 3

x5 � 3x3 � 6

x � 1

x4 � x3 � x2 � x � 2

x � 2

x3 � 8x � 2

x � 3

3x3 � 12x2 � 9x � 1

x � 5

x3 � 2x2 � 2x � 1

x � 2

4x2 � 3

x � 5

3x2 � 5x

x � 6

x2 � 5x � 4

x � 1

x2 � 5x � 4

x � 3

2x5 � 7x4 � 13

4x2 � 6x � 8

x6 � x4 � x2 � 1

x2 � 1

9x2 � x � 5

3x2 � 7x

6x3 � 2x2 � 22x

2x2 � 5

3x4 � 5x3 � 20x � 5

x2 � x � 3

x3 � 6x � 3

x2 � 2x � 2

x3 � 3x2 � 4x � 3

3x � 6

4x3 � 2x2 � 2x � 3

2x � 1

x3 � x2 � 2x � 6

x � 2

x2 � 6x � 8

x � 4

D1x 2 � x2 � 2P1x 2 � 2x5 � 4x4 � 4x3 � x � 3

D1x 2 � x2 � 3P1x 2 � x4 � x3 � 4x � 2

D1x 2 � 2x � 1P1x 2 � 4x3 � 7x � 9

D1x 2 � 2x � 3P1x 2 � 2x3 � 3x2 � 2x

D1x 2 � x � 1P1x 2 � x3 � 4x2 � 6x � 1

3 . 3  E X E R C I S E S

1

10

y

x0_3 5

F I G U R E  1

P1x) � 1x � 32x1x � 12 1x � 52 has 
zeros �3, 0, 1, and 5.
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63. Find a polynomial of degree 3 that has zeros 1, �2, and 3 and
in which the coefficient of x2 is 3.

64. Find a polynomial of degree 4 that has integer coefficients and
zeros 1, �1, 2, and .

65–68 ■ Find the polynomial of the specified degree whose graph
is shown.

65. Degree 3 66. Degree 3

67. Degree 4 68. Degree 4

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
69. Impossible Division? Suppose you were asked to solve the

following two problems on a test:
A. Find the remainder when 6x1000 � 17x562 � 12x � 26 is

divided by x � 1.
B. Is x � 1 a factor of x567 � 3x400 � x9 � 2?

Obviously, it’s impossible to solve these problems by dividing,
because the polynomials are of such large degree. Use one or
more of the theorems in this section to solve these problems
without actually dividing.

70. Nested Form of a Polynomial Expand Q to prove that the
polynomials P and Q are the same.

Try to evaluate and in your head, using the 
forms given. Which is easier? Now write the polynomial

in “nested” form,
like the polynomial Q. Use the nested form to find in 
your head.

Do you see how calculating with the nested form follows
the same arithmetic steps as calculating the value of a polyno-
mial using synthetic division?

R13 2
R1x 2 � x5 � 2x4 � 3x3 � 2x2 � 3x � 4

Q12 2P12 2

Q1x 2 � 1 1 13x � 5 2x � 1 2x � 3 2x � 5

P1x 2 � 3x4 � 5x3 � x2 � 3x � 5

0

y

x1

1

0

y

x1

1

0

y

x1

1

0

y

x1

1

1
2

35.

36.

37. 38.

39–51 ■ Use synthetic division and the Remainder Theorem to
evaluate .

39. , c � �1

40. ,

41. , c � 2

42. , c � �1

43. , c � �2

44. , c � 11

45. , c � �7

46. , c � �2

47. , c � 3

48. , c � �3

49. ,

50. ,

51. , c � 0.1

52. Let

Calculate by (a) using synthetic division and (b) substi-
tuting x � 7 into the polynomial and evaluating directly.

53–56 ■ Use the Factor Theorem to show that x � c is a factor of
for the given value(s) of c.

53. , c � 1

54. , c � 2

55. ,

56. , c � 3, �3

57–58 ■ Show that the given value(s) of c are zeros of , and
find all other zeros of .

57. , c � 3

58. ,

59–62 ■ Find a polynomial of the specified degree that has the
given zeros.

59. Degree 3; zeros �1, 1, 3

60. Degree 4; zeros �2, 0, 2, 4

61. Degree 4; zeros �1, 1, 3, 5

62. Degree 5; zeros �2, �1, 0, 1, 2

c � 1
3, �2P1x 2 � 3x4 � x3 � 21x2 � 11x � 6

P1x 2 � x3 � x2 � 11x � 15

P1x 2
P1x 2

P1x 2 � x4 � 3x3 � 16x2 � 27x � 63

c � 1
2P1x 2 � 2x3 � 7x2 � 6x � 5

P1x 2 � x3 � 2x2 � 3x � 10

P1x 2 � x3 � 3x2 � 3x � 1

P1x 2

P17 2

 � 60x3 � 69x2 � 13x � 139

 P1x 2 � 6x7 � 40x6 � 16x5 � 200x4

P1x 2 � x3 � 2x2 � 3x � 8

c � 1
4P1x 2 � x3 � x � 1

c � 2
3P1x 2 � 3x3 � 4x2 � 2x � 1

P1x 2 � �2x6 � 7x5 � 40x4 � 7x2 � 10x � 112

P1x 2 � x7 � 3x2 � 1

P1x 2 � 6x5 � 10x3 � x � 1

P1x 2 � 5x4 � 30x3 � 40x2 � 36x � 14

P1x 2 � 2x3 � 21x2 � 9x � 200

P1x 2 � x3 � 2x2 � 7

P1x 2 � x3 � x2 � x � 5

P1x 2 � x3 � 3x2 � 7x � 6

c � 1
2P1x 2 � 2x2 � 9x � 1

P1x 2 � 4x2 � 12x � 5

P1c 2

x4 � 16

x � 2

x3 � 27

x � 3

6x4 � 10x3 � 5x2 � x � 1

x � 2
3

2x3 � 3x2 � 2x � 1

x � 1
2
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The Factor Theorem tells us that finding the zeros of a polynomial is really the same thing
as factoring it into linear factors. In this section we study some algebraic methods that
help us to find the real zeros of a polynomial and thereby factor the polynomial. We be-
gin with the rational zeros of a polynomial.

▼ Rational Zeros of Polynomials
To help us understand the next theorem, let’s consider the polynomial

Factored form

Expanded form

From the factored form we see that the zeros of P are 2, 3, and �4. When the polynomial
is expanded, the constant 24 is obtained by multiplying . This means
that the zeros of the polynomial are all factors of the constant term. The following gener-
alizes this observation.

P R O O F If p/q is a rational zero, in lowest terms, of the polynomial P, then we have

Multiply by qn

Subtract a0q
n

and factor LHS

Now p is a factor of the left side, so it must be a factor of the right side as well. Since p/q
is in lowest terms, p and q have no factor in common, so p must be a factor of a0. A similar
proof shows that q is a factor of an. ■

We see from the Rational Zeros Theorem that if the leading coefficient is 1 or �1, then
the rational zeros must be factors of the constant term.

 p1an  
pn�1 � an�1  

pn�2q � . . . � a1q
n�1 2 � �a0q

n

 an  
pn � an�1  

pn�1q � . . . � a1pqn�1 � a0q
n � 0

 an a
p

q
b

n

� an�1 a
p

q
b

n�1

� . . . � a1 a
p

q
b � a0 � 0

1�2 2 � 1�3 2 � 4

 � x3 � x2 � 14x � 24

 P1x 2 � 1x � 2 2 1x � 3 2 1x � 4 2
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3.4 REAL ZEROS OF POLYNOMIALS

LEARNING OBJECTIVES After completing this section, you will be able to:

Use the Rational Zeros Theorem to find the rational zeros of polynomials
� Use Descartes’ Rule of Signs to determine the possible number of positive
and negative zeros of a polynomial � Use the Upper and Lower Bounds 
Theorem to find upper and lower bounds for the zeros of a polynomial
� Use algebra and graphing devices to solve polynomial equations

RATIONAL ZEROS THEOREM

If the polynomial has integer
coefficients (where ), then every rational zero of P is of the form

where p an q are integers and 

p is a factor of the constant coefficient a0

q is a factor of the leading coefficient an

p

q

an � 0 and a0 � 0
P1x 2 � an  

x 
 

n � an�1x 
n�1 � . . . � a1x � a0

90169_Ch03a_257-297.qxd  11/23/11  2:30 PM  Page 287



E X A M P L E  1 Using the Rational Zeros Theorem

Find the rational zeros of .

S O L U T I O N Since the leading coefficient is 1, any rational zero must be a divisor of
the constant term 2. So the possible rational zeros are �1 and �2. We test each of these
possibilities:

The rational zeros of P are 1 and �2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

The following box explains how we use the Rational Zeros Theorem with synthetic di-
vision to factor a polynomial.

E X A M P L E  2 Finding Rational Zeros

Write the polynomial in factored form, and find all its zeros.

S O L U T I O N By the Rational Zeros Theorem the rational zeros of P are of the form

The constant term is 6 and the leading coefficient is 2, so

The factors of 6 are �1, �2, �3, �6, and the factors of 2 are �1, �2. Thus the possi-
ble rational zeros of P are

Simplifying the fractions and eliminating duplicates, we get the following list of possi-
ble rational zeros:

�1, �2, �3, �6, �
1

2
, �

3

2

�
1

1
, �

2

1
, �

3

1
, �

6

1
, �

1

2
, �

2

2
, �

3

2
, �

6

2

possible rational zero of P �
factor of 6

factor of 2

possible rational zero of P �
factor of constant term

factor of leading coefficient

P1x 2 � 2x3 � x2 � 13x � 6

 P1�2 2 � 1�2 2 3 � 31�2 2 � 2 � 0

 P12 2 � 12 2 3 � 312 2 � 2 � 4

 P1�1 2 � 1�1 2 3 � 31�1 2 � 2 � 4

 P11 2 � 11 2 3 � 311 2 � 2 � 0

P1x 2 � x3 � 3x � 2

288 C H A P T E R  3 | Polynomial and Rational Functions

FINDING THE RATIONAL ZEROS OF A POLYNOMIAL

1. List Possible Zeros. List all possible rational zeros, using the Rational Zeros
Theorem.

2. Divide. Use synthetic division to evaluate the polynomial at each of the can-
didates for the rational zeros that you found in Step 1. When the remainder is
0, note the quotient you have obtained.

3. Repeat. Repeat Steps 1 and 2 for the quotient. Stop when you reach a quo-
tient that is quadratic or factors easily, and use the quadratic formula or factor 
to find the remaining zeros.

E V A R I S T E  G A L O I S (1811–1832) is one
of the very few mathematicians to have
an entire theory named in his honor.
Not yet 21 when he died, he com-
pletely settled the central problem in
the theory of equations by describing a
criterion that reveals whether a polyno-
mial equation can be solved by alge-
braic operations. Galois was one of the
greatest mathematicians in the world
at that time, although no one knew it
but him. He repeatedly sent his work to
the eminent mathematicians Cauchy
and Poisson, who either lost his letters
or did not understand his ideas. Galois
wrote in a terse style and included few
details, which probably played a role in
his failure to pass the entrance exams
at the Ecole Polytechnique in Paris. A
political radical, Galois spent several
months in prison for his revolutionary
activities. His brief life came to a tragic
end when he was killed in a duel over a
love affair. The night before his duel,
fearing that he would die, Galois wrote
down the essence of his ideas and en-
trusted them to his friend Auguste
Chevalier. He concluded by writing
“there will, I hope, be people who will
find it to their advantage to decipher
all this mess.”The mathematician
Camille Jordan did just that, 14 years
later.
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To check which of these possible zeros actually are zeros, we need to evaluate P at each
of these numbers. An efficient way to do this is to use synthetic division.

Test whether 1 is a zero Test whether 2 is a zero

1 � 2 �11 �13 �16 2 � 2 �11 �13 �6

2 3 �10 4 �10 �6

2 3 �10 �4 2 � 5 �3 �0

From the last synthetic division we see that 2 is a zero of P and that P factors as

Given polynomial

From synthetic division

Factor 2x2 � 5x � 3

From the factored form we see that the zeros of P are 2, , and –3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

E X A M P L E  3 Using the Rational Zeros Theorem 
and the Quadratic Formula

Let .

(a) Find the zeros of P. (b) Sketch the graph of P.

S O L U T I O N

(a) The leading coefficient of P is 1, so all the rational zeros are integers: They are di-
visors of the constant term 10. Thus the possible candidates are

Using synthetic division (see the margin), we find that 1 and 2 are not zeros but
that 5 is a zero and that P factors as

We now try to factor the quotient x3 � 5x � 2. Its possible zeros are the divisors of
�2, namely,

Since we already know that 1 and 2 are not zeros of the original polynomial P, we
don’t need to try them again. Checking the remaining candidates, �1 and �2, we
see that �2 is a zero (see the margin), and P factors as

Now we use the Quadratic Formula to obtain the two remaining zeros of P:

The zeros of P are 5, �2, , and .1 � 121 � 12

x �
2 � 21�2 2 2 � 411 2 1�1 2

2
� 1 � 12

 � 1x � 5 2 1x � 2 2 1x2 � 2x � 1 2

 x4 � 5x3 � 5x2 � 23x � 10 � 1x � 5 2 1x3 � 5x � 2 2

�1, �2

x4 � 5x3 � 5x2 � 23x � 10 � 1x � 5 2 1x3 � 5x � 2 2

�1, �2, �5, �10

P1x 2 � x4 � 5x 3 � 5x 2 � 23x � 10

 1 

2

 � 1x � 2 2 12x � 1 2 1x � 3 2

 � 1x � 2 2 12x2 � 5x � 3 2

 P1x 2 � 2x3 � x2 � 13x � 6
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Remainder is not 0,
so 1 is not a zero

Remainder is 0,
so 2 is a zero

1 � 1 �5 �5 23 10

1 �4 �9 14

1 �4 �9 14 24

2 � 1 �5 �5 23 10

2 �6 �22 2

1 �3 �11 1 12

5 � 1 �5 �5 23 10

5 0 �25 �10

1 0 �5 �2 0

�2 � 1 �0 �5 �2

�2 4 2

1 �2 �1 0
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(b) Now that we know the zeros of P, we can use the methods of Section 3.2 to sketch
the graph. If we want to use a graphing calculator instead, knowing the zeros al-
lows us to choose an appropriate viewing rectangle—one that is wide enough to
contain all the x-intercepts of P. Numerical approximations to the zeros of P are

So in this case we choose the rectangle 3�3, 64 by 3�50, 504 and draw the graph
shown in Figure 1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 49 AND 59 ■

▼ Descartes’ Rule of Signs and Upper and Lower Bounds for Roots
In some cases, the following rule—discovered by the French philosopher and mathemati-
cian René Descartes around 1637 (see page 213)—is helpful in eliminating candidates
from lengthy lists of possible rational roots. To describe this rule, we need the concept of
variation in sign. If is a polynomial with real coefficients, written with descending
powers of x (and omitting powers with coefficient 0), then a variation in sign occurs
whenever adjacent coefficients have opposite signs. For example,

has three variations in sign.

In Descartes’ Rule of Signs a zero with multiplicity m is counted m times. For exam-
ple, the polynomial has two sign changes and has the positive zero

. But this zero is counted twice because it has multiplicity 2.

E X A M P L E  4 Using Descartes’ Rule

Use Descartes’ Rule of Signs to determine the possible number of positive and negative
real zeros of the polynomial

S O L U T I O N The polynomial has one variation in sign, so it has one positive zero. Now

So has three variations in sign. Thus has either three or one negative
zero(s), making a total of either two or four real zeros.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 69 ■

We say that a is a lower bound and b is an upper bound for the zeros of a polyno-
mial if every real zero c of the polynomial satisfies a 	 c 	 b. The next theorem helps us
to find such bounds for the zeros of a polynomial.

P1x 2P1�x 2

 � 3x6 � 4x5 � 3x3 � x � 3

 P1�x 2 � 31�x 2 6 � 41�x 2 5 � 31�x 2 3 � 1�x 2 � 3

P1x 2 � 3x6 � 4x5 � 3x3 � x � 3

x � 1
P1x 2 � x 2 � 2x � 1

P1x 2 � 5x7 � 3x5 � x4 � 2x2 � x � 3

P1x 2

5,  �2,  2.4,  and  �0.4
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DESC ARTES’ RULE OF SIGNS

Let P be a polynomial with real coefficients.

1. The number of positive real zeros of either is equal to the number of vari-
ations in sign in or is less than that by an even whole number.

2. The number of negative real zeros of either is equal to the number of
variations in sign in or is less than that by an even whole number.P1�x 2

P1x 2

P1x 2
P1x 2

Variations 
Polynomial in sign

x2 � 4x � 1 0
2x3 � x � 6 1

x4 � 3x2 � x � 4 2

50

_50

_3 6

F I G U R E  1

P1x 2 � x4 � 5x3 � 5x2 � 23x � 10

Multiplicity is discussed on page 274.
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A proof of this theorem is suggested in Exercise 103. The phrase “alternately nonpos-
itive and nonnegative” simply means that the signs of the numbers alternate, with 0 con-
sidered to be positive or negative as required.

E X A M P L E  5 Upper and Lower Bounds for the Zeros of a Polynomial

Show that all the real zeros of the polynomial lie between
�3 and 2.

S O L U T I O N We divide by x � 2 and x � 3 using synthetic division:

By the Upper and Lower Bounds Theorem, �3 is a lower bound and 2 is an upper bound
for the zeros. Since neither �3 nor 2 is a zero (the remainders are not 0 in the division
table), all the real zeros lie between these numbers.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 73 ■

E X A M P L E  6 A Lower Bound for the Zeros of a Polynomial

Show that all the real zeros of the polynomial are
greater than or equal to .

S O L U T I O N We divide by using synthetic division:

�4 � 1 4 3 7 �5

�4 0 �12 20

1 0 3 �5 15

Since 0 can be considered either nonnegative or nonpositive, the entries alternate in
sign. So is a lower bound for the real zeros of P.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 77 ■

E X A M P L E  7 Factoring a Fifth-Degree Polynomial

Factor completely the polynomial

P1x 2 � 2x5 � 5x4 � 8x3 � 14x2 � 6x � 9

�4

x � 4P1x 2

�4
P1x 2 � x 4 � 4x 3 � 3x 2 � 7x � 5

P1x 2

P1x 2 � x4 � 3x2 � 2x � 5

S E C T I O N  3 . 4 | Real Zeros of Polynomials 291

THE UPPER AND LOWER BOUNDS THEOREM

Let P be a polynomial with real coefficients.

1. If we divide by x � b (with b � 0) using synthetic division and if the
row that contains the quotient and remainder has no negative entry, then b is
an upper bound for the real zeros of P.

2. If we divide by x � a (with a � 0) using synthetic division and if the row
that contains the quotient and remainder has entries that are alternately nonpos-
itive and nonnegative, then a is a lower bound for the real zeros of P.

P1x 2

P1x 2

2 � 1 0 �3 2 �5 �3 � 1 �0 �3 �2 �5

2 4 2 8 �3 9 �18 48

1 2 1 4 3 1 �3 6 �16 43

Entries 
alternate 
in sign

Alternately 
nonnegative and
nonpositive

All entries
nonnegative
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S O L U T I O N The possible rational zeros of P are , �1, , �3, , and �9. We
check the positive candidates first, beginning with the smallest:

So 1 is a zero, and . We continue by factoring
the quotient. We still have the same list of possible zeros except that has been eliminated.

We see that is both a zero and an upper bound for the zeros of , so we do not need to
check any further for positive zeros, because all the remaining candidates are greater than .

From synthetic division

Factor 2 from last factor,
multiply into second factor

By Descartes’ Rule of Signs, x3 � 5x2 � 7x � 3 has no positive zero, so its only possi-
ble rational zeros are �1 and �3:

�1 � 1 5 7 3

�1 �4 �3

1 4 3 0

Therefore,

From synthetic division

Factor quadratic

This means that the zeros of P are 1, , �1, and �3. The graph of the polynomial is shown
in Figure 2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 85 ■

▼ Using Algebra and Graphing Devices 
to Solve Polynomial Equations

In Section 1.4 we used graphing devices to solve equations graphically. We can now use
the algebraic techniques that we’ve learned to select an appropriate viewing rectangle
when solving a polynomial equation graphically.

E X A M P L E  8 Solving a Fourth-Degree Equation Graphically

Find all real solutions of the following equation, rounded to the nearest tenth:

S O L U T I O N To solve the equation graphically, we graph

P1x 2 � 3x4 � 4x3 � 7x2 � 2x � 3

3x4 � 4x3 � 7x2 � 2x � 3 � 0

3
2

 � 1x � 1 2 12x � 3 2 1x � 1 2 21x � 3 2

 P1x 2 � 1x � 1 2 12x � 3 2 1x � 1 2 1x2 � 4x � 3 2

 � 1x � 1 2 12x � 3 2 1x3 � 5x2 � 7x � 3 2

 P1x 2 � 1x � 1 2 1x � 3
2 2 12x3 � 10x2 � 14x � 6 2

3
2

P1x 23
2

1
2

P1x 2 � 1x � 1 2 12x4 � 7x3 � x2 � 15x � 9 2

� 
9
2� 

3
2� 

1
2
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P(–1) = 0

9

40

_20

_4 2

F I G U R E  2

1x � 1 2 21x � 3 2� 1x � 1 2 12x � 3 2

� 14x2 � 6x � 9P1x 2� 2x5 � 5x4 � 8x3

� 2 5 �8 �14 6 9 1 � 2 �5 �8 �14 6 9

1 3 2 7 �1 �15 �9

2 6 �5 2 7 �1 �15 �9 063
8�9

4�33
2

�9
8�33

4�5
2

1
2

1 � 2 �7 �1 �15 �9 � 2 �7 �1 �15 �9

2 9 8 �7 3 15 21 9

2 9 8 �7 �16 2 10 14 6 0

3
2

is not a
zero

1
2

P(1) = 0

,
all entries
nonnegative

P A32B � 0
1 is not a
zero
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First we use the Upper and Lower Bounds Theorem to find two numbers between which
all the solutions must lie. This allows us to choose a viewing rectangle that is certain to
contain all the x-intercepts of P. We use synthetic division and proceed by trial and error.

To find an upper bound, we try the whole numbers, 1, 2, 3, . . . , as potential candi-
dates. We see that 2 is an upper bound for the solutions:

2 � 3 4 �7 �2 �3

6 20 26 48

3 10 13 24 45

Now we look for a lower bound, trying the numbers �1, �2, and �3 as potential can-
didates. We see that �3 is a lower bound for the solutions:

�3 � 3 4 �7 �2 �3

�9 15 �24 78

3 �5 8 �26 75

Thus all the solutions lie between �3 and 2. So the viewing rectangle 3�3, 24 by 
3�20, 204 contains all the x-intercepts of P. The graph in Figure 3 has two x-intercepts,
one between �3 and �2 and the other between 1 and 2. Zooming in, we find that the so-
lutions of the equation, to the nearest tenth, are �2.3 and 1.3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 99 ■

E X A M P L E  9 Determining the Size of a Fuel Tank

A fuel tank consists of a cylindrical center section that is 4 ft long and two hemispheri-
cal end sections, as shown in Figure 4. If the tank has a volume of 100 ft3, what is the
radius r shown in the figure, rounded to the nearest hundredth of a foot?

S O L U T I O N Using the volume formula listed on the inside back cover of this book,
we see that the volume of the cylindrical section of the tank is

The two hemispherical parts together form a complete sphere whose volume is

Because the total volume of the tank is 100 ft3, we get the following equation:

A negative solution for r would be meaningless in this physical situation, and by substi-
tution we can verify that r � 3 leads to a tank that is over 226 ft3 in volume, much
larger than the required 100 ft3. Thus, we know the correct radius lies somewhere be-
tween 0 and 3 ft, so we use a viewing rectangle of 30, 34 by 350, 1504 to graph the func-
tion , as shown in Figure 5. Since we want the value of this function
to be 100, we also graph the horizontal line y � 100 in the same viewing rectangle. The
correct radius will be the x-coordinate of the point of intersection of the curve and the
line. Using the cursor and zooming in, we see that at the point of intersection x � 2.15,
rounded to two decimal places. Thus the tank has a radius of about 2.15 ft.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 105 ■

Note that we also could have solved the equation in Example 9 by first writing it as

and then finding the x-intercept of the function .y � 4
3   
px3 � 4px

  

2 � 100

4
3   
pr 3 � 4pr

   

2 � 100 � 0

y � 4
3   
px3 � 4px

  

2

4
3   
pr 3 � 4pr

   

2 � 100

4
3   
pr

  

3

p # r 
2 # 4
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We use the Upper and Lower Bounds
Theorem to see where the solutions can 
be found.

Entries 
alternate 
in sign

20

_20

_3 2

F I G U R E  3

y � 3x4 � 4x3 � 7x2 � 2x � 3

F I G U R E  4

150

50
0 3

F I G U R E  5

and y � 100y � 4
3   
px3 � 4px

  

2

Volume of a cylinder: V � pr2h

Volume of a sphere: V � 4
3  pr 3

All 
positive

r

4 ft

rr

4 ft

r
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C O N C E P T S
1. If the polynomial function

has integer coefficients, then the only numbers that 
could possibly be rational zeros of P are all of the 

form where p is a factor of and q is a 

factor of . The possible rational zeros of  
are

2. Using Descartes’ Rule of Signs, we can tell that the 
polynomial has 

, , or positive real zeros and 

negative real zeros.

3. True or false? If c is a real zero of the polynomial P, then all
the other zeros of P are zeros of 

4. True or false? If a is an upper bound for the real zeros of the
polynomial P, then �a is necessarily a lower bound for the
real zeros of P.

S K I L L S
5–10 ■ List all possible rational zeros given by the Rational 
Zeros Theorem (but don’t check to see which actually are zeros).

5.

6.

7.

8.

9.

10.

11–14 ■ A polynomial function P and its graph are given. (a) List
all possible rational zeros of P given by the Rational Zeros Theo-
rem. (b) From the graph, determine which of the possible rational
zeros actually turn out to be zeros.

11.

0 1

y

x

1

P1x 2 � 5x 
3 � x 

2 � 5x � 1

U1x 2 � 12x5 � 6x3 � 2x � 8

T1x 2 � 4x4 � 2x2 � 7

S1x 2 � 6x4 � x2 � 2x � 12

R1x 2 � 2x5 � 3x3 � 4x2 � 8

Q1x 2 � x4 � 3x3 � 6x � 8

P1x 2 � x3 � 4x2 � 3

P1x 2 / 1x � c 2 .

P 1x 2 � x 5 � 3x 4 � 2x 3 � x 2 � 8x � 8

P 1x 2 � 6x 3 � 5x 2 � 19x � 10

p

q
,

anxn � an�1xn�1 � p � a1x � a0P 1x 2 �

12.

13.

14.

15–30 ■ All the real zeros of the given polynomial are integers.
Find the zeros, and write the polynomial in factored form.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27. P1x 2 � x4 � 5x2 � 4

P1x 2 � x3 � 4x2 � 11x � 30

P1x 2 � x3 � 3x2 � x � 3

P1x 2 � x3 � 4x2 � 7x � 10

P1x 2 � x3 � 4x2 � x � 6

P1x 2 � x 3 � 12x 2 � 48x � 64

P1x 2 � x3 � 6x2 � 12x � 8

P1x 2 � x3 � x2 � 8x � 12

P1x 2 � x3 � 4x2 � 3x � 18

P1x 2 � x3 � 3x � 2

P1x 2 � x3 � 3x2 � 4

P1x 2 � x3 � 7x2 � 14x � 8

P1x 2 � x 3 � 4x 2 � x � 6

0

y

x1

1

P1x 2 � 4x4 � x3 � 4x � 1

0

y

x1

1

P1x 2 � 2x 
4 � 9x 

3 � 9x 
2 � x � 3

0

y

x1

1

P1x 2 � 3x 
3 � 4x2 � x � 2

3 . 4  E X E R C I S E S
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65.

66.

67–72 ■ Use Descartes’ Rule of Signs to determine how many
positive and how many negative real zeros the polynomial can
have. Then determine the possible total number of real zeros.

67.

68.

69.

70.

71.

72.

73–80 ■ Show that the given values for a and b are lower and
upper bounds for the real zeros of the polynomial.

73.

74.

75.

76.

77.

78.

79.

80.

81–84 ■ Find integers that are upper and lower bounds for the
real zeros of the polynomial.

81.

82.

83.

84.

85–90 ■ Find all rational zeros of the polynomial, and then find the
irrational zeros, if any. Whenever appropriate, use the Rational Zeros
Theorem, the Upper and Lower Bounds Theorem, Descartes’ Rule
of Signs, the quadratic formula, or other factoring techniques.

85.

86.

87.

88.

89.

90.

91–94 ■ Show that the polynomial does not have any rational
zeros.

91.

92.

93.

94. P1x 2 � x50 � 5x25 � x2 � 1

P1x 2 � 3x3 � x2 � 6x � 12

P1x 2 � 2x4 � x3 � x � 2

P1x 2 � x3 � x � 2

P1x 2 � 8x5 � 14x4 � 22x3 � 57x2 � 35x � 6

P1x 2 � x5 � 7x4 � 9x3 � 23x2 � 50x � 24

P1x 2 � 6x4 � 7x3 � 8x2 � 5x

P1x 2 � 4x4 � 21x2 � 5

P1x 2 � 2x4 � 15x3 � 31x2 � 20x � 4

P1x 2 � 2x4 � 3x3 � 4x2 � 3x � 2

P1x 2 � x5 � x4 � 1

P1x 2 � x4 � 2x3 � x2 � 9x � 2

P1x 2 � 2x3 � 3x2 � 8x � 12

P1x 2 � x3 � 3x2 � 4

P1x 2 � 3x 4 � 5x 3 � 2x 2 � x � 1; a � �1, b � 2

P1x 2 � 2x 4 � 6x 3 � x 2 � 2x � 3; a � �1, b � 3

P1x 2 � x 4 � 3x 3 � 4x 2 � 2x � 7; a � �4, b � 2

P1x 2 � x 4 � 2x 3 � 3x 2 � 5x � 1; a � �2, b � 1

P1x 2 � 3x4 � 17x3 � 24x2 � 9x � 1; a � 0, b � 6

P1x 2 � 8x3 � 10x2 � 39x � 9; a � �3, b � 2

P1x 2 � x4 � 2x3 � 9x2 � 2x � 8; a � �3, b � 5

P1x 2 � 2x3 � 5x2 � x � 2; a � �3, b � 1

P1x 2 � x8 � x5 � x4 � x3 � x2 � x � 1

P1x 2 � x5 � 4x3 � x2 � 6x

P1x 2 � x4 � x3 � x2 � x � 12

P1x 2 � 2x6 � 5x4 � x3 � 5x � 1

P1x 2 � 2x3 � x2 � 4x � 7

P1x 2 � x3 � x2 � x � 3

P1x 2 � x5 � x4 � 6x3 � 14x2 � 11x � 3

P1x 2 � x5 � x4 � 5x3 � x2 � 8x � 428.

29.

30.

31–48 ■ Find all rational zeros of the polynomial, and write the
polynomial in factored form.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49–58 ■ Find all the real zeros of the polynomial. Use the Qua-
dratic Formula if necessary, as in Example 3(a).

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59–66 ■ A polynomial P is given. (a) Find all the real zeros of P.
(b) Sketch the graph of P.

59.

60.

61.

62.

63.

64. P1x 2 � �x4 � 10x2 � 8x � 8

P1x 2 � x4 � 5x3 � 6x2 � 4x � 8

P1x 2 � 3x3 � 17x2 � 21x � 9

P1x 2 � 2x3 � 7x2 � 4x � 4

P1x 2 � �x3 � 2x2 � 5x � 6

P1x 2 � x3 � 3x2 � 4x � 12

P1x 2 � 4x5 � 18x4 � 6x3 � 91x2 � 60x � 9

P1x 2 � 2x4 � 15x3 � 17x2 � 3x � 1

P1x 2 � 3x3 � 5x2 � 8x � 2

P1x 2 � 4x3 � 6x2 � 1

P1x 2 � x5 � 4x4 � x3 � 10x2 � 2x � 4

P1x 2 � x4 � 7x3 � 14x2 � 3x � 9

P1x 2 � x4 � 2x3 � 2x2 � 3x � 2

P1x 2 � x4 � 6x3 � 4x2 � 15x � 4

P1x 2 � x3 � 5x2 � 2x � 12

P1x 2 � x3 � 4x2 � 3x � 2

P1x 2 � 2x6 � 3x5 � 13x4 � 29x3 � 27x2 � 32x � 12

P1x 2 � 3x5 � 14x4 � 14x3 � 36x2 � 43x � 10

P1x 2 � x5 � 4x4 � 3x3 � 22x2 � 4x � 24

P1x 2 � x5 � 3x4 � 9x3 � 31x2 � 36

P1x 2 � 6x4 � 7x3 � 12x2 � 3x � 2

P1x 2 � 2x4 � 7x3 � 3x2 � 8x � 4

P1x 2 � 12x 3 � 20x 2 � x � 3

P1x 2 � 20x 3 � 8x 2 � 5x � 2

P1x 2 � 6x3 � 11x2 � 3x � 2

P1x 2 � 4x3 � 8x2 � 11x � 15

P1x 2 � 8x3 � 10x2 � x � 3

P1x 2 � 4x3 � 7x � 3

P1x 2 � 2x3 � 3x2 � 2x � 3

P1x 2 � 4x3 � 4x2 � x � 1

P1x 2 � 2x3 � 7x2 � 4x � 4

P1x 2 � 3x4 � 10x3 � 9x2 � 40x � 12

P1x 2 � 2x4 � x3 � 19x2 � 9x � 9

P1x 2 � 4x4 � 25x2 � 36

P1x 2 � x4 � x3 � 23x2 � 3x � 90

P1x 2 � x4 � 6x3 � 7x2 � 6x � 8

P1x 2 � x4 � 2x3 � 3x2 � 8x � 4
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106. Dimensions of a Lot A rectangular parcel of land has an
area of 5000 ft2. A diagonal between opposite corners is mea-
sured to be 10 ft longer than one side of the parcel. What are
the dimensions of the land, rounded to the nearest foot?

107. Depth of Snowfall Snow began falling at noon on Sun-
day. The amount of snow on the ground at a certain location
at time t was given by the function

where t is measured in days from the start of the snowfall 
and is the depth of snow in inches. Draw a graph of 
this function, and use your graph to answer the following 
questions.
(a) What happened shortly after noon on Tuesday?
(b) Was there ever more than 5 in. of snow on the ground? If

so, on what day(s)?
(c) On what day and at what time (to the nearest hour) did

the snow disappear completely?

108. Volume of a Box An open box with a volume of 1500 cm3

is to be constructed by taking a piece of cardboard 20 cm by
40 cm, cutting squares of side length x cm from each corner, and
folding up the sides. Show that this can be done in two different
ways, and find the exact dimensions of the box in each case.

109. Volume of a Rocket A rocket consists of a right circular
cylinder of height 20 m surmounted by a cone whose height
and diameter are equal and whose radius is the same as that
of the cylindrical section. What should this radius be (rounded
to two decimal places) if the total volume is to be 500p/3 m3?

20 m

20 cm

40 cm

x
x

h1t 2

� 1.58t4 � 0.20t 
5 � 0.01t 

6

h1t 2 � 11.60t � 12.41t 
2 � 6.20t 

3

x+10

x

95–98 ■ The real solutions of the given equation are rational. List
all possible rational roots using the Rational Zeros Theorem, and
then graph the polynomial in the given viewing rectangle to deter-
mine which values are actually solutions. (All solutions can be
seen in the given viewing rectangle.)

95. x3 � 3x2 � 4x � 12 � 0; 3�4, 44 by 3�15, 154

96. x4 � 5x2 � 4 � 0; 3�4, 44 by 3�30, 304

97. 2x4 � 5x3 � 14x2 � 5x � 12 � 0; 3�2, 54 by 3�40, 404

98. 3x3 � 8x2 � 5x � 2 � 0; 3�3, 34 by 3�10, 104

99–102 ■ Use a graphing device to find all real solutions of the
equation, rounded to two decimal places.

99. x4 � x � 4 � 0

100. 2x3 � 8x2 � 9x � 9 � 0

101. 4.00x4 � 4.00x3 � 10.96x2 � 5.88x � 9.09 � 0

102. x5 � 2.00x4 � 0.96x3 � 5.00x2 � 10.00x � 4.80 � 0

103. Let be a polynomial with real coefficients, and let
b � 0. Use the Division Algorithm to write

Suppose that r � 0 and that all the coefficients in are 
nonnegative. Let z � b.
(a) Show that .
(b) Prove the first part of the Upper and Lower Bounds

Theorem.
(c) Use the first part of the Upper and Lower Bounds Theo-

rem to prove the second part. [Hint: Show that if 
satisfies the second part of the theorem, then 
satisfies the first part.]

104. Show that the equation

has exactly one rational root, and then prove that it must have
either two or four irrational roots.

A P P L I C A T I O N S
105. Volume of a Silo A grain silo consists of a cylindrical

main section and a hemispherical roof. If the total volume 
of the silo (including the part inside the roof section) is
15,000 ft3 and the cylindrical part is 30 ft tall, what is the 
radius of the silo, rounded to the nearest tenth of a foot?

30 ft

x5 � x4 � x3 � 5x2 � 12x � 6 � 0

P1�x 2
P1x 2

P1z 2 � 0

Q1x 2

P1x 2 � 1x � b 2 # Q1x 2 � r

P1x 2
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113. The Depressed Cubic The most general cubic (third-
degree) equation with rational coefficients can be writ-
ten as

(a) Show that if we replace x by X � a /3 and simplify, we
end up with an equation that doesn’t have an X2 term,
that is, an equation of the form

This is called a depressed cubic, because we have
“depressed” the quadratic term.

(b) Use the procedure described in part (a) to depress the
equation x3 � 6x2 � 9x � 4 � 0.

114. The Cubic Formula The quadratic formula can be used to
solve any quadratic (or second-degree) equation. You might
have wondered whether similar formulas exist for cubic (third-
degree), quartic (fourth-degree), and higher-degree equations.
For the depressed cubic x3 � px � q � 0, Cardano (page 308)
found the following formula for one solution:

A formula for quartic equations was discovered by the Italian
mathematician Ferrari in 1540. In 1824 the Norwegian math-
ematician Niels Henrik Abel proved that it is impossible to
write a quintic formula, that is, a formula for fifth-degree
equations. Finally, Galois (page 288) gave a criterion for de-
termining which equations can be solved by a formula in-
volving radicals.

Use the cubic formula to find a solution for the following
equations. Then solve the equations using the methods you
learned in this section. Which method is easier?

(a) x3 � 3x � 2 � 0

(b) x3 � 27x � 54 � 0

(c) x3 � 3x � 4 � 0

x �C3 �q

2
� Bq2

4
�

p3

27
�C3 �q

2
� Bq2

4
�

p3

27

X 3 � pX � q � 0

x 3 � ax 2 � bx � c � 0

110. Volume of a Box A rectangular box with a volume of 
ft3 has a square base as shown below. The diagonal of 

the box (between a pair of opposite corners) is 1 ft longer
than each side of the base.
(a) If the base has sides of length x feet, show that

(b) Show that two different boxes satisfy the given condi-
tions. Find the dimensions in each case, rounded to the
nearest hundredth of a foot.

111. Girth of a Box A box with a square base has length plus
girth of 108 in. (Girth is the distance “around” the box.)
What is the length of the box if its volume is 2200 in3?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
112. How Many Real Zeros Can a Polynomial Have? Give

examples of polynomials that have the following 
properties, or explain why it is impossible to find such a
polynomial.
(a) A polynomial of degree 3 that has no real zeros
(b) A polynomial of degree 4 that has no real zeros
(c) A polynomial of degree 3 that has three real zeros, only

one of which is rational
(d) A polynomial of degree 4 that has four real zeros, none

of which is rational

What must be true about the degree of a polynomial with in-
teger coefficients if it has no real zeros?

b
l

b

x
x

x6 � 2x5 � x4 � 8 � 0

2 12
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In Section 1.6 we saw that if the discriminant of a quadratic equation is negative, the equa-
tion has no real solution. For example, the equation

has no real solution. If we try to solve this equation, we get x2 � �4, so

But this is impossible, since the square of any real number is positive. [For example,
, a positive number.] Thus negative numbers don’t have real square roots.

To make it possible to solve all quadratic equations, mathematicians invented an expanded
number system, called the complex number system. First they defined the new number

This means that i 2 � �1. A complex number is then a number of the form a � bi, where
a and b are real numbers.

Note that both the real and imaginary parts of a complex number are real numbers.

E X A M P L E  1 Complex Numbers

The following are examples of complex numbers.

Real part 3, imaginary part 4

Real part , imaginary part 

6i Real part 0, imaginary part 6

�7 Real part �7, imaginary part 0

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 5 AND 9 ■

A number such as 6i, which has real part 0, is called a pure imaginary number. A real
number such as �7 can be thought of as a complex number with imaginary part 0.

In the complex number system every quadratic equation has solutions. The numbers 2i
and �2i are solutions of x2 � �4 because

Although we use the term imaginary in this context, imaginary numbers should not be
thought of as any less “real” (in the ordinary rather than the mathematical sense of that word)
than negative numbers or irrational numbers. All numbers (except possibly the positive in-
tegers) are creations of the human mind—the numbers �1 and as well as the number i.12

12i 2 2 � 2 
2i 

2 � 41�1 2 � �4  and  1�2i 2 2 � 1�2 2 2i 
2 � 41�1 2 � �4

� 
2
3

1
2

1
2 � 2

3i

3 � 4i

i � 1�1

1�2 2 2 � 4

x � �1�4

x 
2 � 4 � 0
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3.5 COMPLEX NUMBERS

LEARNING OBJECTIVES After completing this section, you will be able to:

Add and subtract complex numbers � Multiply and divide complex numbers
� Work with square roots of negative numbers � Find complex solutions of
quadratic equations

See the note on Cardano (page 308) for
an example of how complex numbers
are used to find real solutions of poly-
nomial equations.

DEFINITION OF COMPLEX NUMBERS

A complex number is an expression of the form

where a and b are real numbers and i2 � �1. The real part of this complex
number is a and the imaginary part is b. Two complex numbers are equal if and
only if their real parts are equal and their imaginary parts are equal.

a � bi
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We study complex numbers because they complete, in a useful and elegant fashion, our study
of the solutions of equations. In fact, imaginary numbers are useful not only in algebra and
mathematics, but in the other sciences as well. To give just one example, in electrical theory
the reactance of a circuit is a quantity whose measure is an imaginary number.

▼ Arithmetic Operations on Complex Numbers
Complex numbers are added, subtracted, multiplied, and divided just as we would any
number of the form . The only difference that we need to keep in mind is that 
i 2 � �1. Thus the following calculations are valid:

Multiply and collect like terms

i2 � �1

Combine real and imaginary parts

We therefore define the sum, difference, and product of complex numbers as follows.

E X A M P L E  2 Adding, Subtracting, and Multiplying 
Complex Numbers

Express the following in the form a � bi.

(a) (b)

(c) (d) i 23

S O L U T I O N

(a) According to the definition, we add the real parts and we add the imaginary parts:

(b)

(c)
(d)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 17, 21, 29, AND 47 ■

Division of complex numbers is much like rationalizing the denominator of a radical
expression, which we considered in Section P.7. For the complex number z � a � bi we
define its complex conjugate to be . Note that

z # z � 1a � bi 2 1a � bi 2 � a 
2 � b 

2

z � a � bi

i 
23 � i 

22�1 � 1i 
2 2 11i � 1�1 2 11i � 1�1 2 i � �i

13 � 5i 2 14 � 2i 2 � 33 # 4 � 51�2 2 4 � 331�2 2 � 5 # 4 4 i � 22 � 14i

13 � 5i 2 � 14 � 2i 2 � 13 � 4 2 � 35 � 1�2 2 4 i � �1 � 7i

13 � 5i 2 � 14 � 2i 2 � 13 � 4 2 � 15 � 2 2 i � 7 � 3i

13 � 5i 2 14 � 2i 2

13 � 5i 2 � 14 � 2i 213 � 5i 2 � 14 � 2i 2

 � 1ac � bd 2 � 1ad � bc 2 i

 � ac � 1ad � bc 2 i � bd1�1 2

 1a � bi 2 1c � di 2 � ac � 1ad � bc 2 i � bdi 
2

a � b 1c
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ADDING, SUBTRACTING, AND MULTIPLYING COMPLEX NUMBERS

Definition Description

Addition

To add complex numbers, add the real parts and the
imaginary parts.

Subtraction

To subtract complex numbers, subtract the real parts and
the imaginary parts.

Multiplication

Multiply complex numbers like binomials, using 
i2 � �1.

1a � bi 2 # 1c � di 2 � 1ac � bd 2 � 1ad � bc 2 i

1a � bi 2 � 1c � di 2 � 1a � c 2 � 1b � d 2 i

1a � bi 2 � 1c � di 2 � 1a � c 2 � 1b � d 2 i

Graphing calculators can perform arith-
metic operations on complex numbers.

(3+5i)+(4-2i)
7+3i

(3+5i)*(4-2i)
22+14i

Number Conjugate

3 � 2i 3 � 2i
1 � i 1 � i

4i �4i
5 5

Complex Conjugates
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So the product of a complex number and its conjugate is always a nonnegative real num-
ber. We use this property to divide complex numbers.

Rather than memorizing this entire formula, it is easier to just remember the first step and
then multiply out the numerator and the denominator as usual.

E X A M P L E  3 Dividing Complex Numbers

Express the following in the form a � bi.

(a) (b)

S O L U T I O N We multiply both the numerator and denominator by the complex con-
jugate of the denominator to make the new denominator a real number.

(a) The complex conjugate of 1 � 2i is . Therefore

(b) The complex conjugate of 4i is �4i. Therefore

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 37 AND 43 ■

▼ Square Roots of Negative Numbers
Just as every positive real number r has two square roots 1 and 2, every negative
number has two square roots as well. If �r is a negative number, then its square roots are

, because and .

We usually write instead of to avoid confusion with .

E X A M P L E  4 Square Roots of Negative Numbers

(a) (b) (c)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 53 AND 55 ■

1�3 � i 131�16 � i 116 � 4i1�1 � i 11 � i

1bi1b ii 1b

1�i 1r 2 2 � 1�1 2 2i2r � �r1i 1r 2 2 � i2r � �r�i 1r

�1r1r

7 � 3i

4i
� a

7 � 3i

4i
b a

�4i

�4i
b �

12 � 28i

16
�

3

4
�

7

4
  i

3 � 5i

1 � 2i
� a

3 � 5i

1 � 2i
b a

1 � 2i

1 � 2i
b �

�7 � 11i

5
� � 

7

5
�

11

5
  i

1 � 2i � 1 � 2i

7 � 3i

4i

3 � 5i

1 � 2i
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DIVIDING COMPLEX NUMBERS

To simplify the quotient , multiply the numerator and the denominator by

the complex conjugate of the denominator:

a � bi

c � di
� a

a � bi

c � di
b a

c � di

c � di
b �

1ac � bd 2 � 1bc � ad 2 i

c2 � d 
2

a � bi

c � di

L E O N H A R D  E U L E R (1707–1783) was
born in Basel, Switzerland, the son of a
pastor. When Euler was 13, his father
sent him to the University at Basel to
study theology, but Euler soon decided
to devote himself to the sciences. Be-
sides theology he studied mathemat-
ics, medicine, astronomy, physics, and
Asian languages. It is said that Euler
could calculate as effortlessly as “men
breathe or as eagles fly.” One hundred
years before Euler, Fermat (see page
107) had conjectured that is a
prime number for all n. The first five of
these numbers are 5, 17, 257, 65537,
and 4,294,967,297. It is easy to show
that the first four are prime. The fifth
was also thought to be prime until
Euler, with his phenomenal calculating
ability, showed that it is the product 
641 � 6,700,417 and so is not prime.
Euler published more than any other
mathematician in history. His collected
works comprise 75 large volumes.
Although he was blind for the last 
17 years of his life, he continued to
work and publish. In his writings he
popularized the use of the symbols p,
e, and i, which you will find in this text-
book. One of Euler’s most lasting con-
tributions is his development of com-
plex numbers.

22n

� 1

Li
br

ar
y 

of
 C

on
gr

es
s

SQUARE ROOTS OF NEGATIVE NUMBERS

If �r is negative, then the principal square root of �r is

The two square roots of �r are and .�i 1ri 1r

1�r � i 1r
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Special care must be taken in performing calculations that involve square roots of neg-
ative numbers. Although when a and b are positive, this is not true
when both are negative. For example,

but

so

When multiplying radicals of negative numbers, express them first in the form
(where r � 0) to avoid possible errors of this type.

E X A M P L E  5 Using Square Roots of Negative Numbers

Evaluate , and express the result in the form a � bi.

S O L U T I O N

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

▼ Complex Solutions of Quadratic Equations
We have already seen that if a � 0, then the solutions of the quadratic equation 
ax2 � bx � c � 0 are

If b2 � 4ac 	 0, then the equation has no real solution. But in the complex number sys-
tem this equation will always have solutions, because negative numbers have square roots
in this expanded setting.

E X A M P L E  6 Quadratic Equations with Complex Solutions

Solve each equation.

(a) x2 � 9 � 0 (b) x2 � 4x � 5 � 0

S O L U T I O N

(a) The equation x2 � 9 � 0 means x2 � �9, so

The solutions are therefore 3i and �3i.

(b) By the Quadratic Formula we have

So the solutions are �2 � i and �2 � i.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 63 AND 65 ■

 � 
�4 � 2i

2
�

21�2 � i 2

2
� �2 � i

 � 
�4 � 1�4

2

 x �
�4 � 242 � 4 # 5

2

x � �1�9 � �i 19 � �3i

x �
�b � 2b2 � 4ac

2a

 � 8 13 � i 13

 � 16 13 � 2 13 2 � i12 # 2 13 � 3 13 2

 � 12 13 � i 13 2 13 � 2i 2

 1112 � 1�3 2 13 � 1�4 2 � 1112 � i 13 2 13 � i 14 2

1112 � 1�3 2 13 � 1�4 2

i 1r

1�2 # 1�3 � 11�2 2 1�3 2

11�2 2 1�3 2 � 16

1�2 # 1�3 � i 12 # i 13 � i2
 16 � �16

1a # 1b � 1ab
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We see from Example 6 that if a quadratic equation with real coefficients has complex so-
lutions, then these solutions are complex conjugates of each other. So if a � bi is a solu-
tion, then a � bi is also a solution.

E X A M P L E  7 Complex Conjugates as Solutions of a Quadratic

Show that the solutions of the equation

are complex conjugates of each other.

S O L U T I O N We use the Quadratic Formula to get

So the solutions are and , and these are complex conjugates.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 71 ■

3 � 1
2 i3 � 1

2 i

 � 
24 � 1�16

8
�

24 � 4i

8
� 3 �

1

2
 i

 x �
24 � 2124 2 2 � 414 2 137 2

214 2

4x 
2 � 24x � 37 � 0
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C O N C E P T S
1. The imaginary number i has the property that i2 � .

2. For the complex number 3 � 4i the real part is , and 

the imaginary part is .

3. (a) The complex conjugate of 3 � 4i is � .

(b) 13 � 4i 2 1 2� .

4. If is a solution of a quadratic equation with real coeffi-

cients, then is also a solution of the equation.

S K I L L S
5–14 ■ Find the real and imaginary parts of the complex number.

5. 5 � 7i 6. �6 � 4i

7. 8.

9. 3 10.

11. 12.

13. 14.

15–24 ■ Evaluate the sum or difference, and write the result in
the form .

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. 6i � 14 � i 21�12 � 8i 2 � 17 � 4i 2

1�4 � i 2 � 12 � 5i 2A7 � 1
2 iB � A5 � 3

2 iB

13 � 2i 2 � A�5 � 1
3 iB1�6 � 6i 2 � 19 � i 2

12 � 5i 2 � 14 � 6i 212 � 5i 2 � 13 � 4i 2

3i � 12 � 3i 213 � 2i 2 � 5i

a � bi

2 � 1�513 � 1�4

i 13� 
2
3 i

� 
1
2

4 � 7i

2

�2 � 5i

3

3 � 4i

3 � 4i

3 � 4i

25–34 ■ Evaluate the product, and write the result in the form
.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35–46 ■ Evaluate the quotient, and write the result in the form
.

35. 36. 37.

38. 39. 40.

41. 42. 43.

44. 45. 46.

47–52 ■ Evaluate the power, and write the result in the form
.

47. 48. 49.

50. 51. 52.

53–62 ■ Evaluate the radical expression, and express the result in
the form a � bi.

53. 54.

55. 56. 21
3 1�271�3 1�12

B�9

4
1�25

i 1002i 100012i 2 4

13i 2 5i 10i 3

a � bi

11 � 2i 2 13 � i 2

2 � i

1

1 � i
�

1

1 � i

�3 � 5i

15i

4 � 6i

3i
12 � 3i 2�110i

1 � 2i

25

4 � 3i

26 � 39i

2 � 3i

5 � i

3 � 4i

2 � 3i

1 � 2i

1

1 � i

1

i

a � bi

1�2 � i 2 13 � 7i 216 � 5i 2 12 � 3i 2

A23 � 12iB A16 � 24iB13 � 4i 2 15 � 12i 2

15 � 3i 2 11 � i 217 � i 2 14 � 2i 2

2iA12 � iB�3i15 � i 2

�213 � 4i 241�1 � 2i 2

a � bi

3 . 5  E X E R C I S E S
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79–86 ■ Recall that the symbol represents the complex conju-
gate of z. If z � a � bi and „ � c � di, prove each statement.

79. 80.

81. 82.

83. is a real number.

84. is a pure imaginary number.

85. is a real number.

86. if and only if z is real.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
87. Complex Conjugate Roots Suppose that the equation 

ax2 � bx � c � 0 has real coefficients and complex roots.
Why must the roots be complex conjugates of each other?
(Think about how you would find the roots using the 
Quadratic Formula.)

88. Powers of i Calculate the first 12 powers of i, that is,
i, i 2, i 3, . . . , i12. Do you notice a pattern? Explain how you
would calculate any whole number power of i, using the pattern
that you have discovered. Use this procedure to calculate i 4446.

z � z

z # z

z � z

z � z

z � z1z 2 2 � z2

z„ � z # „z � „ � z � „

z57.

58.

59. 60.

61. 62.

63–78 ■ Find all solutions of the equation and express them in the
form a � bi.

63. x2 � 49 � 0 64. 9x2 � 4 � 0

65. x2 � 4x � 5 � 0 66. x2 � 2x � 2 � 0

67. x2 � 2x � 5 � 0 68. x2 � 6x � 10 � 0

69. x2 � x � 1 � 0 70. x2 � 3x � 3 � 0

71. 2x2 � 2x � 1 � 0 72. 2x2 � 3 � 2x

73. 74.

75. 6x2 � 12x � 7 � 0 76. 4x2 � 16x � 19 � 0

77. 78. x 
2 � 1

2   
x � 1 � 01

2 x 
2 � x � 5 � 0

z � 4 �
12
z

� 0t � 3 �
3

t
� 0

1�71�49128

1�361�2 1�9

1 � 1�1

1 � 1�1

2 � 1�8

1 � 1�2

113 � 1�4 2 116 � 1�8 2

13 � 1�5 2 11 � 1�1 2
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3.6 COMPLEX ZEROS AND THE FUNDAMENTAL THEOREM OF ALGEBRA

LEARNING OBJECTIVES After completing this section, you will be able to:

State the Fundamental Theorem of Algebra � Factor a polynomial completely
(into linear factors) over the complex numbers � Use the Conjugate Zeros
Theorem to find polynomials with specified zeros � Factor a polynomial 
completely (into linear and quadratic factors) over the real numbers

We have already seen that an nth-degree polynomial can have at most n real zeros. In the com-
plex number system an nth-degree polynomial has exactly n zeros and so can be factored into
exactly n linear factors. This fact is a consequence of the Fundamental Theorem of Algebra,
which was proved by the German mathematician C. F. Gauss in 1799 (see page 306).

▼ The Fundamental Theorem of Algebra 
and Complete Factorization

The following theorem is the basis for much of our work in factoring polynomials and
solving polynomial equations.

Because any real number is also a complex number, the theorem applies to polynomi-
als with real coefficients as well.

FUNDAMENTAL THEOREM OF ALGEBRA

Every polynomial

with complex coefficients has at least one complex zero.

P1x 2 � an  
xn � an�1xn�1 � . . . � a1x � a0  1n 
 1, an � 0 2
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The Fundamental Theorem of Algebra and the Factor Theorem together show that a
polynomial can be factored completely into linear factors, as we now prove.

P R O O F By the Fundamental Theorem of Algebra, P has at least one zero. Let’s call 
it c1. By the Factor Theorem (see page 284), can be factored as

where is of degree n � 1. Applying the Fundamental Theorem to the quotient
gives us the factorization

where is of degree n � 2 and c2 is a zero of . Continuing this process for n
steps, we get a final quotient of degree 0, a nonzero constant that we will call a.
This means that P has been factored as

■

To actually find the complex zeros of an nth-degree polynomial, we usually first factor
as much as possible, then use the quadratic formula on parts that we can’t factor further.

E X A M P L E  1 Factoring a Polynomial Completely

Let .

(a) Find all the zeros of P.

(b) Find the complete factorization of P.

S O L U T I O N

(a) We first factor P as follows.

Given

Group terms

Factor x � 3

We find the zeros of P by setting each factor equal to 0:

Setting x � 3 � 0, we see that x � 3 is a zero. Setting x2 � 1 � 0, we get 
x2 � �1, so x � �i. So the zeros of P are 3, i, and �i.

(b) Since the zeros are 3, i, and �i, the complete factorization of P is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

 � 1x � 3 2 1x � i 2 1x � i 2

 P1x 2 � 1x � 3 2 1x � i 2 3x � 1�i 2 4

P1x 2 � 1x � 3 2 1x2 � 1 2

 � 1x � 3 2 1x2 � 1 2

 � x21x � 3 2 � 1x � 3 2

 P1x 2 � x3 � 3x2 � x � 3

P1x 2 � x3 � 3x2 � x � 3

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2

Qn1x 2
Q11x 2Q21x 2

P1x 2 � 1x � c1 2 # 1x � c2 2 # Q21x 2

Q11x 2
Q11x 2

P1x 2 � 1x � c1 2 # Q11x 2

P1x 2
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COMPLETE FACTORIZ ATION THEOREM

If is a polynomial of degree n 
 1, then there exist complex numbers 
a, c1, c2, . . . , cn (with a � 0) such that

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2

P1x 2

This factor is 0 when x � 3 This factor is 0 when x � i or �i

90169_Ch03b_298-344.qxd  11/23/11  3:14 PM  Page 304



E X A M P L E  2 Factoring a Polynomial Completely

Let .

(a) Find all the zeros of P.

(b) Find the complete factorization of P.

S O L U T I O N

(a) The possible rational zeros are the factors of 4, which are �1, �2, �4. Using syn-
thetic division (see the margin), we find that �2 is a zero, and the polynomial fac-
tors as

To find the zeros, we set each factor equal to 0. Of course, x � 2 � 0 means that 
x � �2. We use the quadratic formula to find when the other factor is 0:

Set factor equal to 0

Quadratic Formula

Take square root

Simplify

So the zeros of P are �2, 1 � i, and 1 � i.

(b) Since the zeros are �2, 1 � i, and 1 � i, the complete factorization of P is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

▼ Zeros and Their Multiplicities
In the Complete Factorization Theorem the numbers c1, c2, . . . , cn are the zeros of P.
These zeros need not all be different. If the factor x � c appears k times in the complete
factorization of , then we say that c is a zero of multiplicity k (see page 274). For ex-
ample, the polynomial

has the following zeros:

The polynomial P has the same number of zeros as its degree: It has degree 10 and has
10 zeros, provided that we count multiplicities. This is true for all polynomials, as we
prove in the following theorem.

1 1multiplicity 3 2  �2 1multiplicity 2 2  �3 1multiplicity 5 2

P1x 2 � 1x � 1 2 31x � 2 2 21x � 3 2 5

P1x 2

 � 1x � 2 2 1x � 1 � i 2 1x � 1 � i 2

 P1x 2 � 3x � 1�2 2 4 3x � 11 � i 2 4 3x � 11 � i 2 4

 x � 1 � i

 x � 
2 � 2i

2

 x � 
2 � 14 � 8

2

x2 � 2x � 2 � 0

P1x 2 � 1x � 2 2 1x 
2 � 2x � 2 2

P1x 2 � x 
3 � 2x � 4
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This factor is 0 when x � �2 Use the Quadratic Formula to
find when this factor is 0

�2 � 1 �0 �2 �4

�2 4 �4

1 �2 �2 0

ZEROS THEOREM

Every polynomial of degree n 
 1 has exactly n zeros, provided that a zero of
multiplicity k is counted k times.
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P R O O F Let P be a polynomial of degree n. By the Complete Factorization Theorem

Now suppose that c is a zero of P other than c1, c2, . . . , cn. Then

Thus, by the Zero-Product Property, one of the factors c � ci must be 0, so c � ci for
some i. It follows that P has exactly the n zeros c1, c2, . . . , cn. ■

E X A M P L E  3 Factoring a Polynomial with Complex Zeros

Find the complete factorization and all five zeros of the polynomial

S O L U T I O N Since 3x is a common factor, we have

To factor x2 � 4, note that 2i and �2i are zeros of this polynomial. Thus
, so

The zeros of P are 0, 2i, and �2i. Since the factors x � 2i and x � 2i each occur twice
in the complete factorization of P, the zeros 2i and �2i are of multiplicity 2 (or double
zeros). Thus we have found all five zeros.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

The following table gives further examples of polynomials with their complete factor-
izations and zeros.

 � 3x1x � 2i 2 21x � 2i 2 2

 P1x 2 � 3x 3 1x � 2i 2 1x � 2i 2 4 2

1x � 2i 2 1x � 2i 2x2 � 4 �

 � 3x1x2 � 4 2 2

 P1x 2 � 3x1x4 � 8x2 � 16 2

P1x 2 � 3x5 � 24x3 � 48x

P1c 2 � a1c � c1 2 1c � c2 2 p 1c � cn 2 � 0

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2
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This factor is 0 when x � 0 This factor is 0 when 
x � 2i or x � �2i

0 is a zero of
multiplicity 1

2i is a zero of
multiplicity 2

�2i is a zero of
multiplicity 2

Degree Polynomial Zero(s) Number of zeros

1 4 1

2 5 1multiplicity 22 2

3 0, i, �i 3

4 3i 1multiplicity 22, 4
�3i 1multiplicity 22

5 0 1multiplicity 32, 5
1 1multiplicity 22 � x31x � 1 2 2

 P1x 2 � x5 � 2x4 � x3

 � 1x � 3i 2 21x � 3i 2 2
 P1x 2 � x4 � 18x2 � 81

 � x1x � i 2 1x � i 2
 P1x 2 � x3 � x

 � 1x � 5 2 1x � 5 2
 P1x 2 � x2 � 10x � 25

 P1x 2 � x � 4

C A R L  F R I E D R I C H  G A U S S  (1777–1855)
is considered the greatest mathemati-
cian of modern times. His contempo-
raries called him the “Prince of Mathe-
matics.” He was born into a poor family;
his father made a living as a mason. As
a very small child, Gauss found a calcu-
lation error in his father’s accounts, the
first of many incidents that gave evi-
dence of his mathematical precocity.
(See also page 582.) At 19, Gauss
demonstrated that the regular 
17-sided polygon can be constructed
with straight-edge and compass alone.
This was remarkable because, since the
time of Euclid, it had been thought that
the only regular polygons constructible
in this way were the triangle and pen-
tagon. Because of this discovery Gauss
decided to pursue a career in mathe-
matics instead of languages, his other
passion. In his doctoral dissertation,
written at the age of 22, Gauss proved
the Fundamental Theorem of Algebra:
A polynomial of degree n with complex
coefficients has n roots. His other ac-
complishments range over every
branch of mathematics, as well as
physics and astronomy.

©
 C

OR
BI

S
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E X A M P L E  4 Finding Polynomials with Specified Zeros

(a) Find a polynomial of degree 4, with zeros i, �i, 2, and �2, and with 

(b) Find a polynomial of degree 4, with zeros �2 and 0, where �2 is a zero of
multiplicity 3.

S O L U T I O N

(a) The required polynomial has the form

Difference of squares

Multiply

We know that , so . Thus

(b) We require

Special Product Formula 4 (Section P.5)

Since we are given no information about Q other than its zeros and their multiplic-
ity, we can choose any number for a. If we use a � 1, we get

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

E X A M P L E  5 Finding All the Zeros of a Polynomial

Find all four zeros of .

S O L U T I O N Using the Rational Zeros Theorem from Section 3.4, we obtain the fol-
lowing list of possible rational zeros: �1, �2, �4, , , . Checking these 
using synthetic division, we find that 2 and are zeros, and we get the following 
factorization:

Factor x � 2

Factor x �

Factor 3

The zeros of the quadratic factor are

Quadratic Formula

so the zeros of are

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

2, � 

1

3
, �

1

2
� i 

17

2
, and � 

1

2
� i 

17

2

P1x 2

x �
�1 � 11 � 8

2
� �

1

2
� i 

17

2

 � 31x � 2 2 Ax � 1
3B 1x

2 � x � 2 2

1
3 � 1x � 2 2 Ax � 1

3B 13x2 � 3x � 6 2

 � 1x � 2 2 13x3 � 4x2 � 7x � 2 2

 P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

� 
1
3

�4
3�2

3�1
3

P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

 Q1x 2 � x4 � 6x3 � 12x2 � 8x

 � a1x4 � 6x3 � 12x2 � 8x 2

 � a1x3 � 6x2 � 12x � 8 2x

 � a1x � 2 2 3x

 Q1x 2 � a 3x � 1�2 2 4 31x � 0 2

P1x 2 � 1
2  
x4 � 3

2   
x2 � 2

a � 1
2P13 2 � a134 � 3 # 32 � 4 2 � 50a � 25

 � a1x4 � 3x2 � 4 2

 � a1x2 � 1 2 1x2 � 4 2

 P1x 2 � a1x � i 2 1x � 1�i 22 1x � 2 2 1x � 1�2 22

Q1x 2

P13 2 � 25.P1x 2
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Unless otherwise noted, all content on this page is © Cengage Learning.

40

_20

_2 4

F I G U R E  1

P1x 2 � 3x4 � 2x3 � x2 � 12x � 4

Figure 1 shows the graph of the polyno-
mial P in Example 5. The x-intercepts
correspond to the real zeros of P. The
imaginary zeros cannot be determined
from the graph.
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▼ Complex Zeros Come in Conjugate Pairs
As you might have noticed from the examples so far, the complex zeros of polynomials
with real coefficients come in pairs. Whenever a � bi is a zero, its complex conjugate 
a � bi is also a zero.

P R O O F Let

where each coefficient is real. Suppose that . We must prove that . We
use the facts that the complex conjugate of a sum of two complex numbers is the sum of
the conjugates and that the conjugate of a product is the product of the conjugates.

Because the coefficients are real

This shows that is also a zero of P(x),which proves the theorem. ■

E X A M P L E  6 A Polynomial with a Specified Complex Zero

Find a polynomial of degree 3 that has integer coefficients and zeros and 3 � i.

S O L U T I O N Since 3 � i is a zero, then so is 3 � i by the Conjugate Zeros Theorem.
This means that must have the following form.

Regroup

Difference of Squares Formula

Expand

Expand

To make all coefficients integers, we set a � 2 and get

Any other polynomial that satisfies the given requirements must be an integer multiple
of this one.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

P1x 2 � 2x3 � 13x2 � 26x � 10

 � aAx3 �  13 

2 x2 � 13x � 5B

 � aAx � 1
2B 1x

2 � 6x � 10 2

 � aAx � 1
2B 3 1x � 3 2 2 � i2 4

 � aAx � 1
2B 3 1x � 3 2 � i 4 3 1x � 3 2 � i 4

 P1x 2 � aAx � 1
2B 3x � 13 � i 2 4 3x � 13 � i 2 4

P1x 2

1
2P1x 2

z

 � P1z 2 � 0 � 0

 � anzn � an�1zn�1 � . . . � a1z � a0

 � an  
zn � an�1 zn�1 � . . . � a1z � a0

 � an zn � an�1 zn�1 � . . . � a1 z � a0

 P1z 2 � an1z 2 n � an�11z 2 n�1 � . . . � a1z � a0

P1z 2 � 0P1z 2 � 0

P1x 2 � an  
xn � an�1x

n�1 � . . . � a1x � a0

308 C H A P T E R  3 | Polynomial and Rational Functions

CONJUGATE ZEROS THEOREM

If the polynomial P has real coefficients and if the complex number z is a zero of
P, then its complex conjugate is also a zero of P.z

G E R O L A M O  C A R D A N O (1501–1576) is
certainly one of the most colorful
figures in the history of mathematics.
He was the best-known physician in
Europe in his day, yet throughout his
life he was plagued by numerous mal-
adies, including ruptures, hemorrhoids,
and an irrational fear of encountering
rabid dogs. He was a doting father, but
his beloved sons broke his heart—his
favorite was eventually beheaded for
murdering his own wife. Cardano was
also a compulsive gambler; indeed, this
vice might have driven him to write the
Book on Games of Chance, the first
study of probability from a mathemati-
cal point of view.

In Cardano’s major mathematical
work, the Ars Magna, he detailed the
solution of the general third- and
fourth-degree polynomial equations. At
the time of its publication, mathemati-
cians were uncomfortable even with
negative numbers, but Cardano’s for-
mulas paved the way for the accep-
tance not just of negative numbers, but
also of imaginary numbers, because
they occurred naturally in solving poly-
nomial equations. For example, for the
cubic equation

one of his formulas gives the solution

(See page 297, Exercise 114). This value
for x actually turns out to be the integer
4, yet to find it, Cardano had to use the
imaginary number .1�121 � 11i

� 23 2 � 1�121x � 23 2 � 1�121

x3 � 15x � 4 � 0
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▼ Linear and Quadratic Factors
We have seen that a polynomial factors completely into linear factors if we use complex
numbers. If we don’t use complex numbers, then a polynomial with real coefficients can
always be factored into linear and quadratic factors. We use this property in Section 5.3
when we study partial fractions. A quadratic polynomial with no real zeros is called irre-
ducible over the real numbers. Such a polynomial cannot be factored without using com-
plex numbers.

P R O O F We first observe that if c � a � bi is a complex number, then

The last expression is a quadratic with real coefficients.
Now, if P is a polynomial with real coefficients, then by the Complete Factorization

Theorem

Since the complex roots occur in conjugate pairs, we can multiply the factors
corresponding to each such pair to get a quadratic factor with real coefficients. This
results in P being factored into linear and irreducible quadratic factors. ■

E X A M P L E  7 Factoring a Polynomial into Linear 
and Quadratic Factors

Let .

(a) Factor P into linear and irreducible quadratic factors with real coefficients.

(b) Factor P completely into linear factors with complex coefficients.

S O L U T I O N

(a)

The factor x2 � 4 is irreducible, since it has no real zeros.

(b) To get the complete factorization, we factor the remaining quadratic factor:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 65 ■

  � 1x � 12 2 1x � 12 2 1x � 2i 2 1x � 2i 2

 P1x 2 � 1x � 12 2 1x � 12 2 1x2 � 4 2

 � 1x � 12 2 1x � 12 2 1x2 � 4 2

 � 1x2 � 2 2 1x2 � 4 2

 P1x 2 � x 4 � 2x 2 � 8

P1x 2 � x4 � 2x2 � 8

P1x 2 � a1x � c1 2 1x � c2 2 p 1x � cn 2

 � x2 � 2ax � 1a2 � b2 2

 � 1x � a 2 2 � 1bi 2 2

 � 3 1x � a 2 � bi 4 3 1x � a 2 � bi 4

 1x � c 2 1x � c 2 � 3x � 1a � bi 2 4 3x � 1a � bi 2 4
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LINEAR AND QUADRATIC FACTORS THEOREM

Every polynomial with real coefficients can be factored into a product of linear
and irreducible quadratic factors with real coefficients.
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C O N C E P T S
1. The polynomial has degree 

. It has zeros 5, 3, and . The zero 5 has

multiplicity , and the zero 3 has multiplicity 

.

2. (a) If a is a zero of the polynomial P, then must be
a factor of P(x).

(b) If a is a zero of multiplicity m of the polynomial P, then 

must be a factor of P(x) when we factor P
completely.

3. A polynomial of degree has exactly zeros if
a zero of multiplicity m is counted m times.

4. If the polynomial function P has real coefficients and if 

is a zero of P, then is also a zero of P.

S K I L L S
5–16 ■ A polynomial P is given. (a) Find all zeros of P, real and
complex. (b) Factor P completely.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17–34 ■ Factor the polynomial completely, and find all its zeros.
State the multiplicity of each zero.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35–44 ■ Find a polynomial with integer coefficients that satisfies
the given conditions.

35. P has degree 2 and zeros 1 � i and 1 � i.

36. P has degree 2 and zeros and .

37. Q has degree 3 and zeros 3, 2i, and �2i.

38. Q has degree 3 and zeros 0 and i.

39. P has degree 3 and zeros 2 and i.

40. Q has degree 3 and zeros �3 and 1 � i.

1 � i121 � i12

P1x 2 � x6 � 16x3 � 64P1x 2 � x5 � 6x3 � 9x

P1x 2 � x5 � 7x3P1x 2 � x4 � 3x2 � 4

Q1x 2 � x4 � 10x2 � 25Q1x 2 � x4 � 2x2 � 1

P1x 2 � x6 � 729P1x 2 � x3 � x2 � 9x � 9

P1x 2 � x3 � 64P1x 2 � 16x4 � 81

Q1x 2 � x4 � 625Q1x 2 � x4 � 1

P1x 2 � x3 � x2 � xP1x 2 � x3 � 4x

Q1x 2 � x2 � 8x � 17Q1x 2 � x2 � 2x � 2

P1x 2 � 4x2 � 9P1x 2 � x2 � 25

P1x 2 � x6 � 7x3 � 8P1x 2 � x6 � 1

P1x 2 � x3 � 8P1x 2 � x3 � 8

P1x 2 � x4 � 6x2 � 9P1x 2 � x4 � 16

P1x 2 � x4 � x2 � 2P1x 2 � x4 � 2x2 � 1

P1x 2 � x3 � x2 � xP1x 2 � x3 � 2x2 � 2x

P1x 2 � x5 � 9x3P1x 2 � x4 � 4x2

a � bi

n 
 1

P 1x 2 � 31x � 5 2 31x � 3 2 1x � 2 2

41. R has degree 4 and zeros 1 � 2i and 1, with 1 a zero of multi-
plicity 2.

42. S has degree 4 and zeros 2i and 3i.

43. T has degree 4, zeros i and 1 � i, and constant term 12.

44. U has degree 5, zeros , �1, and �i, and leading coefficient 4;
the zero �1 has multiplicity 2.

45–62 ■ Find all zeros of the polynomial.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56. [Hint: Factor by grouping.]

57.

58.

59.

60.

61.

62.

63–68 ■ A polynomial P is given. (a) Factor P into linear and ir-
reducible quadratic factors with real coefficients. (b) Factor P
completely into linear factors with complex coefficients.

63.

64.

65. 66.

67. 68.

69. By the Zeros Theorem, every nth-degree polynomial equation
has exactly n solutions (including possibly some that are re-
peated). Some of these may be real, and some may be imagi-
nary. Use a graphing device to determine how many real and
imaginary solutions each equation has.
(a) x4 � 2x3 � 11x2 � 12x � 0
(b) x4 � 2x3 � 11x2 � 12x � 5 � 0
(c) x4 � 2x3 � 11x2 � 12x � 40 � 0

70–72 ■ So far, we have worked only with polynomials that have
real coefficients. These exercises involve polynomials with real and
imaginary coefficients.

70. Find all solutions of the equation.
(a) 2x � 4i � 1 (b) x2 � ix � 0
(c) x2 � 2ix � 1 � 0 (d) ix2 � 2x � i � 0

P1x 2 � x5 � 16xP1x 2 � x6 � 64

P1x 2 � x4 � 8x2 � 16P1x 2 � x4 � 8x2 � 9

P1x 2 � x3 � 2x � 4

P1x 2 � x3 � 5x2 � 4x � 20

P1x 2 � x5 � 2x4 � 2x3 � 4x2 � x � 2

P1x 2 � x5 � 3x4 � 12x3 � 28x2 � 27x � 9

P1x 2 � 4x4 � 2x3 � 2x2 � 3x � 1

P1x 2 � 4x4 � 4x3 � 5x2 � 4x � 1

P1x 2 � x4 � x2 � 2x � 2

P1x 2 � x4 � 6x3 � 13x2 � 24x � 36

P1x 2 � x5 � x3 � 8x2 � 8

P1x 2 � x5 � x4 � 7x3 � 7x2 � 12x � 12

P1x 2 � x4 � 2x3 � 2x2 � 2x � 3

P1x 2 � x4 � x3 � 7x2 � 9x � 18

P1x 2 � 2x3 � 8x2 � 9x � 9

P1x 2 � 2x3 � 7x2 � 12x � 9

P1x 2 � x3 � x � 6

P1x 2 � x3 � 3x2 � 3x � 2

P1x 2 � x3 � 7x2 � 18x � 18

P1x 2 � x3 � 2x2 � 2x � 1

P1x 2 � x3 � 7x2 � 17x � 15

P1x 2 � x3 � 2x2 � 4x � 8

1
2

3 . 6  E X E R C I S E S
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D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
73. Polynomials of Odd Degree The Conjugate Zeros Theo-

rem says that the complex zeros of a polynomial with real
coefficients occur in complex conjugate pairs. Explain how
this fact proves that a polynomial with real coefficients and
odd degree has at least one real zero.

74. Roots of Unity There are two square roots of 1, namely, 1
and �1. These are the solutions of x2 � 1. The fourth roots of 
1 are the solutions of the equation x4 � 1 or x4 � 1 � 0. How
many fourth roots of 1 are there? Find them. The cube roots of
1 are the solutions of the equation x3 � 1 or x3 � 1 � 0. How
many cube roots of 1 are there? Find them. How would you
find the sixth roots of 1? How many are there? Make a conjec-
ture about the number of nth roots of 1.

71. (a) Show that 2i and 1 � i are both solutions of the equation

but that their complex conjugates �2i and 1 � i are not.
(b) Explain why the result of part (a) does not violate the

Conjugate Zeros Theorem.

72. (a) Find the polynomial with real coefficients of the smallest
possible degree for which i and 1 � i are zeros and in
which the coefficient of the highest power is 1.

(b) Find the polynomial with complex coefficients of the
smallest possible degree for which i and 1 � i are zeros
and in which the coefficient of the highest power is 1.

x2 � 11 � i 2x � 12 � 2i 2 � 0
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3.7 RATIONAL FUNCTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find vertical asymptotes of rational functions � Find horizontal asymptotes
of rational functions � Graph transformations of the rational function

� Use asymptotes to graph rational functions � Find slant 
asymptotes of rational functions

GET READY Prepare for this section by reviewing Section P.7 on rational expressions.

y � 1/x

A rational function is a function of the form

where P and Q are polynomials. We assume that and have no factor in com-
mon. Even though rational functions are constructed from polynomials, their graphs look
quite different from the graphs of polynomial functions.

▼ Rational Functions and Asymptotes
The domain of a rational function consists of all real numbers x except those for which
the denominator is zero. When graphing a rational function, we must pay special attention
to the behavior of the graph near those x-values. We begin by graphing a very simple ra-
tional function.

E X A M P L E  1 A Simple Rational Function

Graph the rational function , and state the domain and range.

S O L U T I O N The function f is not defined for x � 0. The following tables show that
when x is close to zero, the value of is large, and the closer x gets to zero, the
larger gets.0 f 1x 2 0

0 f 1x 2 0

f 1x 2 � 1/x

Q1x 2P1x 2

r 1x 2 �
P1x 2

Q1x 2

Domains of rational expressions are
discussed in Section P.7.

x ff 11x22

�0.1 �10
�0.01 �100
�0.00001 �100,000

For positive real numbers,

 
1

small number
� BIG NUMBER

 
1

BIG NUMBER
� small number

x ff 11x22

0.1 10
0.01 100
0.00001 100,000

Approaching 0� Approaching �� Approaching 0� Approaching �
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We describe this behavior in words and in symbols as follows. The first table shows 
that as x approaches 0 from the left, the values of decrease without bound. In
symbols,

“y approaches negative infinity 
as x approaches 0 from the left”

The second table shows that as x approaches 0 from the right, the values of in-
crease without bound. In symbols,

The next two tables show how changes as becomes large.

These tables show that as becomes large, the value of gets closer and closer to
zero. We describe this situation in symbols by writing

Using the information in these tables and plotting a few additional points, we obtain the
graph shown in Figure 1.

The function f is defined for all values of x other than 0, so the domain is .
From the graph we see that the range is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

In Example 1 we used the following arrow notation.

5y 0  y � 06
5x 0  x � 06

f 1x 2 � 0 as x � �q  and  f 1x 2 � 0 as x � q

f 1x 20 x 0

0 x 0f 1x 2

“y approaches infinity as x
approaches 0 from the right”

f 1x 2 � q as x � 0�

f 1x 2

f 1x 2 � �q as x � 0�

y � f 1x 2
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x ff 11x22

�10 �0.1
�100 �0.01

�100,000 �0.00001

x ff 11x22

10 0.1
100 0.01

100,000 0.00001

Approaching �� Approaching 0 Approaching � Approaching 0

x

2

2

y

0

f(x)      `
as x      0+

as x      0_

f(x)      0 as
x      `

f(x)      0 as
x      _`

f(x)      _`F I G U R E  1

f 1x 2 � 1/x

x ff 11x22

�2

�1 �1

�2

2

1 1

2 1
2

1
2

� 
1
2

�1
2

� 1/x

Symbol Meaning

x � a� x approaches a from the left
x � a� x approaches a from the right
x � �q x goes to negative infinity; that is, x decreases without bound
x � q x goes to infinity; that is, x increases without bound

90169_Ch03b_298-344.qxd  11/23/11  3:14 PM  Page 312



The line x � 0 is called a vertical asymptote of the graph in Figure 1, and the line
y � 0 is a horizontal asymptote. Informally speaking, an asymptote of a function is a line
to which the graph of the function gets closer and closer as one travels along that line.

A rational function has vertical asymptotes where the function is undefined, that is,
where the denominator is zero.

▼ Transformations of y � 1/x
A rational function of the form

can be graphed by shifting, stretching, and/or reflecting the graph of shown in
Figure 1, using the transformations studied in Section 2.5. (Such functions are called lin-
ear fractional transformations.)

E X A M P L E  2 Using Transformations to Graph Rational Functions

Graph each rational function, and state the domain and range.

(a) (b)

S O L U T I O N

(a) Let . Then we can express r in terms of f as follows:

Factor 2

Since f (x) �

From this form we see that the graph of r is obtained from the graph of f by shifting
3 units to the right and stretching vertically by a factor of 2. Thus r has vertical as-
ymptote x � 3 and horizontal asymptote y � 0. The graph of r is shown in Figure 2.

1/x � 21f 1x � 3 22

 � 2 a
1

x � 3
b

 r 1x 2 �
2

x � 3

f 1x 2 � 1/x

s1x 2 �
3x � 5

x � 2
r 1x 2 �

2

x � 3

f 1x 2 � 1/x

r 1x 2 �
ax � b

cx � d
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DEFINITION OF VERTIC AL AND HORIZONTAL ASYMPTOTES

1. The line x � a is a vertical asymptote of the function if y approaches �q as x approaches a from the right
or left.

2. The line y � b is a horizontal asymptote of the function if y approaches b as x approaches �q.

y      b as x      `

x
b

y

y      b as x      _`

x
b

y

y � f 1x 2

y      ` as x      a±

xa

y

y      ` as x      a–

xa

y

y      _` as x      a±

xa

y

y      _` as x      a–

xa

y

y � f 1x 2

Horizontal
asymptote
y = 0

Vertical
asymptote
x = 3

2
x-3r(x)=

x

1

3

y

0

F I G U R E  2

Recall that for a rational function
we assume that

and have no factor in 
common. (See the definition of a 
rational function on page 311, and 
Exercise 91.)

Q1x 2P1x 2
R1x 2 � P1x 2 /Q1x 2 ,
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The function r is defined for all x other than 3, so the domain is . From
the graph we see that the range is .

(b) Using long division (see the margin), we get . Thus we can ex-
press s in terms of f as follows:

Rearrange terms

Since f (x) �

From this form we see that the graph of s is obtained from the graph of f by shift-
ing 2 units to the left, reflecting in the x-axis, and shifting upward 3 units. Thus s
has vertical asymptote x � �2 and horizontal asymptote y � 3. The graph of s is
shown in Figure 3.

The function s is defined for all x other than �2, so the domain is .
From the graph we see that the range is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 13 AND 15 ■

▼ Asymptotes of Rational Functions
The methods of Example 2 work only for simple rational functions. To graph more com-
plicated ones, we need to take a closer look at the behavior of a rational function near its
vertical and horizontal asymptotes.

E X A M P L E  3 Asymptotes of a Rational Function

Graph , and state the domain and range.

S O L U T I O N

Vertical asymptote: We first factor the denominator

The line x � 1 is a vertical asymptote because the denominator of r is zero when x � 1.

r 1x 2 �
2x2 � 4x � 5

1x � 1 2 2

r 1x 2 �
2x2 � 4x � 5

x2 � 2x � 1

5y 0  y � 36
5x 0  x � �26

x

3

y

0_2

3x+5
x+2s(x)=

Vertical asymptote
x = _2

Horizontal asymptote
y = 3

1/x � �f 1x � 2 2 � 3

 � �
1

x � 2
� 3

 s1x 2 � 3 �
1

x � 2

s1x 2 � 3 �
1

x � 2

5y 0  y � 06
5x 0  x � 36
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3

x � 2�3x � 5

3x � 6

�1

F I G U R E  3
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To see what the graph of r looks like near the vertical asymptote, we make tables of val-
ues for x-values to the left and to the right of 1. From the tables shown below we see that

Thus, near the vertical asymptote x � 1, the graph of r has the shape shown in Figure 4.

Horizontal asymptote: The horizontal asymptote is the value that y approaches as 
x � �q. To help us find this value, we divide both numerator and denominator by x2,
the highest power of x that appears in the expression:

The fractional expressions , , , and all approach 0 as x � �q (see Exercise 95,

page 17). So as x � �q, we have

Thus, the horizontal asymptote is the line y � 2.
Since the graph must approach the horizontal asymptote, we can complete it as in

Figure 5.

Domain and range: The function r is defined for all values of x other than 1, so the
domain is . From the graph we see that the range is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

From Example 3 we see that the horizontal asymptote is determined by the leading
coefficients of the numerator and denominator, since after dividing through by x2 (the
highest power of x), all other terms approach zero. In general, if and
the degrees of P and Q are the same (both n, say), then dividing both numerator and de-
nominator by xn shows that the horizontal asymptote is

y �
leading coefficient of P

leading coefficient of Q

r 1x 2 � P1x 2 /Q1x 2

5y 0  y � 265x 0  x � 16

y �

2 �
4
x

�
5

x 2

1 �
2
x

�
1

x 2

  ——�  
2 � 0 � 0

1 � 0 � 0
� 2

1

x 2

2
x

5

x 2

4
x

y �
2x2 � 4x � 5

x2 � 2x � 1
#

1

x2

1

x2

�

2 �
4
x

�
5

x2

1 �
2
x

�
1

x2

x � 1�x � 1�

y � q as x � 1�  and  y � q as x � 1�
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x y

0 5
0.5 14
0.9 302
0.99 30,002

x y

2 5
1.5 14
1.1 302
1.01 30,002

Approaching 1– Approaching � Approaching 1+ Approaching �

These terms approach 0

These terms approach 0

y      ` as
x      1–

y      ` as
x      1±

x

1

5

_1 1 2

y

0

F I G U R E  4

x

1

5

−1 1 2

y

0

y      2 as
x      _`

y      2 as
x      `

F I G U R E  5

r 1x 2 �
2x 2 � 4x � 5

x 2 � 2x � 1
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The following box summarizes the procedure for finding asymptotes.

E X A M P L E  4 Asymptotes of a Rational Function

Find the vertical and horizontal asymptotes of .

S O L U T I O N

Vertical asymptotes: We first factor

The vertical asymptotes are the lines and x � �2.

Horizontal asymptote: The degrees of the numerator and denominator are the same,
and

Thus the horizontal asymptote is the line .
To confirm our results, we graph r using a graphing calculator (see Figure 6).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 31 AND 33 ■

▼ Graphing Rational Functions
We have seen that asymptotes are important when graphing rational functions. In general,
we use the following guidelines to graph rational functions.

y � 3
2

leading coefficient of numerator

leading coefficient of denominator
�

3

2

x � 1
2

r 1x 2 �
3x2 � 2x � 1

12x � 1 2 1x � 2 2

r 1x 2 �
3x2 � 2x � 1

2x2 � 3x � 2
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FINDING ASYMPTOTES OF RATIONAL FUNCTIONS

Let r be the rational function

1. The vertical asymptotes of r are the lines x � a, where a is a zero of the
denominator.

2. (a) If n 	 m, then r has horizontal asymptote y � 0.

(b) If n � m, then r has horizontal asymptote .

(c) If n � m, then r has no horizontal asymptote.

y �
an

bm

r 1x 2 �
an  

xn � an�1x
n�1 � . . . � a1x � a0

bm  
xm � bm�1x

m�1 � . . . � b1x � b0

This factor is 0
when x � 1

2

This factor is 0
when x � �2

F I G U R E  6

r 1x 2 �
3x 2 � 2x � 1

2x 2 � 3x � 2

10

_10

_6 3

Graph is drawn using dot mode to
avoid extraneous lines.

Recall that for a rational function
we assume that

and have no factor in 
common. (See Exercise 91.)

Q1x 2P1x 2
R1x 2 � P1x 2 /Q1x 2 ,
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SKETCHING GRAPHS OF RATIONAL FUNCTIONS

1. Factor. Factor the numerator and denominator.

2. Intercepts. Find the x-intercepts by determining the zeros of the numerator
and the y-intercept from the value of the function at x � 0.

3. Vertical Asymptotes. Find the vertical asymptotes by determining the zeros
of the denominator, and then see whether y � q or y � �q on each side of
each vertical asymptote by using test values.

4. Horizontal Asymptote. Find the horizontal asymptote (if any), using the 
procedure described in the box on page 316.

5. Sketch the Graph. Graph the information provided by the first four steps.
Then plot as many additional points as needed to fill in the rest of the graph of
the function.

A fraction is 0 if and only if its numer-
ator is 0.

As x �

the sign of is

so y �

y �
12x � 1 2 1x � 4 2

1x � 1 2 1x � 2 2

�2� �2� 1� 1�

�q q �q q

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

When choosing test values, we must
make sure that there is no x-intercept
between the test point and the vertical
asymptote.

E X A M P L E  5 Graphing a Rational Function

Graph , and state the domain and range.

S O L U T I O N We factor the numerator and denominator, find the intercepts and asymp-
totes, and sketch the graph.

Factor:

x-Intercepts: The x-intercepts are the zeros of the numerator, and x � �4.

y-Intercept: To find the y-intercept, we substitute x � 0 into the original form of the
function.

The y-intercept is 2.

Vertical asymptotes: The vertical asymptotes occur where the denominator is 0, that
is, where the function is undefined. From the factored form we see that the vertical as-
ymptotes are the lines x � 1 and x � �2.

Behavior near vertical asymptotes: We need to know whether y � q or y � �q on
each side of each vertical asymptote. To determine the sign of y for x-values near the verti-
cal asymptotes, we use test values. For instance, as x � 1�, we use a test value close to and
to the left of to check whether y is positive or negative to the left of x � 1.

So y � �q as x � 1�. On the other hand, as x � 1�, we use a test value close to and
to the right of 1 , to get

So y � q as x � 1�. The other entries in the following table are calculated similarly.

y �
1211.1 2 � 1 2 1 11.1 2 � 4 2

1 11.1 2 � 1 2 1 11.1 2 � 2 2
  whose sign is  

1� 2 1� 2

1� 2 1� 2
 1positive 2

1x � 1.1, say 2

y �
1210.9 2 � 1 2 1 10.9 2 � 4 2

1 10.9 2 � 1 2 1 10.9 2 � 2 2
  whose sign is  

1� 2 1� 2

1� 2 1� 2
 1negative 2

1 1x � 0.9, say 2

r 10 2 �
210 2 2 � 710 2 � 4

10 22 � 10 2 � 2
�

�4

�2
� 2

x � 1
2

y �
12x � 1 2 1x � 4 2

1x � 1 2 1x � 2 2

r 1x 2 �
2x2 � 7x � 4

x2 � x � 2

11

11 11

11 22

2222

22
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x

5

3

y

0

x y

�6 0.93
�3 �1.75
�1 4.50

1.5 6.29
2 4.50
3 3.50 F I G U R E  7

r 1x 2 �
2x2 � 7x � 4

x2 � x � 2

As x �

the sign of is

so y �

y �
5x � 21

1x � 5 2 2

�5� �5�

�q �q

1� 2

1� 2 1� 2

1� 2

1� 2 1� 2

Unbreakable Codes 
If you read spy novels, you know about
secret codes and how the hero “breaks”
the code. Today secret codes have a
much more common use. Most of the
information that is stored on comput-
ers is coded to prevent unauthorized
use. For example, your banking records,
medical records, and school records are
coded. Many cellular and cordless
phones code the signal carrying your
voice so that no one can listen in. For-
tunately, because of recent advances 
in mathematics, today’s codes are 
“unbreakable.”

Modern codes are based on a sim-
ple principle: Factoring is much harder
than multiplying. For example, try mul-
tiplying 78 and 93; now try factoring
9991. It takes a long time to factor 9991
because it is a product of two primes
97 � 103, so to factor it, we have to
find one of these primes. Now imagine
trying to factor a number N that is the
product of two primes p and q, each
about 200 digits long. Even the fastest
computers would take many millions
of years to factor such a number! But
the same computer would take less
than a second to multiply two such
numbers. This fact was used by Ron
Rivest, Adi Shamir, and Leonard 
Adleman in the 1970s to devise the
RSA code. Their code uses an extremely
large number to encode a message but
requires us to know its factors to de-
code it. As you can see, such a code is
practically unbreakable.

The RSA code is an example of a
“public key encryption” code. In such
codes, anyone can code a message us-
ing a publicly known procedure based
on N, but to decode the message, they
must know p and q, the factors of N.
When the RSA code was developed, it
was thought that a carefully selected
80-digit number would provide an un-
breakable code. But interestingly, re-
cent advances in the study of factoring
have made much larger numbers 
necessary.

M AT H E M AT I C S  I N  
T H E  M O D E R N  W O R L D

Horizontal asymptote: The degrees of the numerator and denominator are the same,
and

Thus the horizontal asymptote is the line y � 2.

Graph: We use the information we have found, together with some additional values,
to sketch the graph in Figure 7.

Domain and range: The domain is . From the graph we see that
the range is all real numbers.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

E X A M P L E  6 Graphing a Rational Function

Graph , and state the domain and range.

S O L U T I O N

Factor:

x-Intercept: , from 5x � 21 � 0

y-Intercept: , because 

Vertical asymptote: x � �5, from the zeros of the denominator

Behavior near vertical asymptote:

Horizontal asymptote: y � 0, because the degree of the numerator is less than the
degree of the denominator

�
21

25

r 10 2 �
5 # 0 � 21

02 � 10 # 0 � 25

21

25

�
21

5

y �
5x � 21

1x � 5 2 2

r 1x 2 �
5x � 21

x2 � 10x � 25

5x 0  x � 1, x � �26

leading coefficient of numerator

leading coefficient of denominator
�

2

1
� 2

11 22
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Graph: We use the information we have found, together with some additional values,
to sketch the graph in Figure 8.

Domain and range: The domain is . From the graph we see that the
range is approximately the interval .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 55 ■

From the graph in Figure 8 we see that, contrary to common misconception, a graph
may cross a horizontal asymptote. The graph in Figure 8 crosses the x-axis (the horizon-
tal asymptote) from below, reaches a maximum value near x � �3, and then approaches
the x-axis from above as x � q.

E X A M P L E  7 Graphing a Rational Function

Graph the rational function .

S O L U T I O N

Factor:

x-Intercepts: �1 and 4, from x � 1 � 0 and x � 4 � 0

y-Intercept: None, because is undefined

Vertical asymptotes: x � 0 and x � �2, from the zeros of the denominator

Behavior near vertical asymptotes:

Horizontal asymptote: , because the degree of the numerator and the degree of
the denominator are the same and

leading coefficient of numerator

leading coefficient of denominator
�

1

2

y � 1
2

r 10 2

y �
1x � 1 2 1x � 4 2

2x1x � 2 2

r 1x 2 �
x2 � 3x � 4

2x2 � 4x

1�q, 1.5 4
5x 0  x � �56
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x

1

5

y

0

F I G U R E  8

r 1x 2 �
5x � 21

x2 � 10x � 25

x y

�15 �0.5
�10 �1.2
�3 1.5
�1 1.0

3 0.6
5 0.5

10 0.3

As x �

the sign of is

so y �

y �
1x � 1 2 1x � 4 2

2x1x � 2 2

�2� �2� 0� 0�

q �q q �q

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

1� 2 1� 2

11 22 11 22

11 22
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x

2

y

3

F I G U R E  9

r 1x 2 �
x2 � 3x � 4

2x2 � 4x

x y

�3 2.33
�2.5 3.90
�0.5 1.50

1 �1.00
3 �0.13
5 0.09

Graph: We use the information we have found, together with some additional values,
to sketch the graph in Figure 9.

Domain and range: The domain is . From the graph we see that
the range is all real numbers.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

▼ Slant Asymptotes and End Behavior
If is a rational function in which the degree of the numerator is one
more than the degree of the denominator, we can use the Division Algorithm to express
the function in the form

where the degree of R is less than the degree of Q and a � 0. This means that as 
x � �q, , so for large values of the graph of approaches the
graph of the line y � ax � b. In this situation we say that y � ax � b is a slant asymp-
tote, or an oblique asymptote.

E X A M P L E  8 A Rational Function with a Slant Asymptote

Graph the rational function .

S O L U T I O N

Factor:

x-Intercepts: �1 and 5, from x � 1 � 0 and x � 5 � 0

y-Intercepts: , because 

Horizontal asymptote: None, because the degree of the numerator is greater than the
degree of the denominator

Vertical asymptote: x � 3, from the zero of the denominator

Behavior near vertical asymptote: y � q as x � 3� and y � �q as x � 3�

r 10 2 �
02 � 4 # 0 � 5

0 � 3
�

5

3

5

3

y �
1x � 1 2 1x � 5 2

x � 3

r 1x 2 �
x2 � 4x � 5

x � 3

y � r 1x 20 x 0R1x 2 /Q1x 2 � 0

r 1x 2 � ax � b �
R1x 2

Q1x 2

r 1x 2 � P1x 2 /Q1x 2

5x 0  x � 0, x � �26
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x � 1

x � 3�x 2 � 4x � 5

x 2 � 3x

�x � 5

�x � 3

�8

Slant asymptote: Since the degree of the numerator is one more than the degree of the
denominator, the function has a slant asymptote. Dividing (see the margin), we obtain

Thus y � x � 1 is the slant asymptote.

Graph: We use the information we have found, together with some additional values,
to sketch the graph in Figure 10.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 65 ■

So far, we have considered only horizontal and slant asymptotes as end behaviors for
rational functions. In the next example we graph a function whose end behavior is like
that of a parabola.

E X A M P L E  9 End Behavior of a Rational Function

Graph the rational function

and describe its end behavior.

S O L U T I O N

Factor:

x-Intercepts: �1, from x � 1 � 0 (The other factor in the numerator has no real zeros.)

y-Intercepts: , because 

Vertical asymptote: x � 2, from the zero of the denominator

Behavior near vertical asymptote: y � �q as x � 2� and y � q as x � 2�

Horizontal asymptote: None, because the degree of the numerator is greater than the
degree of the denominator

End behavior: Dividing (see the margin), we get

This shows that the end behavior of r is like that of the parabola y � x2 because 
is small when is large. That is, as x � �q. This means that the graph
of r will be close to the graph of y � x2 for large .0 x 0

3/ 1x � 2 2 � 00 x 0
3/ 1x � 2 2

r 1x 2 � x2 �
3

x � 2

r 10 2 �
03 � 2 # 02 � 3

0 � 2
� � 

3

2
� 

3

2

y �
1x � 1 2 1x2 � 3x � 3 2

x � 2

r 1x 2 �
x3 � 2x2 � 3

x � 2

r 1x 2 � x � 1 �
8

x � 3

x

5

y

2

≈-4x-5
x-3r(x)=

y=x-1

Slant
asymptote

F I G U R E  1 0

x y

�2 �1.4
1 4
2 9
4 �5
6 2.33

x 2

x � 2�x 3 � 2x 2 � 0x � 3

x 3 � 2x 2

3
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Graph: In Figure 11(a) we graph r in a small viewing rectangle; we can see the inter-
cepts, the vertical asymptotes, and the local minimum. In Figure 11(b) we graph r in a
larger viewing rectangle; here the graph looks almost like the graph of a parabola. In
Figure 11(c) we graph both and y � x2; these graphs are very close to each
other except near the vertical asymptote.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 73 ■

▼ Applications
Rational functions occur frequently in scientific applications of algebra. In the next ex-
ample we analyze the graph of a function from the theory of electricity.

E X A M P L E  1 0 Electrical Resistance

When two resistors with resistances R1 and R2 are connected in parallel, their combined
resistance R is given by the formula

Suppose that a fixed 8-ohm resistor is connected in parallel with a variable resistor, as shown
in Figure 12. If the resistance of the variable resistor is denoted by x, then the combined re-
sistance R is a function of x. Graph R, and give a physical interpretation of the graph.

S O L U T I O N Substituting R1 � 8 and R2 � x into the formula gives the function

Since resistance cannot be negative, this function has physical meaning only when x � 0.
The function is graphed in Figure 13(a) using the viewing rectangle 30, 204 by 30, 104. The
function has no vertical asymptote when x is restricted to positive values. The combined
resistance R increases as the variable resistance x increases. If we widen the viewing rect-
angle to 30,1004 by 30, 104, we obtain the graph in Figure 13(b). For large x the combined
resistance R levels off, getting closer and closer to the horizontal asymptote R � 8. No
matter how large the variable resistance x, the combined resistance is never greater than
8 ohms.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 83 ■

R1x 2 �
8x

8 � x

R �
R1R2

R1 � R2

y � r 1x 2
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_20

_4 4

(a)

200

_200

_30 30

(b)

20

_5

_8 8

(c)

y=≈

F I G U R E  1 1

r 1x 2 �
x 3 � 2x 2 � 3

x � 2

x

8 ohms

F I G U R E  1 2

F I G U R E  1 3

R 1x 2 �
8x

8 � x

10

0 20

(a)

10

0 100

(b)
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C O N C E P T S
1. If the rational function has the vertical asymptote 

then as either or .

2. If the rational function has the horizontal asymptote 

then as 

3–6 ■ The following questions are about the rational function

3. The function r has x-intercepts and .

4. The function r has y-intercept .

5. The function r has vertical asymptotes x � and 

x = .

6. The function r has horizontal asymptote y � .

S K I L L S
7–10 ■ A rational function is given. (a) Complete each table 
for the function. (b) Describe the behavior of the function near its
vertical asymptote, based on Tables 1 and 2. (c) Determine the hor-
izontal asymptote, based on Tables 3 and 4.

7. 8.

9. 10.

11–18 ■ Use transformations of the graph of to graph the
rational function, and state the domain and range of r, as in Exam-
ple 2.

11. 12.

13. 14. s 1x 2 �
�2

x � 2
s 1x 2 �

3

x � 1

r 1x 2 �
1

x � 4
r 1x 2 �

1

x � 1

y � 1/x

r 1x 2 �
3x2 � 1

1x � 2 2 2
r 1x 2 �

3x � 10

1x � 2 2 2

r 1x 2 �
4x � 1

x � 2
r 1x 2 �

x

x � 2

r1x 2 �
1x � 1 2 1x � 2 2

1x � 2 2 1x � 3 2

x � �q.y �y � 2,

y � r 1x 2

y �y �x � 2�,x � 2,

y � r 1x 2

15. 16.

17. 18.

19–24 ■ Find the x- and y-intercepts of the rational function.

19. 20.

21. 22.

23. 24.

25–28 ■ From the graph, determine the x- and y-intercepts and
the vertical and horizontal asymptotes.

25. 26.

27. 28.

29–40 ■ Find all horizontal and vertical asymptotes (if any).

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41–64 ■ Find the intercepts and asymptotes, and then sketch a
graph of the rational function and state the domain and range. Use
a graphing device to confirm your answer.

41. 42. r 1x 2 �
2x � 6

�6x � 3
r 1x 2 �

4x � 4

x � 2

r 1x 2 �
x 3 � 3x 2

x 2 � 4
t 1x 2 �

x 2 � 2

x � 1

r 1x 2 �
5x 3

x 3 � 2x 2 � 5x
r 1x 2 �

6x 3 � 2

2x 3 � 5x 2 � 6x

s 1x 2 �
12x � 1 2 1x � 3 2

13x � 1 2 1x � 4 2
s 1x 2 �

15x � 1 2 1x � 1 2

13x � 1 2 1x � 2 2

s 1x 2 �
8x 2 � 1

4x 2 � 2x � 6
s 1x 2 �

6x 2 � 1

2x 2 � x � 1

r 1x 2 �
2x � 4

x2 � x � 1
r 1x 2 �

6x

x 2 � 2

r 1x 2 �
2x � 3

x 2 � 1
r 1x 2 �

5

x � 2

2

0 x

y

−4 4

−6

10

2

3−3

y

x

y

x0
1

2

y

x0

4

4

r 1x 2 �
x3 � 8

x2 � 4
r 1x 2 �

x2 � 9

x2

r 1x 2 �
2

x2 � 3x � 4
t 1x 2 �

x2 � x � 2

x � 6

s 1x 2 �
3x

x � 5
r 1x 2 �

x � 1

x � 4

r 1x 2 �
2x � 9

x � 4
r 1x 2 �

x � 2

x � 3

t 1x 2 �
3x � 3

x � 2
t 1x 2 �

2x � 3

x � 2

3 . 7  E X E R C I S E S

x r 11x22

1.5
1.9
1.99
1.999

x r 11x22

2.5
2.1
2.01
2.001

T A B L E  1 T A B L E  2

x r 11x22

10
50

100
1000

x r 11x22

�10
�50

�100
�1000

T A B L E  3 T A B L E  4
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same end behavior as the rational function, and graph both func-
tions in a sufficiently large viewing rectangle to verify that the end
behaviors of the polynomial and the rational function are the same.

77.

78.

79. 80.

81. 82.

A P P L I C A T I O N S
83. Population Growth Suppose that the rabbit population on

Mr. Jenkins’ farm follows the formula

where t 
 0 is the time (in months) since the beginning of 
the year.
(a) Draw a graph of the rabbit population.
(b) What eventually happens to the rabbit population?

84. Drug Concentration After a certain drug is injected into a
patient, the concentration c of the drug in the bloodstream is
monitored. At time t 
 0 (in minutes since the injection), the
concentration (in mg/L) is given by

(a) Draw a graph of the drug concentration.
(b) What eventually happens to the concentration of drug in

the bloodstream?

85. Drug Concentration A drug is administered to a patient,
and the concentration of the drug in the bloodstream is moni-
tored. At time t 
 0 (in hours since giving the drug), the con-
centration (in mg/L) is given by

Graph the function c with a graphing device.
(a) What is the highest concentration of drug that is reached

in the patient’s bloodstream?
(b) What happens to the drug concentration after a long pe-

riod of time?
(c) How long does it take for the concentration to drop below

0.3 mg/L?

c 1t 2 �
5t

t2 � 1

c 1t 2 �
30t

t2 � 2

p1t 2 �
3000t

t � 1

r 1x 2 �
4 � x2 � x4

x2 � 1
r 1x 2 �

x4 � 3x3 � 6

x � 3

y �
x4

x2 � 2
y �

x5

x3 � 1

y �
x4 � 3x3 � x2 � 3x � 3

x2 � 3x

y �
2x2 � 5x

2x � 3

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65–72 ■ Find the slant asymptote and the vertical asymptotes,
and sketch a graph of the function.

65. 66.

67. 68.

69. 70.

71. 72.

73–76 ■ Graph the rational function f, and determine all vertical
asymptotes from your graph. Then graph f and g in a sufficiently
large viewing rectangle to show that they have the same end
behavior.

73.

74.

75.

76.

77–82 ■ Graph the rational function, and find all vertical asymp-
totes, x- and y-intercepts, and local extrema, correct to the nearest
decimal. Then use long division to find a polynomial that has the

f 1x 2 �
�x4 � 2x3 � 2x

1x � 1 2 2
, g1x 2 � 1 � x2

f 1x 2 �
x3 � 2x2 � 16

x � 2
, g1x 2 � x2

f 1x 2 �
�x3 � 6x2 � 5

x2 � 2x
, g1x 2 � �x � 4

f 1x 2 �
2x2 � 6x � 6

x � 3
, g1x 2 � 2x

r 1x 2 �
2x3 � 2x

x2 � 1
r 1x 2 �

x3 � x2

x2 � 4

r 1x 2 �
x3 � 4

2x2 � x � 1
r 1x 2 �

x2 � 5x � 4

x � 3

r 1x 2 �
3x � x2

2x � 2
r 1x 2 �

x2 � 2x � 8
x

r 1x 2 �
x2 � 2x

x � 1
r 1x 2 �

x2

x � 2

t 1x 2 �
x3 � x2

x3 � 3x � 2
s 1x 2 �

x2 � 2x � 1

x3 � 3x2

r 1x 2 �
5x2 � 5

x2 � 4x � 4
r 1x 2 �

3x2 � 6

x2 � 2x � 3

r 1x 2 �
x2 � 3x

x2 � x � 6
r 1x 2 �

x2 � x � 6

x2 � 3x

r 1x 2 �
2x2 � 2x � 4

x2 � x
r 1x 2 �

2x2 � 10x � 12

x2 � x � 6

r 1x 2 �
4x2

x2 � 2x � 3
r 1x 2 �

x2 � 2x � 1

x2 � 2x � 1

r 1x 2 �
2x 1x � 2 2

1x � 1 2 1x � 4 2
r 1x 2 �

1x � 1 2 1x � 2 2

1x � 1 2 1x � 3 2

t 1x 2 �
x � 2

x2 � 4x
t 1x 2 �

3x � 6

x2 � 2x � 8

s 1x 2 �
2x � 4

x2 � x � 2
s 1x 2 �

6

x2 � 5x � 6

s 1x 2 �
x � 2

1x � 3 2 1x � 1 2
s 1x 2 �

4x � 8

1x � 4 2 1x � 1 2

r 1x 2 �
x � 2

1x � 1 2 2
r 1x 2 �

18

1x � 3 2 2

s 1x 2 �
1 � 2x

2x � 3
s 1x 2 �

4 � 3x

x � 7

324 C H A P T E R  3 | Polynomial and Rational Functions

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_Ch03b_298-344.qxd  11/23/11  3:15 PM  Page 324



D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
89. Constructing a Rational Function from Its Asymptotes

Give an example of a rational function that has vertical as-
ymptote x � 3. Now give an example of one that has verti-
cal asymptote x � 3 and horizontal asymptote y � 2. Now
give an example of a rational function with vertical asymp-
totes x � 1 and x � �1, horizontal asymptote y � 0, and 
x-intercept 4.

90. A Rational Function with No Asymptote Explain how
you can tell (without graphing it) that the function

has no x-intercept and no horizontal, vertical, or slant asymp-
tote. What is its end behavior?’

91. Graphs with Holes In this chapter we adopted the conven-
tion that in rational functions, the numerator and denominator
don’t share a common factor. In this exercise we consider the
graph of a rational function that does not satisfy this rule.
(a) Show that the graph of

is the line y � 3x � 3 with the point 12, 92 removed. 
[Hint: Factor. What is the domain of r?]

(b) Graph the following rational functions:

92. Transformations of y � 1/x 2 In Example 2 we saw that
some simple rational functions can be graphed by shifting,
stretching, or reflecting the graph of y � 1/x. In this exer-
cise we consider rational functions that can be graphed by
transforming the graph of y � 1/x 2, shown on the following
page.
(a) Graph the function

by transforming the graph of y � 1/x2.
(b) Use long division and factoring to show that the function

can be written as

Then graph s by transforming the graph of y � 1/x2.

s 1x 2 � 2 �
3

1x � 1 2 2

s 1x 2 �
2x2 � 4x � 5

x2 � 2x � 1

r 1x 2 �
1

1x � 2 2 2

 u 1x 2 �
x � 2

x2 � 2x

 t 1x 2 �
2x2 � x � 1

x � 1

 s 1x 2 �
x2 � x � 20

x � 5

r 1x 2 �
3x2 � 3x � 6

x � 2

r 1x 2 �
x6 � 10

x4 � 8x2 � 15

86. Flight of a Rocket Suppose a rocket is fired upward from
the surface of the earth with an initial velocity √ (measured in
meters per second). Then the maximum height h (in meters)
reached by the rocket is given by the function

where R � 6.4 � 106 m is the radius of the earth and 
g � 9.8 m/s2 is the acceleration due to gravity. Use a graphing
device to draw a graph of the function h. (Note that h and √
must both be positive, so the viewing rectangle need not con-
tain negative values.) What does the vertical asymptote repre-
sent physically?

87. The Doppler Effect As a train moves toward an observer
(see the figure), the pitch of its whistle sounds higher to the ob-
server than it would if the train were at rest, because the crests
of the sound waves are compressed closer together. This phe-
nomenon is called the Doppler effect. The observed pitch P is a
function of the speed √ of the train and is given by

where P0 is the actual pitch of the whistle at the source and 
s0 � 332 m/s is the speed of sound in air. Suppose that a 
train has a whistle pitched at P0 � 440 Hz. Graph the func-
tion using a graphing device. How can the vertical
asymptote of this function be interpreted physically?

88. Focusing Distance For a camera with a lens of fixed focal
length F to focus on an object located a distance x from the
lens, the film must be placed a distance y behind the lens,
where F, x, and y are related by

(See the figure.) Suppose the camera has a 55-mm lens (F � 55).
(a) Express y as a function of x and graph the function.
(b) What happens to the focusing distance y as the object

moves far away from the lens?
(c) What happens to the focusing distance y as the object

moves close to the lens?

x F
y

1
x

�
1
y

�
1

F

y � P1√ 2

P1√ 2 � P0 a
s0

s0 � √
b

h1√ 2 �
R√ 

2

2gR � √ 
2
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y

x

1

10

y= 1
≈

(c) One of the following functions can be graphed by trans-
forming the graph of y � 1/x2; the other cannot. Use
transformations to graph the one that can be, and explain
why this method doesn’t work for the other one.

p1x 2 �
2 � 3x2

x2 � 4x � 4
   q 1x 2 �

12x � 3x2

x2 � 4x � 4
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3.8 MODELING VARIATION

LEARNING OBJECTIVES After completing this section, you will be able to:

Find equations for direct variation � Find equations for inverse variation
� Find equations for combined variation

When scientists talk about a mathematical model for a real-world phenomenon, they of-
ten mean a function that describes the dependence of one physical quantity on another.
For instance, the model may describe the population of an animal species as a function of
time or the pressure of a gas as a function of its volume. In this section we study a kind
of modeling that occurs frequently in the sciences, called variation.  

▼ Direct Variation
One type of variation is called direct variation; it occurs when one quantity is a con-
stant multiple of the other. We use a function of the form to model this 
dependence.

Recall that the graph of an equation of the form y � mx � b is a line with slope m and
y-intercept b. So the graph of an equation y � kx that describes direct variation is a line
with slope k and y-intercept 0 (see Figure 1).

E X A M P L E  1 Direct Variation

During a thunderstorm you see the lightning before you hear the thunder because light
travels much faster than sound. The distance between you and the storm varies directly as
the time interval between the lightning and the thunder.

(a) Suppose that the thunder from a storm 5400 ft away takes 5 s to reach you. 
Determine the constant of proportionality, and write the equation for the variation.

(b) Sketch the graph of this equation. What does the constant of proportionality represent?

(c) If the time interval between the lightning and thunder is now 8 s, how far away is
the storm?

f1x 2 � kx

DIRECT VARIATION

If the quantities x and y are related by an equation

for some constant k � 0, we say that y varies directly as x, or y is directly pro-
portional to x, or simply y is proportional to x. The constant k is called the con-
stant of proportionality.

y � kx

0

k

1

y=kx
(k>0)

y

x

F I G U R E  1
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S O L U T I O N

(a) Let d be the distance from you to the storm, and let t be the length of the time inter-
val. We are given that d varies directly as t, so

where k is a constant. To find k, we use the fact that t � 5 when d � 5400. 
Substituting these values in the equation, we get

Substitute

Solve for k

Substituting this value of k in the equation for d, we obtain

as the equation for d as a function of t.

(b) The graph of the equation d � 1080t is a line through the origin with slope 1080 
and is shown in Figure 2. The constant k � 1080 is the approximate speed of sound
(in ft/s).

(c) When t � 8, we have

So the storm is 8640 ft � 1.6 mi away.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 17 AND 33 ■

▼ Inverse Variation
Another function that is frequently used in mathematical modeling is f (x) � k /x, where k
is a constant.

The function is a rational function. We graphed this function (for ) in Ex-
ample 1 on page 311. The graph of y � k /x for x � 0 is shown in Figure 3 for the case 
k � 0. It gives a picture of what happens when y is inversely proportional to x.

E X A M P L E  2 Inverse Variation

Boyle’s Law states that when a sample of gas is compressed at a constant temperature, the
pressure of the gas is inversely proportional to the volume of the gas.

(a) Suppose the pressure of a sample of air that occupies 0.106 m3 at 25�C is 50 kPa.
Find the constant of proportionality, and write the equation that expresses the in-
verse proportionality. Sketch a graph of this equation.

(b) If the sample expands to a volume of 0.3 m3, find the new pressure.

k � 1y � k/x

d � 1080 # 8 � 8640

d � 1080t

 k �
5400

5
� 1080

 5400 � k15 2

d � kt

S E C T I O N  3 . 8 | Modeling Variation 327

Unless otherwise noted, all content on this page is © Cengage Learning.

t

d

0
1000

1

(5, 5400)

(8, 8640)

y=1080t

F I G U R E  2

INVERSE VARIATION

If the quantities x and y are related by the equation

for some constant k � 0, we say that y is inversely proportional to x or y varies
inversely as x. The constant k is called the constant of proportionality.

y �
k
x

0

y=
(k>0)

k
x

y

x

F I G U R E  3 Inverse variation
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S O L U T I O N

(a) Let P be the pressure of the sample of gas, and let V be its volume. Then, by the
definition of inverse proportionality, we have

where k is a constant. To find k, we use the fact that P � 50 when V � 0.106. 
Substituting these values in the equation, we get

Substitute

Solve for k

Putting this value of k in the equation for P, we have

The function P is a rational function of V. We sketch the graph using the methods
of Section 3.7. Since V represents volume (which is never negative), we sketch the
part of the graph for which only. The graph is shown in Figure 4.

(b) When V � 0.3, we have

So the new pressure is about 17.7 kPa.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 19 AND 41 ■

▼ Combining Different Types of Variation
In the sciences, relationships between three or more variables are common, and any com-
bination of the different types of proportionality that we have discussed is possible. For
example, if the quantities x, y, and are related by the equation 

then we say that z is proportional to the product of x and y. We can also express this re-
lationship by saying that z varies jointly as x and y, or that z is jointly proportional to x
and y. If the quantities x, y, and z are related by the equation 

we say that z is proportional to x and inversely proportional to y or that z varies di-
rectly as x and inversely as y.

E X A M P L E  3 Combining Variations

The apparent brightness B of a light source (measured in W/m2) is directly proportional
to the luminosity L (measured in W) of the light source and inversely proportional to the
square of the distance d from the light source (measured in meters). 

(a) Write an equation that expresses this variation.

(b) If the distance is doubled, by what factor will the brightness change? 

(c) If the distance is cut in half and the luminosity is tripled, by what factor will the
brightness change? 

z � k 

x
y

z � kxy

z

P �
5.3

0.3
� 17.7

V � 0

P �
5.3

V

 k � 150 2 10.106 2 � 5.3

 50 �
k

0.106

P �
k

V
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P

0
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0.1 1.0

P=

(0.106, 50)

5.3
V

(0.3, 17.7)
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S O L U T I O N

(a) Since B is directly proportional to L and inversely proportional to , we have 

Brightness at distance d and luminosity L

where k is a constant.

(b) To obtain the brightness at double the distance we replace d by in the equation
we obtained in part (a):

Brightness at distance 2d

Comparing this expression with that obtained in part (a), we see that the brightness
is of the original brightness.

(c) To obtain the brightness at half the distance d and triple the luminosity L, we re-
place d by and L by in the equation we obtained in part (a):

Brightness at distance and luminosity 3L

Comparing this expression with that obtained in part (a), we see that the brightness
is 12 times the original brightness.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 29 AND 43 ■

The relationship between apparent brightness, actual brightness (or luminosity), and
distance is used in estimating distances to stars (see Exercise 54).

E X A M P L E  4 Newton’s Law of Gravitation

Newton’s Law of Gravitation says that two objects with masses m1 and m2 attract each
other with a force F that is jointly proportional to their masses and inversely proportional
to the square of the distance r between the objects. Express Newton’s Law of Gravitation
as an equation.

S O L U T I O N Using the definitions of joint and inverse variation and the traditional 
notation G for the gravitational constant of proportionality, we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 21 AND 45 ■

If m1 and m2 are fixed masses, then the gravitational force between them is F � C/r 2

(where C � Gm1m2 is a constant). Figure 5 shows the graph of this equation for r � 0
with C � 1. Observe how the gravitational attraction decreases with increasing dis-
tance.

Like the Law of Gravity, many laws of nature are inverse square laws. There is a geo-
metric reason for this. Imagine a force or energy originating from a point source and
spreading its influence equally in all directions, just like the light source in Example 3 or
the gravitational force exerted by a planet in Example 4. The influence of the force or en-
ergy at a distance r from the source is spread out over the surface of a sphere of radius r,

F � G  

m1m2

r 
2

1
2   
dB � k 

3L

112   
d 2 2

�
3
1
4

a k 

L

d 
2 b �  12 a k 

L

d 
2 b

3Ld/2

1
4

B � k 

L

12d 2 2
�

1

4
a k 

L

d 
2 b

2d

B � k 

L

d 
2

d2
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which has area (see Figure 6). So the intensity I at a distance r from the source
is the source strength S divided by the area A of the sphere:

where k is the constant . Thus point sources of light, sound, gravity, electromag-
netic fields, and radiation must all obey inverse square laws, simply because of the
geometry of space. 

S

r = 2

r = 3

r = 1

S/ 14p 2

I �
S

4pr 2 �
k

r 2

A � 4pr 2
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F I G U R E  6 Energy from a point source S.

C O N C E P T S
1. If the quantities x and y are related by the equation ,

then we say that y is 

to x and the constant of is 3.

2. If the quantities x and y are related by the equation , then 

we say that y is to x

and the constant of is 3.

3. If the quantities x, y, and z are related by the equation ,

then we say that z is 

to x and to y.

4. If z is jointly proportional to x and y and if z is 10 when x
is 4 and y is 5, then x, y, and z are related by the equation

z = .

S K I L L S
5–16 ■ Write an equation that expresses the statement.

5. T varies directly as x.

6. P is directly proportional to „.

7. √ is inversely proportional to z.

8. „ is proportional to the product of m and n.

9. y is proportional to s and inversely proportional to t.

10. P varies inversely as T.

11. z is proportional to the square root of y.

z � 3  

x

y

y �
3
x

y � 3x

12. A is proportional to the square of t and inversely proportional
to the cube of x.

13. V is proportional to the product of l, „, and h.

14. S is proportional to the product of the squares of r and u.

15. R is proportional to i and inversely proportional to P and t.

16. A is jointly proportional to the square roots of x and y.

17–28 ■ Express the statement as an equation. Use the given in-
formation to find the constant of proportionality.

17. y is directly proportional to x. If x � 6, then y � 42.

18. z varies inversely as t. If t � 3, then z � 5.

19. R is inversely proportional to s. If s � 4, then R � 3.

20. P is directly proportional to T. If T � 300, then P � 20.

21. M varies directly as x and inversely as y. If x � 2 and y � 6,
then M � 5.

22. S varies jointly as p and q. If p � 4 and q � 5, then S � 180.

23. W is inversely proportional to the square of r. If r � 6, then 
W � 10.

24. t is jointly proportional to x and y, and inversely proportional 
to r. If x � 2, y � 3, and r � 12, then t � 25.

25. C is jointly proportional to l, „, and h. If l � „ � h � 2, then
C � 128.

26. H is jointly proportional to the squares of l and „. If l � 2 and
, then H � 36.

27. s is inversely proportional to the square root of t. If s � 100,
then t � 25.

28. M is jointly proportional to a, b, and c and inversely propor-
tional to d. If a and d have the same value and if b and c are
both 2, then M � 128.

„ � 1
3

3 . 8  E X E R C I S E S
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36. Power Needed to Propel a Boat The power P (measured
in horsepower, hp) needed to propel a boat is directly propor-
tional to the cube of the speed s.
(a) Write an equation that expresses this variation.
(b) Find the constant of proportionality for a boat that needs

an 80-hp engine to propel the boat at 10 knots.
(c) How much power is needed to drive this boat at 15 knots?

37. Stopping Distance The stopping distance D of a car 
after the brakes have been applied varies directly as the square
of the speed s. A certain car traveling at 50 mi/h can stop in
240 ft. What is the maximum speed it can be traveling if it
needs to stop in 160 ft?

38. Aerodynamic Lift The lift L on an airplane wing at takeoff
varies jointly as the square of the speed s of the plane and the
area A of its wings. A plane with a wing area of 500 ft2

traveling at 50 mi/h experiences a lift of 1700 lb. How much
lift would a plane with a wing area of 600 ft2 traveling at 
40 mi/h experience?

39. Drag Force on a Boat The drag force F on a boat is 
jointly proportional to the wetted surface area A on the hull 
and the square of the speed s of the boat. A boat experiences a
drag force of 220 lb when traveling at 5 mi/h with a wetted 
surface area of 40 ft2. How fast must a boat be traveling if it
has 28 ft2 of wetted surface area and is experiencing a drag
force of 175 lb?

40. Kepler’s Third Law Kepler’s Third Law of planetary mo-
tion states that the square of the period T of a planet (the time
it takes for the planet to make a complete revolution about the
sun) is directly proportional to the cube of its average distance
d from the sun.
(a) Express Kepler’s Third Law as an equation.
(b) Find the constant of proportionality by using the fact that

for our planet the period is about 365 days and the aver-
age distance is about 93 million miles.

(c) The planet Neptune is about 2.79 � 109 mi from the sun.
Find the period of Neptune.

Lift

29–32 ■ A statement describing the relationship between the vari-
ables x, y, and z is given. (a) Express the statement as an equation.
(b) If x is tripled and y is doubled, by what factor does z change?
(See Example 3.)

29. z varies directly as the cube of x and inversely as the square 
of y.  

30. z is directly proportional to the square of x and inversely pro-
portional to the fourth power of y. 

31. z is jointly proportional to the cube of x and the fifth power 
of y.  

32. z is inversely proportional to the square of x and the cube of y.

A P P L I C A T I O N S
33. Hooke’s Law Hooke’s Law states that the force needed to

keep a spring stretched x units beyond its natural length is 
directly proportional to x. Here the constant of proportionality
is called the spring constant.
(a) Write Hooke’s Law as an equation.
(b) If a spring has a natural length of 10 cm and a force of 

40 N is required to maintain the spring stretched to a
length of 15 cm, find the spring constant.

(c) What force is needed to keep the spring stretched to a
length of 14 cm?

34. Printing Costs The cost C of printing a magazine is jointly
proportional to the number of pages p in the magazine and the
number of magazines printed m.
(a) Write an equation that expresses this joint variation.
(b) Find the constant of proportionality if the printing cost is

$60,000 for 4000 copies of a 120-page magazine.
(c) How much would the printing cost be for 5000 copies of

a 92-page magazine?

35. Power from a Windmill The power P that can be obtained
from a windmill is directly proportional to the cube of the
wind speed s.
(a) Write an equation that expresses this variation.
(b) Find the constant of proportionality for a windmill that

produces 96 watts of power when the wind is blowing at
20 mi/h.

(c) How much power will this windmill produce if the wind
speed increases to 30 mi/h?

5 cm
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45. Electrical Resistance The resistance R of a wire varies 
directly as its length L and inversely as the square of its 
diameter d.
(a) Write an equation that expresses this joint variation.
(b) Find the constant of proportionality if a wire 1.2 m 

long and 0.005 m in diameter has a resistance of 
140 ohms.

(c) Find the resistance of a wire made of the same material
that is 3 m long and has a diameter of 0.008 m.

(d) If the diameter is doubled and the length is tripled, by
what factor is the resistance changed?

46. Growing Cabbages In the short growing season of the
Canadian arctic territory of Nunavut, some gardeners find it
possible to grow gigantic cabbages in the midnight sun. 
Assume that the final size of a cabbage is proportional to 
the amount of nutrients it receives and inversely proportional 
to the number of other cabbages surrounding it. A cabbage
that received 20 oz of nutrients and had 12 other cabbages
around it grew to 30 lb. What size would it grow to if it 
received 10 oz of nutrients and had only 5 cabbage 
“neighbors”?

47. Radiation Energy The total radiation energy E emitted by
a heated surface per unit area varies as the fourth power of its
absolute temperature T. The temperature is 6000 K at the 
surface of the sun and 300 K at the surface of the earth.
(a) How many times more radiation energy per unit area is

produced by the sun than by the earth?
(b) The radius of the earth is 3960 mi and the radius of the

sun is 435,000 mi. How many times more total radiation
does the sun emit than the earth?

48. Value of a Lot The value of a building lot on Galiano Island
is jointly proportional to its area and the quantity of water pro-
duced by a well on the property. A 200 ft by 300 ft lot has a well
producing 10 gallons of water per minute, and is valued at
$48,000. What is the value of a 400 ft by 400 ft lot if the well on
the lot produces 4 gallons of water per minute?

49. Law of the Pendulum The period of a pendulum (the time
elapsed during one complete swing of the pendulum) varies di-
rectly with the square root of the length of the pendulum.
(a) Express this relationship by writing an equation.
(b) To double the period, how would we have to change the

length l?

50. Heat of a Campfire The heat experienced by a hiker at a
campfire is proportional to the amount of wood on the fire and
inversely proportional to the cube of his distance from the fire.
If the hiker is 20 ft from the fire and someone doubles the

l

41. Ideal Gas Law The pressure P of a sample of gas is directly
proportional to the temperature T and inversely proportional to
the volume V.
(a) Write an equation that expresses this variation.
(b) Find the constant of proportionality if 100 L of gas exerts

a pressure of 33.2 kPa at a temperature of 400 K (absolute
temperature measured on the Kelvin scale).

(c) If the temperature is increased to 500 K and the volume is
decreased to 80 L, what is the pressure of the gas?

42. Skidding in a Curve A car is traveling on a curve that
forms a circular arc. The force F needed to keep the car from
skidding is jointly proportional to the weight „ of the car and
the square of its speed s, and is inversely proportional to the
radius r of the curve.
(a) Write an equation that expresses this variation.
(b) A car weighing 1600 lb travels around a curve at 

60 mi/h. The next car to round this curve weighs 2500 lb
and requires the same force as the first car to keep from
skidding. How fast is the second car traveling?

43. Loudness of Sound The loudness L of a sound (measured
in decibels, dB) is inversely proportional to the square of the
distance d from the source of the sound.
(a) Write an equation that expresses this variation.
(b) Find the constant of proportionality if a person 10 ft from

a lawn mower experiences a sound level of 70 dB.
(c) If the distance in part (b) is doubled, by what factor is the

loudness changed?
(d) If the distance in part (b) is cut in half, by what factor is

the loudness changed?

44. A Jet of Water The power P of a jet of water is jointly pro-
portional to the cross-sectional area A of the jet and to the
cube of the velocity √.  
(a) Write an equation that expresses this variation.
(b) If the velocity is doubled and the cross-sectional area is

halved, by what factor is the power changed?
(c) If the velocity is halved and the cross-sectional area is

tripled, by what factor is the power changed?
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(b) Compare the rate of spread of this infection when 
10 people are infected to the rate of spread when 1000
people are infected. Which rate is larger? By what factor?

(c) Calculate the rate of spread when the entire population is
infected. Why does this answer make intuitive sense?

53–54 ■ Solve the problem using the relationship between bright-
ness B, luminosity L, and distance d derived in Example 3. The
proportionality constant is .

53. Brightness of a Star The luminosity of a star is
, and its distance to the earth is
. How bright does the star appear on the

earth?

54. Distance to a Star The luminosity of a star is
and its brightness as viewed from the earth

is W/m2. Find the distance of the star from
the earth.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G

55. Is Proportionality Everything? A great many laws of
physics and chemistry are expressible as proportionalities.
Give at least one example of a function that occurs in the 
sciences that is not a proportionality.

B � 8.2 � 10�16
L � 5.8 � 1030 W

d � 2.4 � 1019 m
L � 2.5 � 1026 W

k � 0.080

amount of wood burning, how far from the fire would he have
to be so that he feels the same heat as before?

51. Frequency of Vibration The frequency f of vibration of 
a violin string is inversely proportional to its length L. The 
constant of proportionality k is positive and depends on the 
tension and density of the string.
(a) Write an equation that represents this variation.
(b) What effect does doubling the length of the string have on

the frequency of its vibration?

52. Spread of a Disease The rate r at which a disease spreads in
a population of size P is jointly proportional to the number x of
infected people and the number P � x who are not infected. An
infection erupts in a small town that has population P � 5000.
(a) Write an equation that expresses r as a function of x.

x
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Quadratic Functions (pp. 258–261)

A quadratic function is a function of the form 

It can be expressed in the standard form

by completing the square.

The graph of a quadratic function in standard form is a parabola
with vertex

If then the quadratic function f has the minimum value k
at 

If then the quadratic function f has the maximum value k
at 

Polynomial Functions (p. 266)

A polynomial function of degree n is a function P of the form

The numbers ai are the coefficients of the polynomial; an is the
leading coefficient, and a0 is the constant coefficient (or con-
stant term).

The graph of a polynomial function is a smooth, continuous curve.

Real Zeros of Polynomials (p. 271)

A zero of a polynomial P is a number c for which 
The following are equivalent ways of describing real zeros of 
polynomials:

P 1c 2 � 0.

P 1x 2 � an x n � an�1x
n�1 � p � a1x � a0

x � h � �b/ 12a 2 .
a 	 0,

x � h � �b/ 12a 2 .
a � 0,

1h, k 2 .

f 1x 2 � a1x � h 2 2 � k

f 1x 2 � ax2 � bx � c

1. c is a real zero of P.

2. is a solution of the equation 

3. is a factor of 

4. c is an x-intercept of the graph of P.

Multiplicity of a Zero (pp. 274–275)

A zero c of a polynomial P has multiplicity m if m is the highest
power for which is a factor of 

Local Maxima and Minima (pp. 275–276)

A polynomial function P of degree n has or fewer local
extrema (i.e., local maxima and minima).

Division of Polynomials (pp. 280–281)

If P and D are any polynomials (with then we can di-
vide P by D using either long division or (if D is linear) synthetic
division. The result of the division can be expressed in one of the
following equivalent forms:

In this division, P is the dividend, D is the divisor, Q is the quo-
tient, and R is the remainder. When the division is continued to
its completion, the degree of R will be less than the degree of D
(or R1x 2 � 0 2 .

 
P 1x 2

D 1x 2
� Q 1x 2 �

R 1x 2

D 1x 2

 P 1x 2 � D 1x 2 # Q 1x 2 � R 1x 2

D1x 2 � 0 2 ,

n � 1

P1x 2 .1x � c 2m

P1x 2 .x � c

P1x 2 � 0.x � c
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The Fundamental Theorem of Algebra, Complete Factorization,
and the Zeros Theorem (pp. 303–304)

Every polynomial P of degree n with complex coefficients has ex-
actly n complex zeros, provided that each zero of multiplicity m is
counted m times. P factors into n linear factors as follows:

where a is the leading coefficient of P and , , . . . , are the 
zeros of P.

Conjugate Zeros Theorem (p. 308)

If the polynomial P has real coefficients and if is a zero of
P, then its complex conjugate is also a zero of P.

Linear and Quadratic Factors Theorem (p. 309)

Every polynomial with real coefficients can be factored into linear
and irreducible quadratic factors with real coefficients.

Rational Functions (p. 311)

A rational function r is a quotient of polynomial functions:

We generally assume that the polynomials P and Q have no factors
in common.

Asymptotes (pp. 312–313)

The line is a vertical asymptote of the function if

or as or

The line is a horizontal asymptote of the function 
if

as or

Asymptotes of Rational Functions (pp. 313–316)

Let be a rational function.

The vertical asymptotes of r are the lines where a is a 
zero of Q.

If the degree of P is less than the degree of Q, then the horizontal
asymptote of r is the line .

If the degrees of P and Q are the same, then the horizontal asymp-
tote of r is the line , where

If the degree of P is greater than the degree of Q, then r has no 
horizontal asymptote.

Variation (pp. 326–328)

If y is directly proportional to x, then

If y is inversely proportional to x, then

y �
k

x

y � kx

b �
leading coefficient of P

leading coefficient of Q

y � b

y � 0

x � a

r1x 2 �
P1x 2

Q1x 2

x � �qx � qy � b

y � f1x 2
y � b

x � a�x � a�y � �qy � q

y � f1x 2x � a

r1x 2 �
P1x 2

Q1x 2

a � bi
a � bi

cnc1c1

P1x 2 � a1x � c1 2 1x � c2 2 # # # 1x � cn 2

Remainder Theorem (p. 283)

When P(x) is divided by the linear divisor the 
remainder is the constant P(c). So one way to evaluate a polyno-
mial function P at c is to use synthetic division to divide P(x) by

and observe the value of the remainder.

Rational Zeros of Polynomials (pp. 287–288)

If the polynomial P given by

has integer coefficients, then all the rational zeros of P have 
the form

where p is a divisor of the constant term a0 and q is a divisor of
the leading coefficient an.

So to find all the rational zeros of a polynomial, we list all the pos-
sible rational zeros given by this principle and then check to see
which actually are zeros by using synthetic division.

Descartes’ Rule of Signs (p. 290)

Let P be a polynomial with real coefficients. Then:

The number of positive real zeros of P either is the number of
changes of sign in the coefficients of or is less than that by 
an even number.

The number of negative real zeros of P either is the number of
changes of sign in the coefficients of or is less than that 
by an even number.

Upper and Lower Bounds Theorem (p. 291)

Suppose we divide the polynomial P by the linear expression
and arrive at the result

If and the coefficients of Q, followed by r, are all nonnega-
tive, then c is an upper bound for the zeros of P.

If and the coefficients of Q, followed by r (including zero 
coefficients), are alternately nonnegative and nonpositive, then c is
a lower bound for the zeros of P.

Complex Numbers (pp. 298–300)

A complex number is a number of the form a � bi, where 

.

The complex conjugate of a � bi is

To multiply complex numbers, treat them as binomials and use
to simplify the result.

To divide complex numbers, multiply numerator and denominator
by the complex conjugate of the denominator:

a � bi

c � di
� a

a � bi

c � di
b # a c � di

c � di
b �

1a � bi 2 1c � di 2

c 
2 � d 

2

i 
2 � �1

a � bi � a � bi

i � 2�1

c 	 0

c � 0

P1x 2 � 1x � c 2 # Q1x 2 � r

x � c

P1�x 2

P1x 2

x � ;  

p

q

P 1x 2 � an x n � an�1x
n�1 � p � a1x � a0

x � c

D1x 2 � x � c,
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■ L E A R N I N G  O B J E C T I V E S  S U M M A R Y

Section After completing this chapter, you should be able to . . . Review Exercises

3.1 ■ Express quadratic functions in standard form 1–4
■ Graph quadratic functions using the standard form 1–4
■ Find maximum or minimum values of quadratic functions 5–6
■ Model with quadratic functions 7–8

3.2 ■ Graph basic polynomial functions 9–14
■ Describe the end behavior of a polynomial function 15–24, 43–50
■ Graph a polynomial function using its zeros 15–24, 43–50
■ Use multiplicity to help graph a polynomial function 17–20, 43–50
■ Find local maxima and minima of polynomial functions 21–26

3.3 ■ Use long division to divide polynomials 33–34
■ Use synthetic division to divide polynomials 27–32
■ Use the Remainder Theorem to find values of a polynomial 35–36, 39–40
■ Use the Factor Theorem to factor a polynomial 37–38
■ Find a polynomial with specified zeros 61–64

3.4 ■ Use the Rational Zeros Theorem to find the rational zeroes of polynomials 41–42, 65–76
■ Use Descartes’ Rule of Signs to determine the possible number of positive 41–42, 65–76

and negative zeros of a polynomial  
■ Use the Upper and Lower Bounds Theorem to find upper and lower bounds 63–64, 65–76

for the zeros of a polynomial
■ Use algebra and graphing devices to solve polynomial equations 77–80

3.5 ■ Add and subtract complex numbers 51–52
■ Multiply and divide complex numbers 53–58
■ Work with square roots of negative numbers 59–60
■ Find complex solutions of quadratic equations 67–68, 69, 72–73, 75–76

3.6 ■ State the Fundamental Theorem of Algebra
■ Factor a polynomial completely (into linear factors) over the complex numbers 43–50, 65–76
■ Use the Conjugate Zeros Theorem to find polynomials with specified zeros 62–63
■ Factor a polynomial completely (into linear and quadratic factors) over the 81–82

real numbers

3.7 ■ Find vertical asymptotes of rational functions 83–92
■ Find horizontal asymptotes of rational functions 83–92
■ Graph transformations of the rational function 83–86
■ Use asymptotes to graph rational functions 83–92
■ Find slant asymptote of rational functions 93–96

3.8 ■ Find functions that model direct variation 98
■ Find functions that model inverse variation 99, 101
■ Find functions that model combined variation 100, 102–103

y � 1/x

1–4 ■ A quadratic function is given. (a) Express the function in
standard form. (b) Graph the function.

1. 2.

3. 4. g1x 2 � 6x � 3x2g1x 2 � 1 � 8x � x2

f 1x 2 � �2x2 � 12x � 12f 1x 2 � x2 � 4x � 1

5–6 ■ Find the maximum or minimum value of the quadratic 
function.

5.

6. g1x 2 � 1 � x � x2

f 1x 2 � 2x2 � 4x � 5

■ E X E R C I S E S
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26. A small shelter for delicate plants is to be constructed of thin
plastic material. It will have square ends and a rectangular top
and back, with an open bottom and front, as shown in the
figure. The total area of the four plastic sides is to be 1200 in2.
(a) Express the volume V of the shelter as a function of the

depth x.
(b) Draw a graph of V.
(c) What dimensions will maximize the volume of the shelter?

27–34 ■ Find the quotient and remainder.

27. 28.

29. 30.

31. 32.

33. 34.

35–36 ■ Find the indicated value of the polynomial using the 
Remainder Theorem.

35. ; find 

36. ; find 

37. Show that is a zero of the polynomial

38. Use the Factor Theorem to show that x � 4 is a factor of the
polynomial

39. What is the remainder when the polynomial

is divided by x � 1?

40. What is the remainder when x101 � x4 � 2 is divided by x � 1?

41–42 ■ A polynomial P is given. (a) List all possible rational 
zeros (without testing to see whether they actually are zeros). 
(b) Determine the possible number of positive and negative real
zeros using Descartes’ Rule of Signs.

41.

42.

43–50 ■ A polynomial P is given. (a) Find all real zeros of P, and
state their multiplicities. (b) Sketch the graph of P.

43. 44.

45. 46. P1x 2 � x4 � 5x2 � 4P1x 2 � x4 � x3 � 2x2

P1x 2 � x3 � 3x2 � 4xP1x 2 � x3 � 16x

P1x 2 � 6x4 � 3x3 � x2 � 3x � 4

P1x 2 � x5 � 6x3 � x2 � 2x � 18

P1x 2 � x500 � 6x201 � x2 � 2x � 4

P1x 2 � x5 � 4x4 � 7x3 � 23x2 � 23x � 12

P1x 2 � 2x4 � x3 � 5x2 � 10x � 4

1
2

Q1�3 2Q1x 2 � x4 � 4x3 � 7x2 � 10x � 15

P15 2P1x 2 � 2x3 � 9x2 � 7x � 13

x 4 � 2x 2 � 7x

x 2 � x � 3

2x 3 � x 2 � 8x � 15

x 2 � 2x � 1

2x 4 � 3x 3 � 12

x � 4

x4 � 8x2 � 2x � 7

x � 5

x 3 � 2x 2 � 10

x � 3

x3 � x2 � 11x � 2

x � 4

x2 � x � 12

x � 3

x2 � 3x � 5

x � 2

x

y

x

7. A stone is thrown upward from the top of a building. Its height
(in feet) above the ground after t seconds is given by the func-
tion . What maximum height does
the stone reach?

8. The profit P (in dollars) generated by selling x units of a cer-
tain commodity is given by the function

What is the maximum profit, and how many units must be sold
to generate it?

9–14 ■ Graph the polynomial by transforming an appropriate
graph of the form y � xn. Show clearly all x- and y-intercepts.

9. 10.

11. 12.

13. 14.

15–18 ■ A polynomial function P is given. (a) Describe the end
behavior of P. (b) Sketch a graph of P. Make sure your graph
shows all intercepts.

15.

16.

17.

18.

19–20 ■ A polynomial function P is given. (a) Determine the
multiplicity of each zero of P. (b) Sketch a graph of P.

19. 20.

21–24 ■ Use a graphing device to graph the polynomial. Find 
the x- and y-intercepts and the coordinates of all local extrema,
correct to the nearest decimal. Describe the end behavior of the
polynomial.

21. 22.

23.

24.

25. The strength S of a wooden beam of width x and depth y is
given by the formula S � 13.8xy2. A beam is to be cut from a
log of diameter 10 in., as shown in the figure.
(a) Express the strength S of this beam as a function of x only.
(b) What is the domain of the function S?
(c) Draw a graph of S.
(d) What width will make the beam the strongest?

P1x 2 � x5 � x4 � 7x3 � x2 � 6x � 3

P1x 2 � 3x4 � 4x3 � 10x � 1

P1x 2 � �2x3 � 6x2 � 2P1x 2 � x3 � 4x � 1

P1x 2 � x1x � 1 2 31x � 1 2 2P1x 2 � x31x � 2 2 2

P1x 2 � x 21x 2 � 4 2 1x 2 � 9 2

P1x 2 � �1x � 1 2 21x � 4 2 1x � 2 2 2
P1x 2 � �1x � 5 2 1x 2 � 9 2 1x � 2 2

P1x 2 � 1x � 3 2 1x � 1 2 1x � 5 2

P1x 2 � �31x � 2 2 5 � 96P1x 2 � 32 � 1x � 1 2 5
P1x 2 � 81 � 1x � 3 2 4P1x 2 � 21x � 1 2 4 � 32

P1x 2 � 2x3 � 16P1x 2 � �x3 � 64

P1x 2 � �1500 � 12x � 0.004x2

h1t 2 � �16t2 � 48t � 32
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C H A P T E R  3 | Review 337

83–86 ■ A rational function is given. (a) Find all vertical and hor-
izontal asymptotes, all x- and y-intercepts, and state the domain
and range. (b) Use transformations of the graph of to
sketch a graph of the rational function.

83. 84.

85. 86.

87–92 ■ Graph the rational function. Show clearly all x- and 
y-intercepts and asymptotes.

87. 88.

89. 90.

91. 92.

93–96 ■ Use a graphing device to analyze the graph of the 
rational function. Find all x- and y-intercepts and all vertical,
horizontal, and slant asymptotes. If the function has no horizontal
or slant asymptote, find a polynomial that has the same end behav-
ior as the rational function.

93. 94.

95. 96.

97. Find the coordinates of all points of intersection of the 
graphs of

98. Suppose that M varies directly as z and that M � 120 when 
z � 15. Write an equation that expresses this variation.

99. Suppose that z is inversely proportional to y and that z � 12
when y � 16. Write an equation that expresses z in terms of y.

100. The intensity of illumination I from a light varies inversely
as the square of the distance d from the light.
(a) Write this statement as an equation.
(b) Determine the constant of proportionality if it is known

that a lamp has an intensity of 1000 candles at a distance
of 8 m.

(c) What is the intensity of this lamp at a distance of 20 m?

101. The frequency of a vibrating string under constant tension 
is inversely proportional to its length. If a violin string 
12 inches long vibrates 440 times per second, to what length
must it be shortened to vibrate 660 times per second?

102. The terminal velocity of a parachutist is directly proportional
to the square root of his weight. A 160-lb parachutist attains
a terminal velocity of 9 mi/h. What is the terminal velocity
for a parachutist weighing 240 lb?

103. The maximum range of a projectile is directly proportional to
the square of its velocity. A baseball pitcher throws a ball at
60 mi/h, with a maximum range of 242 ft. What is his maxi-
mum range if he throws the ball at 70 mi/h?

y � x4 � x2 � 24x  and  y � 6x3 � 20

r 1x 2 �
2x3 � x2

x � 1
r 1x 2 �

x3 � 8

x2 � x � 2

r 1x 2 �
2x � 7

x2 � 9
r 1x 2 �

x � 3

2x � 6

r 1x 2 �
x3 � 27

x � 4
r 1x 2 �

x 2 � 9

2x 2 � 1

r 1x 2 �
2x 2 � 6x � 7

x � 4
r 1x 2 �

x � 2

x 2 � 2x � 8

r 1x 2 �
1

1x � 2 2 2
r 1x 2 �

3x � 12

x � 1

r1x 2 �
2x � 5

x � 2
r1x 2 �

3x � 4

x � 1

r1x 2 �
�1

x � 5
r1x 2 �

3

x � 4

y � 1/x

47.

48.

49.

50.

51–60 ■ Evaluate the expression and write in the form a � bi.

51. 52.

53. 54.

55. 56.

57. i 25 58.

59. 60.

61. Find a polynomial of degree 3 with constant coefficient 12 and
zeros , 2, and 3.

62. Find a polynomial of degree 4 that has integer coefficients and
zeros 3i and 4, with 4 a double zero.

63. Does there exist a polynomial of degree 4 with integer
coefficients that has zeros i, 2i, 3i, and 4i? If so, find it. If not,
explain why.

64. Prove that the equation 3x4 � 5x2 � 2 � 0 has no real 
root.

65–76 ■ Find all rational, irrational, and complex zeros (and state
their multiplicities). Use Descartes’ Rule of Signs, the Upper and
Lower Bounds Theorem, the Quadratic Formula, or other factoring
techniques to help you whenever possible.

65. 66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77–80 ■ Use a graphing device to find all real solutions of the
equation.

77. 2x2 � 5x � 3

78. x3 � x2 � 14x � 24 � 0

79. x4 � 3x3 � 3x2 � 9x � 2 � 0

80. x5 � x � 3

81–82 ■ A polynomial function P is given. Find all the real zeros
of P, and factor P completely into linear and irreducible quadratic
factors with real coefficients.

81. 82. P1x 2 � x4 � 3x2 � 4P1x 2 � x3 � 2x � 4

P1x 2 � x4 � 15x2 � 54

P1x 2 � 6x4 � 18x3 � 6x2 � 30x � 36

P1x 2 � 18x3 � 3x2 � 4x � 1

P1x 2 � x6 � 64

P1x 2 � x4 � 81

P1x 2 � x5 � 3x4 � x3 � 11x2 � 12x � 4

P1x 2 � x4 � 7x3 � 9x2 � 17x � 20

P1x 2 � x4 � 6x3 � 17x2 � 28x � 20

P1x 2 � 2x3 � 5x2 � 6x � 9

P1x 2 � x3 � 3x2 � 13x � 15

P1x 2 � x 3 � 8P1x 2 � x 3 � x 2 � x � 1

� 
1
2

1�10 # 1�4011 � 1�1 2 11 � 1�1 2

11 � i 2 3

8 � 3i

4 � 3i

4 � 2i

2 � i

4i12 � 1
2i 212 � i 2 13 � 2i 2

13 � 6i 2 � 16 � 4i 212 � 3i 2 � 11 � 4i 2

P1x 2 � 9x5 � 21x4 � 10x3 � 6x2 � 3x � 1

P1x 2 � 2x4 � x3 � 2x2 � 3x � 2

P1x 2 � x4 � 2x3 � 2x2 � 8x � 8

P1x 2 � x4 � 2x3 � 7x2 � 8x � 12
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1. Express the quadratic function in standard form, and sketch its graph.

2. Find the maximum or minimum value of the quadratic function .

3. A cannonball fired out to sea from a shore battery follows a parabolic trajectory given by the
graph of the equation

where h 1x2 is the height of the cannonball above the water when it has traveled a horizontal
distance of x feet.

(a) What is the maximum height that the cannonball reaches?

(b) How far does the cannonball travel horizontally before splashing into the water?

4. Graph the polynomial , showing clearly all x- and y-intercepts.

5. (a) Use synthetic division to find the quotient and remainder when x4 � 4x2 � 2x � 5 is 
divided by x � 2.

(b) Use long division to find the quotient and remainder when 2x5 � 4x4 � x3 � x2 � 7 is 
divided by 2x2 � 1.

6. Let .

(a) List all possible rational zeros of P.

(b) Find the complete factorization of P.

(c) Find the zeros of P.

(d) Sketch the graph of P.

7. Perform the indicated operations, and write the result in the form a � bi.
(a) (b)

(c) (d)

(e) i 48 (f)

8. Find all real and complex zeros of .

9. Find the complete factorization of .

10. Find a fourth-degree polynomial with integer coefficients that has zeros 3i and �1, with �1 
a zero of multiplicity 2.

11. Let .

(a) Use Descartes’ Rule of Signs to determine how many positive and how many negative
real zeros P can have.

(b) Show that 4 is an upper bound and �1 is a lower bound for the real zeros of P.

(c) Draw a graph of P, and use it to estimate the real zeros of P, correct to two decimal places.

(d) Find the coordinates of all local extrema of P, correct to two decimals.

12. Consider the following rational functions:

(a) Which of these rational functions has a horizontal asymptote?

(b) Which of these functions has a slant asymptote?

(c) Which of these functions has no vertical asymptote?

(d) Graph , showing clearly any asymptotes and x- and y-intercepts the function 
may have.

(e) Use long division to find a polynomial P that has the same end behavior as t. Graph both
P and t on the same screen to verify that they have the same end behavior.

y � u1x 2

u1x 2 �
x2 � x � 6

x2 � 25
t1x 2 �

x3 � 9x

x � 2
s1x 2 �

x3 � 27

x2 � 4
r1x 2 �

2x � 1

x2 � x � 2

P1x 2 � 2x4 � 7x3 � x2 � 18x � 3

P1x 2 � x4 � 2x3 � 5x2 � 8x � 4

P1x 2 � x3 � x2 � 4x � 6

112 � 1�2 2 118 � 1�2 2

3 � 2i

4 � 3i
13 � 2i 2 14 � 3i 2

13 � 2i 2 � 14 � 3i 213 � 2i 2 � 14 � 3i 2

P1x 2 � 2x3 � 5x2 � 4x � 3

P1x 2 � �1x � 2 2 3 � 27

h1x 2 � 10x � 0.01x2

g1x 2 � 2x2 � 6x � 3

f 1x 2 � x2 � x � 6
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13. The maximum weight M that can be supported by a beam is jointly proportional to its width
„ and the square of its height h, and inversely proportional to its length L.

(a) Write an equation that expresses this proportionality.

(b) Determine the constant of proportionality if a beam 4 in. wide, 6 in. high, and 12 ft long
can support a weight of 4800 lb.

(c) If a 10-ft beam made of the same material is 3 in. wide and 10 in. high, what is the max-
imum weight it can support?

C H A P T E R  3 | Test 339
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We have learned how to fit a line to data (see Focus on Modeling, page 162). The line
models the increasing or decreasing trend in the data. If the data exhibit more variability,
such as an increase followed by a decrease, then to model the data, we need to use a curve
rather than a line. Figure 1 shows a scatter plot with three possible models that appear to
fit the data. Which model fits the data best?

▼ Polynomial Functions as Models
Polynomial functions are ideal for modeling data for which the scatter plot has peaks or
valleys (that is, local maxima or minima). For example, if the data have a single peak as
in Figure 2(a), then it may be appropriate to use a quadratic polynomial to model the data.
The more peaks or valleys the data exhibit, the higher the degree of the polynomial needed
to model the data (see Figure 2).

Graphing calculators are programmed to find the polynomial of best fit of a specified
degree. As is the case for lines (see page 163), a polynomial of a given degree fits the data
best if the sum of the squares of the distances between the graph of the polynomial and
the data points is minimized.

E X A M P L E  1 Rainfall and Crop Yield

Rain is essential for crops to grow, but too much rain can diminish crop yields. The data
give rainfall and cotton yield per acre for several seasons in a certain county.

(a) Make a scatter plot of the data. What degree polynomial seems appropriate for
modeling the data?

(b) Use a graphing calculator to find the polynomial of best fit. Graph the polynomial
on the scatter plot.

(c) Use the model that you found to estimate the yield if there are 25 in. of rainfall.

y

x

y

x
Linear model Quadratic model Cubic model

y

x

340
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(a) (b) (c)

y

x

y

x

y

x
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Fitting Polynomial Curves to Data 341

S O L U T I O N

(a) The scatter plot is shown in Figure 3. The data appear to have a peak, so it is ap-
propriate to model the data by a quadratic polynomial (degree 2).

(b) Using a graphing calculator, we find that the quadratic polynomial of best fit is

The calculator output and the scatter plot, together with the graph of the quadratic
model, are shown in Figure 4.

(c) Using the model with x � 25, we get

We estimate the yield to be about 5130 kg/acre. ■

y � �12.6125 2 2 � 651.5125 2 � 3283.2 � 5129.3

F I G U R E  4

6000

1500
4010

(a) (b)

y � �12.6x2 � 651.5x � 3283.2

F I G U R E  3 Scatter plot of yield
vs. rainfall data

6000

1500
4010

Season Rainfall (in.) Yield (kg/acre)

1 23.3 5311
2 20.1 4382
3 18.1 3950
4 12.5 3137
5 30.9 5113
6 33.6 4814
7 35.8 3540
8 15.5 3850
9 27.6 5071

10 34.5 3881
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E X A M P L E  2 Length-at-Age Data for Fish

Otoliths (“earstones”) are tiny structures that are found in the heads of fish. Microscopic
growth rings on the otoliths, not unlike growth rings on a tree, record the age of a fish.
The table gives the lengths of rock bass caught at different ages, as determined by the
otoliths. Scientists have proposed a cubic polynomial to model this data.

(a) Use a graphing calculator to find the cubic polynomial of best fit for the data.

(b) Make a scatter plot of the data, and graph the polynomial from part (a).

(c) A fisherman catches a rock bass 20 in. long. Use the model to estimate its age.

S O L U T I O N

(a) Using a graphing calculator (see Figure 5(a)), we find the cubic polynomial of 
best fit:

(b) The scatter plot of the data and the cubic polynomial are graphed in Figure 5(b).

(c) Moving the cursor along the graph of the polynomial, we find that y � 20 when 
x � 10.8. Thus the fish is about 11 years old. ■

P R O B L E M S
1. Tire Inflation and Treadwear Car tires need to be inflated properly. Overinflation or un-

derinflation can cause premature treadwear. The data and scatter plot on the next page show
tire life for different inflation values for a certain type of tire.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c) Use your result from part (b) to estimate the pressure that gives the longest tire life.

30

0 15

(a) (b)

y � 0.0155x3 � 0.372x2 � 3.95x � 1.21

342 Focus on Modeling

Cod Redfish Hake

Otoliths for several fish species

Age (yr) Length (in.) Age (yr) Length (in.)

1 4.8 9 18.2
2 8.8 9 17.1
2 8.0 10 18.8
3 7.9 10 19.5
4 11.9 11 18.9
5 14.4 12 21.7
6 14.1 12 21.9
6 15.8 13 23.8
7 15.6 14 26.9
8 17.8 14 25.1

F I G U R E  5
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Fitting Polynomial Curves to Data 343

2. Too Many Corn Plants per Acre? The more corn a farmer plants per acre, the greater is
the yield the farmer can expect, but only up to a point. Too many plants per acre can cause
overcrowding and decrease yields. The data give crop yields per acre for various densities of
corn plantings, as found by researchers at a university test farm.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c) Use your result from part (b) to estimate the yield for 37,000 plants per acre.

3. How Fast Can You List Your Favorite Things? If you are asked to make a list of objects
in a certain category, how fast you can list them follows a predictable pattern. For example,
if you try to name as many vegetables as you can, you’ll probably think of several right
away—for example, carrots, peas, beans, corn, and so on. Then after a pause you might think
of ones you eat less frequently—perhaps zucchini, eggplant, and asparagus. Finally, a few
more exotic vegetables might come to mind—artichokes, jicama, bok choy, and the like. A
psychologist performs this experiment on a number of subjects. The table below gives the
average number of vegetables that the subjects named by a given number of seconds.

(a) Find the cubic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c) Use your result from part (b) to estimate the number of vegetables that subjects would
be able to name in 40 seconds.

(d) According to the model, how long (to the nearest 0.1 second) would it take a person to
name five vegetables?

y (mi)

x (lb/in2)
0

50,000

60,000

70,000

80,000

0 25 30 35 40 45 50

Pressure Tire life
(lb/in2) (mi)

26 50,000
28 66,000
31 78,000
35 81,000
38 74,000
42 70,000
45 59,000

Density Crop yield
(plants/acre) (bushels/acre)

15,000 43
20,000 98
25,000 118
30,000 140
35,000 142
40,000 122
45,000 93
50,000 67

Number of 
Seconds vegetables

1 2
2 6
5 10

10 12
15 14
20 15
25 18
30 21
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4. Clothing Sales Are Seasonal Clothing sales tend to vary by season, with more clothes
sold in spring and fall. The table gives sales figures for each month at a certain clothing
store.

(a) Find the quartic (fourth-degree) polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c) Do you think that a quartic polynomial is a good model for these data? Explain.

5. Height of a Baseball A baseball is thrown upward, and its height measured at 
0.5-second intervals using a strobe light. The resulting data are given in the table.

(a) Draw a scatter plot of the data. What degree polynomial is appropriate for modeling 
the data?

(b) Find a polynomial model that best fits the data, and graph it on the scatter plot.

(c) Find the times when the ball is 20 ft above the ground.

(d) What is the maximum height attained by the ball?

6. Torricelli’s Law Water in a tank will flow out of a small hole in the bottom faster when the
tank is nearly full than when it is nearly empty. According to Torricelli’s Law, the height 
of water remaining at time t is a quadratic function of t.

A certain tank is filled with water and allowed to drain. The height of the water is mea-
sured at different times as shown in the table.

(a) Find the quadratic polynomial that best fits the data.

(b) Draw a graph of the polynomial from part (a) together with a scatter plot of the data.

(c) Use your graph from part (b) to estimate how long it takes for the tank to drain 
completely.

h1t 2

344 Focus on Modeling

Month Sales ($)

January 8,000
February 18,000
March 22,000
April 31,000
May 29,000
June 21,000
July 22,000
August 26,000
September 38,000
October 40,000
November 27,000
December 15,000

Time (min) Height (ft)

0 5.0
4 3.1
8 1.9

12 0.8
16 0.2

Time (s) Height (ft)

0.0 4.2
0.5 26.1
1.0 40.1
1.5 46.0
2.0 43.9
2.5 33.7
3.0 15.8
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Modeling Growth and Decay In this chapter we study exponential functions.
These are functions like , where the independent variable is in the
exponent. Exponential functions are used in modeling many real-world
phenomena, such as the growth of a population, the growth of an investment
that earns compound interest, or the decay of a radioactive substance. Once an
exponential model has been obtained, we can use the model to predict the size
of a population, calculate the amount of an investment, or find the amount of a
radioactive substance that remains. To find out when a population will grow to
a certain number, when an investment will reach a certain amount, or when a
radioactive substance will be reduced to a certain level, we use the inverse
functions of exponential functions, called logarithmic functions. With expo-
nential models and logarithmic functions we can answer questions such as
these: When will my city be as crowded as the New York City street pictured
here?  When will my bank account have a million dollars? When will radiation
from a radioactive spill decay to a safe level?

f1x 2 � 2x

345
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P
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4

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

4.1 Exponential Functions

4.2 The Natural Exponential
Function

4.3 Logarithmic Functions

4.4 Laws of Logarithms

4.5 Exponential and Logarithmic
Equations

4.6 Modeling with Exponential
and Logarithmic Functions

FOCUS ON MODELING

Fitting Exponential and Power
Curves to Data
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In this chapter we study a new class of functions called exponential functions. For example,

is an exponential function (with base 2). Notice how quickly the values of this function
increase:

Compare this with the function , where . The point is that
when the variable is in the exponent, even a small change in the variable can cause a dra-
matic change in the value of the function.

▼ Exponential Functions
To study exponential functions, we must first define what we mean by the exponential ex-
pression ax when x is any real number. In Section P.4 we defined ax for a � 0 and x a ra-
tional number, but we have not yet defined irrational powers. So what is meant by or
2p? To define ax when x is irrational, we approximate x by rational numbers.

For example, since

is an irrational number, we successively approximate by the following rational powers:

Intuitively, we can see that these rational powers of a are getting closer and closer to . It
can be shown by using advanced mathematics that there is exactly one number that these
powers approach. We define to be this number.

For example, using a calculator, we find

The more decimal places of we use in our calculation, the better our approximation of .
It can be proved that the Laws of Exponents are still true when the exponents are real

numbers.

We assume that a � 1 because the function is just a constant function.
Here are some examples of exponential functions:

Base 10Base 3Base 2

f 1x 2 � 2x  g1x 2 � 3x  h1x 2 � 10 x

f1x 2 � 1x � 1

51313

 � 16.2411. . .

 513 � 51.732

a13

a13

a1.7, a1.73, a1.732, a1.7320, a1.73205, . . .

a13

13 � 1.73205. . .

513

g130 2 � 302 � 900g1x 2 � x2

 f 130 2 � 230 � 1,073,741,824

 f 110 2 � 210 � 1024

 f 13 2 � 23 � 8

f 1x 2 � 2x

346 C H A P T E R  4 | Exponential and Logarithmic Functions

4.1 EXPONENTIAL FUNCTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Evaluate exponential functions � Graph exponential functions � Calculate
compound interest

GET READY Prepare for this section by reviewing the properties of exponents in 

Sections P.3 and P.4.

EXPONENTIAL FUNCTIONS

The exponential function with base a is defined for all real numbers x by

where and .a � 1a � 0
f 1x 2 � ax

The Laws of Exponents are listed on
page 19.
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E X A M P L E  1 Evaluating Exponential Functions

Let , and evaluate the following:

(a) (b)

(c) (d)

S O L U T I O N We use a calculator to obtain the values of f.

Calculator keystrokes Output

(a)

(b)

(c)

(d)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

▼ Graphs of Exponential Functions
We first graph exponential functions by plotting points. We will see that the graphs of such
functions have an easily recognizable shape.

E X A M P L E  2 Graphing Exponential Functions by Plotting Points

Draw the graph of each function.

(a) (b)

S O L U T I O N We calculate values of and and plot points to sketch the graphs
in Figure 1.

Notice that

so we could have obtained the graph of g from the graph of f by reflecting in the y-axis.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

g1x 2 � a
1

3
b

x

�
1

3x � 3�x � f 1�x 2

g1x 2f 1x 2

g1x 2 � a
1

3
b

x

f 1x 2 � 3x

4.7288043ENTER21^3f A12 B � 312 � 4.7288

31.5442807ENTERP^3f 1p 2 � 3p � 31.544

0.4807498ENTER)3�2(_)(^3f A� 2 

3 B � 3�2/3 � 0.4807

243ENTER5^3f 15 2 � 35 � 243

f 112 2f 1p 2
f 1� 

2
3 2f 15 2

f 1x 2 � 3x
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x ff 11x22 gg 11x22

�3 27
�2 9
�1 3

0 1 1
1 3
2 9
3 27 1

 27 

1
 9 

1
 3 

1
 3 

1
 9 

1
 27 

� A 1
 3 
B
x

� 3 x

0 x

y

1

1

y=3˛y=!  @˛1
3

F I G U R E  1

Reflecting graphs is explained in 
Section 2.5.
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Figure 2 shows the graphs of the family of exponential functions for various
values of the base a. All of these graphs pass through the point because a0 � 1 for
a � 0. You can see from Figure 2 that there are two kinds of exponential functions: If
0 � a � 1, the exponential function decreases rapidly. If a � 1, the function increases
rapidly (see the margin note).

The x-axis is a horizontal asymptote for the exponential function . This is be-
cause when a � 1, we have ax � 0 as x � �q, and when 0 � a � 1, we have ax � 0
as x � q (see Figure 2). Also, ax � 0 for all , so the function has do-
main and range . These observations are summarized in the following box.

E X A M P L E  3 Identifying Graphs of Exponential Functions

Find the exponential function whose graph is given.

(a) (b)

f 1x 2 � a 
x

10, q 2�

f 1x 2 � axx � �

f 1x 2 � ax

10, 1 2
f 1x 2 � ax
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To see just how quickly in-
creases, let’s perform the following
thought experiment. Suppose we 
start with a piece of paper that is a
thousandth of an inch thick, and we
fold it in half 50 times. Each time we
fold the paper, the thickness of the 
paper stack doubles, so the thickness 
of the resulting stack would be
250/1000 inches. How thick do you
think that is? It works out to be more
than 17 million miles!

f 1x 2 � 2x

See Section 3.7, page 312, where the
“arrow notation” used here is explained.

F I G U R E  2 A family of exponential
functions 0 x

y

1

2

y=2˛

y=5˛y=10˛
y=3˛y=!  @˛1

5
y=!  @˛1

2

y=!  @˛1
3

y=!  @˛1
10

GRAPHS OF EXPONENTIAL FUNCTIONS

The exponential function

has domain and range . The line y � 0 (the x-axis) is a horizontal as-
ymptote of f. The graph of f has one of the following shapes.

Ï=a˛ for a>1 Ï=a˛ for 0<a<1

0 x

y

(0, 1)

0 x

y

(0, 1)

10, q 2�

f 1x 2 � ax  1a � 0, a � 1 2

0 x

y
(2, 25)

5

_1 1 2 0 x

y

1

_3

1
8!3,   @

3
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S O L U T I O N

(a) Since , we see that the base is a � 5. So .

(b) Since , we see that the base is . So .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

In the next example we see how to graph certain functions, not by plotting points, but
by taking the basic graphs of the exponential functions in Figure 2 and applying the shift-
ing and reflecting transformations of Section 2.5.

E X A M P L E  4 Transformations of Exponential Functions

Use the graph of to sketch the graph of each function.

(a) (b) (c)

S O L U T I O N

(a) To obtain the graph of , we start with the graph of and shift
it upward 1 unit. Notice from Figure 3(a) that the line y � 1 is now a horizontal
asymptote.

(b) Again we start with the graph of , but here we reflect in the x-axis to get
the graph of shown in Figure 3(b).

(c) This time we start with the graph of and shift it to the right by 1 unit to
get the graph of shown in Figure 3(c).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 25, 27, AND 29 ■

E X A M P L E  5 Comparing Exponential and Power Functions

Compare the rates of growth of the exponential function and the power 
function by drawing the graphs of both functions in the following viewing
rectangles.

(a)

(b)

(c) 30, 20 4  by 30, 1000 4

30, 6 4  by 30, 25 4

30, 3 4  by 30, 8 4

g1x 2 � x2
f 1x 2 � 2x

k1x 2 � 2x�1
f 1x 2 � 2x

h1x 2 � �2x
f 1x 2 � 2x

f 1x 2 � 2xg1x 2 � 1 � 2x

k1x 2 � 2x�1h1x 2 � �2xg1x 2 � 1 � 2x

f 1x 2 � 2x

f 1x 2 � A12B
x

a � 1
2f 13 2 � a3 � 1

8

f 1x 2 � 5xf 12 2 � a2 � 25

S E C T I O N  4 . 1 | Exponential Functions 349
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0 x

y

(c)

1

y=2˛

y=2˛–¡11

0 x

y

(b)

1

y=2˛

y=_2˛_1
0 x

y

y=2˛

(a)

1

y=1+2˛

2

Horizontal
asymptote

F I G U R E  3

Shifting and reflecting of graphs are 
explained in Section 2.5.

90169_Ch04_345-414.qxd  11/23/11  3:35 PM  Page 349



S O L U T I O N

(a) Figure 4(a) shows that the graph of catches up with, and becomes higher
than, the graph of at x � 2.

(b) The larger viewing rectangle in Figure 4(b) shows that the graph of over-
takes that of when x � 4.

(c) Figure 4(c) gives a more global view and shows that when x is large, is
much larger than .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

▼ Compound Interest
Exponential functions occur in calculating compound interest. If an amount of money P,
called the principal, is invested at an interest rate i per time period, then after one time
period the interest is Pi, and the amount A of money is

If the interest is reinvested, then the new principal is , and the amount after an-
other time period is . Similarly, after a third time pe-
riod the amount is . In general, after k periods the amount is

Notice that this is an exponential function with base 1 � i.
If the annual interest rate is r and if interest is compounded n times per year, then in

each time period the interest rate is i � r/n, and there are nt time periods in t years. This
leads to the following formula for the amount after t years.

E X A M P L E  6 Calculating Compound Interest

A sum of $1000 is invested at an interest rate of 12% per year. Find the amounts in 
the account after 3 years if interest is compounded annually, semiannually, quarterly,
monthly, and daily.

A � P11 � i 2 k

A � P11 � i 2 3
A � P11 � i 2 11 � i 2 � P11 � i 2 2

P11 � i 2

A � P � Pi � P11 � i 2

g1x 2 � x 2
f 1x 2 � 2x

g1x 2 � x2
f 1x 2 � 2x

f 1x 2 � 2x
g1x 2 � x2
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8

0 3

(a)

˝=≈
Ï=2x

1000

0 20

(c)

˝=≈

Ï=2x

25

0 6

(b)

˝=≈
Ï=2x

F I G U R E  4

COMPOUND INTEREST

Compound interest is calculated by the formula

where

 t � number of years

 n � number of times interest is compounded per year

 r � interest rate per year

 P � principal

 A1t 2 � amount after t years

A1t 2 � P a1 �
r
n
b

nt

r is often referred to as the nominal 
annual interest rate.
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S O L U T I O N We use the compound interest formula with P � $1000, r � 0.12, and t � 3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 51 ■

If an investment earns compound interest, then the annual percentage yield (APY)
is the simple interest rate that yields the same amount at the end of one year.

E X A M P L E  7 Calculating the Annual Percentage Yield

Find the annual percentage yield for an investment that earns interest at a rate of 6% per
year, compounded daily.

S O L U T I O N After one year, a principal P will grow to the amount

The formula for simple interest is

Comparing, we see that 1 � r � 1.06183, so r � 0.06183. Thus the annual percentage
yield is 6.183%.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

A � P11 � r 2

A � P a1 �
0.06

365
b

365

� P11.06183 2

S E C T I O N  4 . 1 | Exponential Functions 351
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Compounding n Amount after 3 years

Annual 1

Semiannual 2

Quarterly 4

Monthly 12

Daily 365 1000 a1 �
0.12

365
b

365132 

� $1433.24

1000 a1 �
0.12

12
b

12132  

� $1430.77

1000 a1 �
0.12

4
b

4132  

� $1425.76

1000 a1 �
0.12

2
b

2132  

� $1418.52

1000 a1 �
0.12

1
b

1132  

� $1404.93

Simple interest is studied 
in Section 1.5.

C O N C E P T S
1. The function is an exponential function with base 

; , ,

, and .

2. Match the exponential function with one of the graphs labeled
I, II, III, or IV, shown on the right.

(a)

(b)

(c)

(d) f 1x 2 � �2�x

f 1x 2 � �2x

f 1x 2 � 2�x

f 1x 2 � 2x

f 16 2 �f 12 2 �

f 10 2 �f 1�2 2 �

f 1x 2 � 5x

4 . 1  E X E R C I S E S

I y 

x 0 1 
2 

y 

x 0 1 
2

II

y

x0 1
2

III y

x0 1
2

IV
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21. 22.

23–24 ■ Match the exponential function with one of the graphs 
labeled I or II.

23. 24.

25–36 ■ Graph the function, not by plotting points, but by 
starting from the graphs in Figure 2. State the domain, range, and
asymptote.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. (a) Sketch the graphs of and .
(b) How are the graphs related?

38. (a) Sketch the graphs of and .
(b) Use the Laws of Exponents to explain the relationship 

between these graphs.

39. Compare the functions and by evaluating
both of them for x � 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20.
Then draw the graphs of f and g on the same set of axes.

40. If , show that  .

41. (a) Compare the rates of growth of the functions 
and by drawing the graphs of both functions in
the following viewing rectangles.

(i)
(ii)

(iii)

(b) Find the solutions of the equation rounded to one
decimal place.

2x � x5,

30, 50 4  by 30, 108 4

30, 25 4  by 30, 107 4

30, 5 4  by 30, 20 4

g1x 2 � x5
f 1x 2 � 2x

f 1x � h 2 � f 1x 2
h

� 10x a
10h � 1

h
bf 1x 2 � 10x

g1x 2 � 3xf 1x 2 � x3

g1x 2 � 3xf 1x 2 � 9x/2

g1x 2 � 312x 2f 1x 2 � 2x

y � 3 � A15B
xg 1x 2 � 1 � 3�x

y � 3 � 10x�1h1x 2 � 2x�4 � 1

h1x 2 � 6 � 3xy � 5�x � 1

g1x 2 � 2x�3f 1x 2 � 10x�3

f 1x 2 � 10�xf 1x 2 � �3x

h1x 2 � 4 � A12B
x

g1x 2 � 2x � 3

f 1x 2 � 5x � 1f 1x 2 � 5x�1

x

y

0 3
1

_3

(_3, 8)

1
16!2,    @

x0 3_3

y

1

3. (a) To obtain the graph of , we start with the

graph of and shift it 
(upward/downward) 1 unit.

(b) To obtain the graph of , we start with the 

graph of and  shift it to the 
(left/right) 1 unit.

4. In the formula for compound interest the 

letters P, r, n, and t stand for , ,

, and , respectively, and 

stands for . So if $100 is invested at an 
interest rate of 6% compounded quarterly, then the amount 

after 2 years is .

S K I L L S
5–8 ■ Use a calculator to evaluate the function at the indicated
values. Round your answers to three decimals.

5.

6.

7.

8.

9–14 ■ Sketch the graph of the function by making a table of 
values. Use a calculator if necessary.

9. 10.

11. 12.

13. 14.

15–18 ■ Graph both functions on one set of axes.

15.

16.

17.

18.

19–22 ■ Find the exponential function whose graph is
given.

19. 20.

x

y

0 3_3

1
5!_1,   @

1

y

0 x3_3
1

(2, 9)

f 1x 2 � ax

f 1x 2 � A23B
x
 and g1x 2 � A43B

x

f 1x 2 � 4x and g1x 2 � 7x

f 1x 2 � 3�x and g1x 2 � A13B
x

f 1x 2 � 2x and g1x 2 � 2�x

h1x 2 � 2A14 B
xg 1x 2 � 311.3 2 x

h1x 2 � 11.1 2 xf 1x 2 � A13B
x

g1x 2 � 8xf 1x 2 � 2x

g1x 2 � A34B
2x

; g10.7 2 , g117/2 2 , g11/p 2 , gA23B

g1x 2 � A23B
x�1

; g11.3 2 , g115 2 , g12p 2 , gA� 
1
2B

f 1x 2 � 3x�1; f 1�1.5 2 , f 113 2 , f 13.12 2 , f A� 
5
4B

f 1x 2 � 4x; f 10.5 2 , f 112 2 , f 1�1 2 , f A13B

A1t 2

A1t 2 � P11 � r
n 2

nt

f 1x 2 � 2x

h1x 2 � 2x�1

f 1x 2 � 2x

g 1x 2 � 2x � 1
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I y 

x 0 1 
1 

y 

x 0 1 
1

II
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53. Compound Interest If $500 is invested at an interest rate
of 3.75% per year, compounded quarterly, find the value of the
investment after the given number of years.
(a) 1 year (b) 2 years (c) 10 years

54. Compound Interest If $4000 is borrowed at a rate of
5.75% interest per year, compounded quarterly, find the
amount due at the end of the given number of years.
(a) 4 years (b) 6 years (c) 8 years

55–56 ■ Present Value The present value of a sum of money
is the amount that must be invested now, at a given rate of interest,
to produce the desired sum at a later date.

55. Find the present value of $10,000 if interest is paid at a rate of
9% per year, compounded semiannually, for 3 years.

56. Find the present value of $100,000 if interest is paid at a rate
of 8% per year, compounded monthly, for 5 years.

57. Annual Percentage Yield Find the annual percentage yield
for an investment that earns 8% per year, compounded
monthly.

58. Annual Percentage Yield Find the annual percentage 
yield for an investment that earns 5 % per year, compounded
quarterly.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
59. Growth of an Exponential Function Suppose you are of-

fered a job that lasts one month, and you are to be very well
paid. Which of the following methods of payment is more
profitable for you?
(a) One million dollars at the end of the month
(b) Two cents on the first day of the month, 4 cents on the

second day, 8 cents on the third day, and, in general,
2n cents on the nth day

60. The Height of the Graph of an Exponential 
Function Your mathematics instructor asks you to sketch a
graph of the exponential function

for x between 0 and 40, using a scale of 10 units to one inch.
What are the dimensions of the sheet of paper you will need to
sketch this graph?

f 1x 2 � 2x

1
2

42. (a) Compare the rates of growth of the functions 
and by drawing the graphs of both functions in
the following viewing rectangles:

(i) 3�4, 44 by 30, 204
(ii) 30, 104 by 30, 50004
(iii) 30, 204 by 30, 1054

(b) Find the solutions of the equation 3 x � x4, rounded to two
decimal places.

43–44 ■ Draw graphs of the given family of functions for
c � 0.25, 0.5, 1, 2, 4. How are the graphs related?

43. 44.

45–46 ■ Find, rounded to two decimal places, (a) the intervals on
which the function is increasing or decreasing and (b) the range of
the function.

45. 46.

A P P L I C A T I O N S
47. Bacteria Growth A bacteria culture contains 1500 bacteria

initially and doubles every hour.
(a) Find a function that models the number of bacteria after 

t hours.
(b) Find the number of bacteria after 24 hours.

48. Mouse Population A certain breed of mouse was intro-
duced onto a small island with an initial population of 320
mice, and scientists estimate that the mouse population is dou-
bling every year.  
(a) Find a function that models the number of mice after 

t years.
(b) Estimate the mouse population after 8 years.

49–50 ■ Compound Interest An investment of $5000 is de-
posited into an account in which interest is compounded monthly.
Complete the table by filling in the amounts to which the invest-
ment grows at the indicated times or interest rates.

49. r � 4% 50. t � 5 years

51. Compound Interest If $10,000 is invested at an interest
rate of 3% per year, compounded semiannually, find the value
of the investment after the given number of years.
(a) 5 years (b) 10 years (c) 15 years

52. Compound Interest If $2500 is invested at an interest rate
of 2.5% per year, compounded daily, find the value of the in-
vestment after the given number of years.
(a) 2 years (b) 3 years (c) 6 years

y � x2xy � 10x�x2

f 1x 2 � 2cxf 1x 2 � c2x

g1x 2 � x4
f 1x 2 � 3x
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Time
(years) Amount

1
2
3
4
5
6

Rate 
per year Amount

1%
2%
3%
4%
5%
6%

Exponential Explosion

In this project we explore an example about collecting pennies
that helps us experience how exponential growth works. You
can find the project at the book companion website:
www.stewartmath.com

❍ DISCOVERY
PROJECT
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Any positive number can be used as a base for an exponential function. In this section we
study the special base e, which is convenient for applications involving calculus. 

▼ The Number e
The number e is defined as the value that approaches as n becomes large. (In
calculus this idea is made more precise through the concept of a limit.) The table shows the
values of the expression for increasingly large values of n. 

It appears that, rounded to five decimal places, e � 2.71828; in fact, the approximate
value to 20 decimal places is

It can be shown that e is an irrational number, so we cannot write its exact value in deci-
mal form.

▼ The Natural Exponential Function
The number e is the base for the natural exponential function. Why use such a strange base
for an exponential function? It might seem at first that a base such as 10 is easier to work
with. We will see, however, that in certain applications the number e is the best possible
base. In this section we study how e occurs in the description of compound interest.

Since 2 � e � 3, the graph of the natural exponential function lies between the graphs
of and , as shown in Figure 1.

Scientific calculators have a special key for the function . We use this key in
the next example.

f 1x 2 � e x
y � 3xy � 2x

e � 2.71828182845904523536

11 � 1/n 2 n

11 � 1/n 2 n
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4.2 THE NATURAL EXPONENTIAL FUNCTION

LEARNING OBJECTIVES After completing this section, you will be able to:

Evaluate the natural exponential function � Graph the natural exponential
function � Calculate continuously compounded interest

n

1 2.00000
5 2.48832

10 2.59374
100 2.70481

1000 2.71692
10,000 2.71815

100,000 2.71827
1,000,000 2.71828

a 1 �
1
n b

n

THE NATURAL EXPONENTIAL FUNCTION

The natural exponential function is the exponential function

with base e. It is often referred to as the exponential function.

f 1x 2 � e x

0 x

y

1

y=3˛

1

y=2˛

y=e˛

F I G U R E  1 Graph of the natural ex-
ponential function

The notation e was chosen by 
Leonhard Euler (see page 300), proba-
bly because it is the first letter of the
word exponential.

The Gateway Arch in St.Louis,Missouri,
is shaped in the form of the graph of a
combination of exponential functions
(not a parabola,as it might first appear).
Specifically, it is a catenary,which is the
graph of an equation of the form

(see Exercises 15 and 17).This shape
was chosen because it is optimal for dis-
tributing the internal structural forces
of the arch. Chains and cables sus-
pended between two points (for exam-
ple, the stretches of cable between pairs
of telephone poles) hang in the shape
of a catenary.

y � a1ebx � e�bx 2

©
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ar
ry

 M
cM

ic
ha
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E X A M P L E  1 Evaluating the Exponential Function

Evaluate each expression rounded to five decimal places.

(a) (b) (c)

S O L U T I O N We use the key on a calculator to evaluate the exponential function.

(a) e3 � 20.08554 (b) 2e�0.53 � 1.17721 (c) e4.8 � 121.51042

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 3 ■

E X A M P L E  2 Transformations of the Exponential Function

Sketch the graph of each function.

(a) (b)

S O L U T I O N

(a) We start with the graph of y � ex and reflect in the y-axis to obtain the graph of 
y � e�x as in Figure 2.

(b) We calculate several values, plot the resulting points, then connect the points with a
smooth curve. The graph is shown in Figure 3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 5 AND 7 ■

E X A M P L E  3 An Exponential Model for the Spread of a Virus

An infectious disease begins to spread in a small city of population 10,000. After t days,
the number of people who have succumbed to the virus is modeled by the function

(a) How many infected people are there initially (at time t � 0)?

(b) Find the number of infected people after one day, two days, and five days.

(c) Graph the function √, and describe its behavior.

S O L U T I O N

(a) Since , we conclude that 8 peo-
ple initially have the disease.

(b) Using a calculator, we evaluate , and and then round off to obtain
the following values.

√ 15 2√ 11 2 , √ 12 2

√ 10 2 � 10,000/15 � 1245e0 2 � 10,000/1250 � 8

√ 1t 2 �
10,000

5 � 1245e�0.97t

g1x 2 � 3e0.5xf 1x 2 � e�x

eX

e4.82e�0.53e3
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x ff 11x22

�3 0.67
�2 1.10
�1 1.82

0 3.00
1 4.95
2 8.15
3 13.45

� 3e0.5x

0 x

y

3

3

y=3e0.5x

_3

6

9

12

F I G U R E  3

0 x

y

1

1

y=e˛y=e–˛

F I G U R E  2

Days Infected people

1 21
2 54
5 678
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(c) From the graph in Figure 4 we see that the number of infected people first rises
slowly, then rises quickly between day 3 and day 8, and then levels off when about
2000 people are infected.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

The graph in Figure 4 is called a logistic curve or a logistic growth model. Curves like
it occur frequently in the study of population growth. (See Exercises 25–28.)

▼ Continuously Compounded Interest
In Example 6 of Section 4.1 we saw that the interest paid increases as the number of com-
pounding periods n increases. Let’s see what happens as n increases indefinitely. If we let
m � n/r, then

Recall that as m becomes large, the quantity approaches the number e. Thus
the amount approaches A � Pert. This expression gives the amount when the interest is
compounded at “every instant.”

E X A M P L E  4 Calculating Continuously Compounded Interest

Find the amount after 3 years if $1000 is invested at an interest rate of 12% per year, com-
pounded continuously.

S O L U T I O N We use the formula for continuously compounded interest with P � $1000,
r � 0.12, and t � 3 to get

Compare this amount with the amounts in Example 6 of Section 4.1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

A13 2 � 1000e10.1223 � 1000e0.36 � $1433.33

11 � 1/m 2m

A1t 2 � P a1 �
r
n
b

nt

� P c a 1 �
r
n
b

n/r

d
rt

� P c a 1 �
1
m
b

m

d
rt
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3000

0 12

F I G U R E  4

√1t 2 �
10,000

5 � 1245e�0.97t

CONTINUOUSLY COMPOUNDED INTEREST

Continuously compounded interest is calculated by the formula

where

 t � number of years

 r � interest rate per year

 P � principal

 A1t 2 � amount after t years

A1t 2 � Pe rt

C O N C E P T S
1. The function is called the exponential 

function. The number e is approximately equal to .

f 1x 2 � ex

2. In the formula for continuously compound inter-

est, the letters P, r , and t stand for , , and

, respectively, and stands for . So if 
$100 is invested at an interest rate of 6% compounded continu-

ously, then the amount after 2 years is .

A1t 2

A1t 2 � Pert

4 . 2  E X E R C I S E S
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remaining in the patient’s bloodstream after t hours 
is modeled by

How many milligrams of the drug remain in the patient’s
bloodstream after 3 hours?

21. Radioactive Decay A radioactive substance decays in such
a way that the amount of mass remaining after t days is given
by the function

where is measured in kilograms.
(a) Find the mass at time t � 0.
(b) How much of the mass remains after 45 days?

22. Radioactive Decay Doctors use radioactive iodine as a
tracer in diagnosing certain thyroid gland disorders. This type
of iodine decays in such a way that the mass remaining after 
t days is given by the function

where is measured in grams.
(a) Find the mass at time t � 0.
(b) How much of the mass remains after 20 days?

23. Sky Diving A sky diver jumps from a reasonable height
above the ground. The air resistance she experiences is propor-
tional to her velocity, and the constant of proportionality is
0.2. It can be shown that the downward velocity of the sky
diver at time t is given by

where t is measured in seconds and is measured in feet 
per second (ft/s).
(a) Find the initial velocity of the sky diver.
(b) Find the velocity after 5 s and after 10 s.
(c) Draw a graph of the velocity function .
(d) The maximum velocity of a falling object with wind re-

sistance is called its terminal velocity. From the graph in
part (c) find the terminal velocity of this sky diver.

24. Mixtures and Concentrations A 50-gallon barrel is filled
completely with pure water. Salt water with a concentration of
0.3 lb/gal is then pumped into the barrel, and the resulting
mixture overflows at the same rate. The amount of salt in the
barrel at time t is given by

where t is measured in minutes and is measured in pounds.
(a) How much salt is in the barrel after 5 min?
(b) How much salt is in the barrel after 10 min?
(c) Draw a graph of the function .Q1t 2

Q1t 2

Q1t 2 � 1511 � e�0.04t 2

√(t)=180(1-e_º.™t)

√1t 2

√ 1t 2

√ 1t 2 � 18011 � e�0.2t 2

m1t 2

m1t 2 � 6e�0.087t

m1t 2

m1t 2 � 13e�0.015t

D1t 2 � 50e�0.2t

S K I L L S
3–4 ■ Use a calculator to evaluate the function at the indicated
values. Round your answers to three decimals.

3.

4.

5–6 ■ Complete the table of values, rounded to two decimal
places, and sketch a graph of the function.

5. 6.

7–14 ■ Graph the function, not by plotting points, but by starting
from the graph of in Figure 1. State the domain, range, and
asymptote.

7. 8. y � 1 � ex

9. y � e�x � 1 10.

11. 12. y � ex�3 � 4

13. 14.

15. The hyperbolic cosine function is defined by

(a) Sketch the graphs of the functions and 
on the same axes, and use graphical addition (see Sec-
tion 2.6) to sketch the graph of .

(b) Use the definition to show that cosh(�x) � cosh(x).

16. The hyperbolic sine function is defined by

(a) Sketch the graph of this function using graphical addition
as in Exercise 15.

(b) Use the definition to show that sinh(�x) � �sinh(x)

17. (a) Draw the graphs of the family of functions

for a � 0.5, 1, 1.5, and 2.
(b) How does a larger value of a affect the graph?

18–19 ■ Find the local maximum and minimum values of the
function and the value of x at which each occurs. State each an-
swer rounded to two decimal places.

18. 19.

A P P L I C A T I O N S
20. Medical Drugs When a certain medical drug is 

administered to a patient, the number of milligrams 

g1x 2 � ex � e�3xg1x 2 � x x  1x � 0 2

f 1x 2 �
a

2
 1ex/a � e�x/a 2

sinh1x 2 �
ex � e�x

2

y � cosh1x 2

y � 1
2  
e�xy � 1

2  
ex

cosh1x 2 �
ex � e�x

2

g 1x 2 � �ex�1 � 2h1x 2 � e 
x�1 � 3

f 1x 2 � e 
x�2

f 1x 2 � �e�x

f 1x 2 � �ex

y � ex

h1x 2 � e�2x; h11 2 , h122 2 , h1�3 2 , hA12B

h1x 2 � ex; h13 2 , h10.23 2 , h11 2 , h1�2 2
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x ff 11x22

�2
�1
�0.5

0
0.5
1
2

� 3ex x ff 11x22

�3
�2
�1

0
1
2
3

� 2e�0.5x
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where t � 0 is the year 2000 and population is measured in
billions.
(a) What world population does this model predict for the

year 2200? For 2300?
(b) Sketch a graph of the function P for the years 2000 to

2500.
(c) According to this model, what size does the world popula-

tion seem to approach as time goes on?

28. Tree Diameter For a certain type of tree the diameter 
D (in feet) depends on the tree’s age t (in years) according 
to the logistic growth model

Find the diameter of a 20-year-old tree.

29–30 ■ Compound Interest An investment of $7,000 is de-
posited into an account in which interest is compounded continu-
ously. Complete the table by filling in the amounts to which the in-
vestment grows at the indicated times or interest rates.

29. r � 3% 30. t � 10 years

31. Compound Interest If $2000 is invested at an interest rate
of 3.5% per year, compounded continuously, find the value of
the investment after the given number of years.
(a) 2 years (b) 4 years (c) 12 years

32. Compound Interest If $3500 is invested at an interest rate
of 6.25% per year, compounded continuously, find the value of
the investment after the given number of years.
(a) 3 years (b) 6 years (c) 9 years

33. Compound Interest If $600 is invested at an interest rate
of 2.5% per year, find the amount of the investment at the end
of 10 years for the following compounding methods.
(a) Annually (b) Semiannually
(c) Quarterly (d) Continuously

34. Compound Interest If $8000 is invested in an account for
which interest is compounded continuously, find the amount of
the investment at the end of 12 years for the following interest
rates.
(a) 2% (b) 3% (c) 4.5% (d) 7%

t

D

0 100 700300 500

5

4

3

2

1

D1t 2 �
5.4

1 � 2.9e�0.01t

(d) Use the graph in part (c) to determine the value that the
amount of salt in the barrel approaches as t becomes large.
Is this what you would expect?

25. Logistic Growth Animal populations are not capable of un-
restricted growth because of limited habitat and food supplies.
Under such conditions the population follows a logistic growth
model:

where c, d, and k are positive constants. For a certain fish pop-
ulation in a small pond d � 1200, k � 11, c � 0.2, and t is
measured in years. The fish were introduced into the pond at
time t � 0.
(a) How many fish were originally put in the pond?
(b) Find the population after 10, 20, and 30 years.
(c) Evaluate for large values of t. What value does the

population approach as t � q? Does the graph shown
confirm your calculations?

26. Bird Population The population of a certain species of bird
is limited by the type of habitat required for nesting. The popu-
lation behaves according to the logistic growth model

where t is measured in years.
(a) Find the initial bird population.
(b) Draw a graph of the function .
(c) What size does the population approach as time 

goes on?

27. World Population The relative growth rate of world popu-
lation has been decreasing steadily in recent years. On the ba-
sis of this, some population models predict that world popula-
tion will eventually stabilize at a level that the planet can
support. One such logistic model is

P1t 2 �
73.2

6.1 � 5.9e�0.02t

n1t 2

n1t 2 �
5600

0.5 � 27.5e�0.044t

t

P

0 10 20 4030

1200

1000

800

600

400

200

P1t 2

P1t 2 �
d

1 � ke�ct

Q(t)=15(1-e_º.º¢t )
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Time
(years) Amount

1
2
3
4
5
6

Rate 
per year Amount

1%
2%
3%
4%
5%
6%
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(b) Draw a graph of .
(c) Use the graph of to determine when this investment

will amount to $25,000.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
38. The Definition of e Illustrate the definition of the number e

by graphing the curve and the line y � e on
the same screen, using the viewing rectangle 30, 404 by 30, 44.

y � 11 � 1/x 2 x

A1t 2
A1t 235. Compound Interest Which of the given interest rates and

compounding periods would provide the best investment?
(a) % per year, compounded semiannually
(b) % per year, compounded monthly
(c) 2% per year, compounded continuously

36. Compound Interest Which of the given interest rates and
compounding periods would provide the better investment?
(a) % per year, compounded semiannually
(b) 5% per year, compounded continuously

37. Investment A sum of $5000 is invested at an interest rate
of 9% per year, compounded continuously.
(a) Find the value of the investment after t years.A1t 2

5 
1
8

2 
1
4

2 
1
2
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4.3 LOGARITHMIC FUNCTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Evaluate logarithmic functions � Graph logarithmic functions � Change 
between logarithmic and exponential forms of an expression � Use basic
properties of logarithms � Use common and natural logarithms

GET READY Prepare for this section by reviewing the definition and properties of 

inverse functions in Section 2.7.

In this section we study the inverses of exponential functions.

▼ Logarithmic Functions
Every exponential function , with a � 0 and a � 1, is a one-to-one function by
the Horizontal Line Test (see Figure 1 for the case a � 1) and therefore has an inverse
function. The inverse function f�1 is called the logarithmic function with base a and is
denoted by loga. Recall from Section 2.7 that f�1 is defined by

This leads to the following definition of the logarithmic function.

When we use the definition of logarithms to switch back and forth between the loga-
rithmic form logax � y and the exponential form ay � x, it is helpful to notice that, in
both forms, the base is the same:

Logarithmic form Exponential form

loga x � y ay � x

f 
�11x 2 � y 3  f 1y 2 � x

f 1x 2 � ax

0 x

y
f(x)=a˛,

a>1

F I G U R E  1 is 
one-to-one.

f 1x 2 � ax

DEFINITION OF THE LOGARITHMIC FUNCTION

Let a be a positive number with a � 1. The logarithmic function with base a,
denoted by log a, is defined by

So loga x is the exponent to which the base a must be raised to give x.

loga x � y 3  ay � x

BaseBase

Exponent Exponent

We read loga x � y as “log base a of 
x is y.”

By tradition the name of the logarith-
mic function is loga, not just a single
letter. Also, we usually omit the paren-
theses in the function notation and
write

loga1x 2 � loga x
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E X A M P L E  1 Logarithmic and Exponential Forms

The logarithmic and exponential forms are equivalent equations: If one is true, then 
so is the other. So we can switch from one form to the other as in the following illus-
trations.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

It is important to understand that loga x is an exponent. For example, the numbers in the
right column of the table in the margin are the logarithms (base 10) of the numbers in the
left column. This is the case for all bases, as the following example illustrates.

E X A M P L E  2 Evaluating Logarithms

(a) log101000 � 3 because 103 � 1000

(b) log2 32 � 5 because 25 � 32

(c) log10 0.1 � �1 because 10�1 � 0.1

(d) because 161/2 � 4

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 7 AND 9 ■

When we apply the Inverse Function Property described on page 234 to and
, we get

We list these and other properties of logarithms discussed in this section.

E X A M P L E  3 Applying Properties of Logarithms

We illustrate the properties of logarithms when the base is 5.

Property 1 Property 2

Property 3 Property 4

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 23 AND 29 ■

5log5 12 � 12log5 58 � 8

log5 5 � 1log5 1 � 0

 aloga 
x � x,  x � 0

 loga1a
x 2 � x,  x � �

f 
�11x 2 � loga x

f 1x 2 � ax

log16 4 � 1
2
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Logarithmic form Exponential form

log10 100,000 � 5 105 � 100,000
log2 8 � 3 23 � 8
log2 !�

1
8�@ � �3 2�3 � �

1
8�

log5 s � r 5r � s

x log10 x

104 4
103 3
102 2
10 1

1 0
10�1 �1
10�2 �2
10�3 �3
10�4 �4

PROPERTIES OF LOGARITHMS

Property Reason

1. loga 1 � 0 We must raise a to the power 0 to get 1.

2. loga a � 1 We must raise a to the power 1 to get a.

3. loga ax � x We must raise a to the power x to get ax.

4. loga x is the power to which a must be raised to get x.aloga 
x � x

Inverse Function Property:

f 1f�11x 22 � x

f�11f 1x 22 � x
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▼ Graphs of Logarithmic Functions
Recall that if a one-to-one function f has domain A and range B, then its inverse function
f�1 has domain B and range A. Since the exponential function with a � 1 has
domain and range , we conclude that its inverse function, , has
domain and range .

The graph of is obtained by reflecting the graph of in the
line y � x. Figure 2 shows the case a � 1. The fact that y � ax (for a � 1) is a very rapidly 
increasing function for x � 0 implies that y � loga x is a very slowly increasing function
for x � 1 (see Exercise 100).

Since loga 1 � 0, the x-intercept of the function y � loga x is 1. The y-axis is a vertical
asymptote of y � loga x because loga x � �q as x � 0�.

E X A M P L E  4 Graphing a Logarithmic Function 
by Plotting Points

Sketch the graph of .

S O L U T I O N To make a table of values, we choose the x-values to be powers of 2 so
that we can easily find their logarithms. We plot these points and connect them with a
smooth curve as in Figure 3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 47 ■

Figure 4 shows the graphs of the family of logarithmic functions with bases 2, 3, 5, and
10. These graphs are drawn by reflecting the graphs of and

(see Figure 2 in Section 4.1) in the line y � x. We can also plot points as an aid
to sketching these graphs, as illustrated in Example 4.
y � 10x

y � 2x, y � 3x, y � 5x,

f 1x 2 � log2 x

f 1x 2 � axf 
�11x 2 � loga x

�10, q 2
f 

�11x 2 � loga x10, q 2�

f 1x 2 � ax

S E C T I O N  4 . 3 | Logarithmic Functions 361

Unless otherwise noted, all content on this page is © Cengage Learning.

y=a˛,  a>1

y=loga x

y=x

x

y

1

1

F I G U R E  2 Graph of the logarithmic
function f 1x 2 � loga x

x log2 x

23 3
22 2
2 1
1 0
2�1 �1
2�2 �2
2�3 �3
2�4 �4

x

y

1
2
3

1 2 4 6 8_1
_2
_3
_4

f(x)=log¤ x

F I G U R E  3

y=log2 x 

y=log‹ x 

y=logfi x 

y=log⁄‚ x 

0 x

y

1

1

F I G U R E  4 A family of logarithmic
functions
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In the next two examples we graph logarithmic functions by starting with the basic
graphs in Figure 4 and using the transformations of Section 2.5.

E X A M P L E  5 Reflecting Graphs of Logarithmic Functions

Sketch the graph of each function.

(a)

(b)

S O L U T I O N

(a) We start with the graph of and reflect in the x-axis to get the graph of
in Figure 5(a).

(b) We start with the graph of and reflect in the y-axis to get the graph of
in Figure 5(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 59 ■

E X A M P L E  6 Shifting Graphs of Logarithmic Functions

Find the domain of each function, and sketch the graph.

(a)

(b)

S O L U T I O N

(a) The graph of g is obtained from the graph of (Figure 4) by shifting
upward 2 units (see Figure 6). The domain of f is .

(b) The graph of h is obtained from the graph of (Figure 4) by shifting 
to the right 3 units (see Figure 7). The line x � 3 is a vertical asymptote. Since
log10 x is defined only when x � 0, the domain of is

5x 0  x � 3 � 06 � 5x 0  x � 36 � 13, q 2

h1x 2 � log101x � 3 2

f 1x 2 � log10 x

10, q 2
f 1x 2 � log5 x

h1x 2 � log101x � 3 2

g1x 2 � 2 � log5 x

h1x 2 � log21�x 2
f 1x 2 � log2 x

g1x 2 � �log2 x
f 1x 2 � log2 x

h1x 2 � log21�x 2

g1x 2 � �log2 x
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f(x)=log¤ x f(x)=log¤ x

g(x)=_log¤ x
h(x)=log¤(_x)

(a)

x

y

1

1 10

(b)

_1 x

y

1

0

F I G U R E  5

3

0 x

y

1

1

2

g(x)=2+logfi x

f(x)=logfi x

F I G U R E  6

Law Enforcement
Mathematics aids law enforcement in
numerous and surprising ways, from
the reconstruction of bullet trajectories
to determining the time of death to
calculating the probability that a DNA
sample is from a particular person. One
interesting use is in the search for miss-
ing persons. A person who has been
missing for several years might look
quite different from his or her most re-
cent available photograph. This is par-
ticularly true if the missing person is a
child. Have you ever wondered what
you will look like 5, 10, or 15 years from
now?

Researchers have found that differ-
ent parts of the body grow at different
rates. For example, you have no doubt
noticed that a baby’s head is much
larger relative to its body than an
adult’s. As another example, the ratio of
arm length to height is in a child but
about in an adult. By collecting data
and analyzing the graphs, researchers
are able to determine the functions
that model growth. As in all growth
phenomena, exponential and logarith-
mic functions play a crucial role. For in-
stance, the formula that relates arm
length l to height h is l � aekh where a
and k are constants. By studying vari-
ous physical characteristics of a person,
mathematical biologists model each
characteristic by a function that de-
scribes how it changes over time. Mod-
els of facial characteristics can be pro-
grammed into a computer to give a
picture of how a person’s appearance
changes over time. These pictures aid
law enforcement agencies in locating
missing persons.

2
5

1
3

M AT H E M AT I C S  I N  
T H E  M O D E R N  W O R L D

© Bettmann /CORBIS © Hulton-Deutsch 
Collection /CORBIS
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PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 61 AND 65 ■

▼ Common Logarithms
We now study logarithms with base 10.

From the definition of logarithms we can easily find that

But how do we find log 50? We need to find the exponent y such that 10 y � 50. Clearly,
1 is too small and 2 is too large. So

To get a better approximation, we can experiment to find a power of 10 closer to 50. For-
tunately, scientific calculators are equipped with a key that directly gives values of
common logarithms.

E X A M P L E  7 Evaluating Common Logarithms

Use a calculator to find appropriate values of , and use the values to sketch
the graph.

S O L U T I O N We make a table of values, using a calculator to evaluate the function at
those values of x that are not powers of 10. We plot those points and connect them by a
smooth curve as in Figure 8.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 49 ■

f 1x 2 � log x

LOG

1 � log 50 � 2

log 10 � 1  and  log 100 � 2
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f(x)=log⁄‚ x

h(x)=log⁄‚(x-3)

10 x

y

4

1
Asymptote
x=3

COMMON LOGARITHM

The logarithm with base 10 is called the common logarithm and is denoted by
omitting the base:

log x � log10 x

J O H N  N A P I E R (1550–1617) was a Scot-
tish landowner for whom mathematics
was a hobby. We know him today be-
cause of his key invention: logarithms,
which he published in 1614 under the
title A Description of the Marvelous Rule
of Logarithms. In Napier’s time, loga-
rithms were used exclusively for simpli-
fying complicated calculations. For ex-
ample, to multiply two large numbers,
we would write them as powers of 10.
The exponents are simply the loga-
rithms of the numbers. For instance,

The idea is that multiplying powers
of 10 is easy (we simply add their expo-
nents). Napier produced extensive ta-
bles giving the logarithms (or expo-
nents) of numbers. Since the advent of
calculators and computers, logarithms
are no longer used for this purpose.
The logarithmic functions, however,
have found many applications, some of
which are described in this chapter.

Napier wrote on many topics. One of
his most colorful works is a book enti-
tled A Plaine Discovery of the Whole Reve-
lation of Saint John, in which he pre-
dicted that the world would end in the
year 1700.

� 261,872,564

� 108.41809

� 103.65629 	 104.76180

4532 	 57783

Li
br

ar
y 

of
 C

on
gr

es
s

f(x)=log x

0 x

y

2

2

4 6 8 10 12
_1

1

F I G U R E  8

x log x

0.01 �2
0.1 �1
0.5 �0.301
1 0
4 0.602
5 0.699

10 1

F I G U R E  7
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Scientists model human response to stimuli (such as sound, light, or pressure) using
logarithmic functions. For example, the intensity of a sound must be increased manyfold
before we “feel” that the loudness has simply doubled. The psychologist Gustav Fechner
formulated the law as

where S is the subjective intensity of the stimulus, I is the physical intensity of the stim-
ulus, I0 stands for the threshold physical intensity, and k is a constant that is different for
each sensory stimulus.

E X A M P L E  8 Common Logarithms and Sound

The perception of the loudness B (in decibels, dB) of a sound with physical intensity I
(in W/m2) is given by

where I0 is the physical intensity of a barely audible sound. Find the decibel level (loud-
ness) of a sound whose physical intensity I is 100 times that of I0.

S O L U T I O N We find the decibel level B by using the fact that I � 100I0.

Definition of B

I � 100I0

Cancel I0

Definition of log

The loudness of the sound is 20 dB.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 95 ■

▼ Natural Logarithms
Of all possible bases a for logarithms, it turns out that the most convenient choice for the
purposes of calculus is the number e, which we defined in Section 4.2.

The natural logarithmic function y � ln x is the inverse function of the natural expo-
nential function y � ex. Both functions are graphed in Figure 9. By the definition of in-
verse functions we have

If we substitute a � e and write “ln” for “loge” in the properties of logarithms men-
tioned earlier, we obtain the following properties of natural logarithms.

ln x � y 3  ey � x

 � 10 # 2 � 20

 � 10  log 100

 � 10  log a
100I0

I0
b

 B � 10  log a
I

I0
b

B � 10  log a
I

I0
b

S � k log a
I

I0
b
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Human response to sound and light 
intensity is logarithmic.

We study the decibel scale in more 
detail in Section 4.6.

NATURAL LOGARITHM

The logarithm with base e is called the natural logarithm and is denoted by ln:

ln x � loge x

F I G U R E  9 Graph of the natural
logarithmic function

y=x

y=e˛

y=ln x

x

y

1

1

The notation ln is an abbreviation for
the Latin name logarithmus naturalis.
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Calculators are equipped with an key that directly gives the values of natural
logarithms.

E X A M P L E  9 Evaluating the Natural Logarithm Function

(a) ln e8 � 8 Definition of natural logarithm

(b) Definition of natural logarithm

(c) ln 5 � 1.609 Use key on calculator

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

E X A M P L E  1 0 Finding the Domain of a Logarithmic Function

Find the domain of the function .

S O L U T I O N As with any logarithmic function, ln x is defined when x � 0. Thus the
domain of f is

@

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 71 ■

E X A M P L E  1 1 Drawing the Graph of a Logarithmic Function

Draw the graph of the function , and use it to find the asymptotes and
local maximum and minimum values.

S O L U T I O N As in Example 10 the domain of this function is the interval , so
we choose the viewing rectangle 3�3, 34 by 3�3, 34. The graph is shown in Figure 10,
and from it we see that the lines x � �2 and x � 2 are vertical asymptotes.

The function has a local maximum point to the right of x � 1 and a local minimum
point to the left of x � �1. By zooming in and tracing along the graph with the cursor,
we find that the local maximum value is approximately 1.13 and this occurs when 
x � 1.15. Similarly (or by noticing that the function is odd), we find that the local mini-
mum value is about �1.13, and it occurs when x � �1.15.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 77 ■

1�2, 2 2

y � x ln14 � x2 2

 � 5x 0  �2 � x � 26 � 1�2, 2 2

0 x 0 � 26 5x 0  4 � x2 � 06 � 5x 0  x2 � 46 � 5x

f 1x 2 � ln14 � x2 2

LN

ln a
1

e2 b � ln e�2 � �2

LN
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PROPERTIES OF NATURAL LOGARITHMS

Property Reason

1. ln 1 � 0 We must raise e to the power 0 to get 1.

2. ln e � 1 We must raise e to the power 1 to get e.

3. ln ex � x We must raise e to the power x to get ex.

4. eln x � x ln x is the power to which e must be raised to get x.

3

_3

_3 3

F I G U R E  1 0

y � x ln14 � x2 2
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C O N C E P T S
1. log x is the exponent to which the base 10 must be raised to get

. So we can complete the following table for log x.

2. The function is the logarithm function with 

base . So , ,

, , and .

3. (a) 53 � 125, so log �

(b) log5 25 � 2, so �

4. Match the logarithmic function with its graph.
(a) (b)

(c) (d)

S K I L L S
5–6 ■ Complete the table by finding the appropriate logarithmic
or exponential form of the equation, as in Example 1.

f 1x 2 � �log21�x 2f 1x 2 � �log2x

f 1x 2 � log21�x 2f 1x 2 � log2  
x

f 13 2 �f 181 2 �f 119 2 �

f 11 2 �f 19 2 �

f 1x 2 � log9 x

7–14 ■ Express the equation in exponential form.

7. (a) log5 25 � 2 (b) log5 1 � 0

8. (a) log10 0.1 � �1 (b) log8 512 � 3

9. (a) (b)

10. (a) log3 81 � 4 (b)

11. (a) (b)

12. (a) (b)

13. (a) (b)

14. (a) (b)

15–22 ■ Express the equation in logarithmic form.

15. (a) 53 � 125 (b) 10�4 � 0.0001

16. (a) 103 � 1000 (b) 811/2 � 9

17. (a) (b)

18. (a) 4�3/2 � 0.125 (b) 73 � 343

19. (a) (b)

20. (a) (b)

21. (a) ex � 2 (b) e3 � y

22. (a) ex�1 � 0.5 (b) e0.5x � t

23–32 ■ Evaluate the expression.

23. (a) log3 3 (b) log3 1 (c) log3 32

24. (a) log5 54 (b) log4 64 (c) log3 9

25. (a) log6 36 (b) log9 81 (c) log7 710

26. (a) log2 32 (b) log8 817 (c) log6 1

27. (a) (b) (c) log5 0.2

28. (a) log5 125 (b) log49 7 (c)

29. (a) (b) (c)

30. (a) eln p (b) 10log 5 (c) 10log 87

31. (a) log8 0.25 (b) ln e4 (c)

32. (a) (b) (c) log4 8

33–42 ■ Use the definition of the logarithmic function to find x.

33. (a) log2 x � 5 (b) log2 16 � x

34. (a) log5 x � 4 (b) log10 0.1 � x

35. (a) (b)

36. (a) (b) ln11/e 2 � xln x � �1

ln e2 � xln x � 3

log4A
1
2Blog4 12

ln11/e 2

e ln153log3 82log2 37

log9 13

log10 110log3A
1

 27 
B

10�0.5x � 0.0123x � 7

45 � z5x � 3

2�3 � 1
88�1 � 1

8

ln1x � 1 2 � 4ln1x � 1 2 � 2

ln1t � 1 2 � �1ln 5 � 3y

log10 3 � 2tlog6 z � 1

log713y 2 � 2log3 5 � x

log8 4 � 2
3

log2A
1
8B � �3log8 2 � 1

3

4 . 3  E X E R C I S E S

x 103 102 101 100 10�1 10�2 10�3 101/2

log x

I y

x0 2
1

II y

x0 2
1

IV y

x0 2
1

III y

x0 2
1

Logarithmic Exponential 
form form

log8 8 � 1

log8 64 � 2

82/3 � 4

83 � 512

8�2 � 1
64

log8 A18B � �1

5.

Logarithmic Exponential 
form form

43 � 64

43/2� 8

4�5/2 � 1
32

log4 A12B � �1
2

log4 A 1
16B  � �2

log 4 2 � 1
2

6.
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59–70 ■ Graph the function, not by plotting points, but by 
starting from the graphs in Figures 4 and 9. State the domain,
range, and asymptote.

59. 60.

61. 62.

63. 64.

65. y � 2 � log3 x 66. y � 1 � log10 x

67. 68.

69. 70.

71–76 ■ Find the domain of the function.

71. 72.

73. 74.

75.

76.

77–82 ■ Draw the graph of the function in a suitable viewing 
rectangle, and use it to find the domain, the asymptotes, and the 
local maximum and minimum values.

77. 78.

79. 80.

81. 82.

83-86 ■ Find the functions and and their domains.

83. ,

84.

85.

86.

87. Compare the rates of growth of the functions and
by drawing their graphs on a common screen us-

ing the viewing rectangle 3�1, 304 by 3�1, 64.

88. (a) By drawing the graphs of the functions

in a suitable viewing rectangle, show that even when a
logarithmic function starts out higher than a root function,
it is ultimately overtaken by the root function.

(b) Find, rounded to two decimal places, the solutions of the
equation .

89–90 ■ A family of functions is given. (a) Draw graphs of the
family for c � 1, 2, 3, and 4. (b) How are the graphs in part (a)
related?

89. 90.

91–92 ■ A function is given. (a) Find the domain of the
function f. (b) Find the inverse function of f.

91. 92.

93. (a) Find the inverse of the function .

(b) What is the domain of the inverse function?

f 1x 2 �
2x

1 � 2x

f 1x 2 � ln1ln1ln x 22f 1x 2 � log 21log 10  x 2

f 1x 2

f 1x 2 � c log xf 1x 2 � log1cx 2

1x � 1 � ln11 � x 2

f 1x 2 � 1 � ln11 � x 2     and    g1x 2 � 1x

g1x 2 � 1x
f 1x 2 � ln x

f 1x 2 � log x, g 1x 2 � x 2

f 1x 2 � log2 x, g 1x 2 � x � 2

f 1x 2 � 3x,  g 1x 2 � x 2 � 1

g 1x 2 � x � 1f 1x 2 � 2x

g � ff � g

y � x log101x � 10 2y �
ln x

x

y � x1ln x 2 2y � x � ln x

y � ln1x2 � x 2y � log1011 � x2 2

h1x 2 � 1x � 2 � log5110 � x 2

h1x 2 � ln x � ln12 � x 2

g1x 2 � ln1x � x2 2g1x 2 � log31x
2 � 1 2

f 1x 2 � log518 � 2x 2f 1x 2 � log101x � 3 2

y � ln 0  x 0y � 0  ln x 0

y � 1 � ln1�x 2y � log31x � 1 2 � 2

g1x 2 � log61x � 3 2h1x 2 � ln1x � 5 2

g1x 2 � ln1x � 2 2f 1x 2 � log21x � 4 2

f 1x 2 � �log10 xg1x 2 � log51�x 2

37. (a) log3 243 � x (b) log3 x � 3

38. (a) log4 2 � x (b) log4 x � 2

39. (a) log10 x � 2 (b) log5 x � 2

40. (a) logx 1000 � 3 (b) logx 25 � 2

41. (a) logx 16 � 4 (b)

42. (a) (b)

43–46 ■ Use a calculator to evaluate the expression, correct to
four decimal places.

43. (a) log 2 (b) log 35.2 (c)

44. (a) log 50 (b) (c)

45. (a) ln 5 (b) ln 25.3 (c)

46. (a) ln 27 (b) ln 7.39 (c) ln 54.6

47–50 ■ Sketch the graph of the function by plotting points.

47. 48.

49. 50.

51–54 ■ Find the function of the form y � loga x whose graph 
is given.

51. 52.

53. 54.

55–56 ■ Match the logarithmic function with one of the graphs
labeled I or II.

55. 56.

57. Draw the graph of y � 4x, then use it to draw the graph of 
y � log4 x.

58. Draw the graph of y � 3x, then use it to draw the graph of 
y � log3 x.

f 1x 2 � ln1x � 2 2f 1x 2 � 2 � ln x

0 x

y

1 963

(9, 2)

1

0 x

y

1 3

1 !3,   @1
2

0 x

y

1
!   , _1@1

2
_1

1

x

y

0 1 5

(5, 1)1

g1x 2 � 1 � log xf 1x 2 � 2 log x

g1x 2 � log4 xf 1x 2 � log3 x

ln11 � 13 2

log13 12 2log 12

logA23B

logx 3 � 1
3logx 6 � 1

2

logx 8 � 3
2
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y

(1, 2)

x0 1

2

I II y

(3, 0)

x1 30

x=2
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where k is a positive constant that depends on the battery. 
For a certain battery, k � 0.25. If this battery is fully dis-
charged, how long will it take to charge to 90% of its maxi-
mum charge C0?

99. Difficulty of a Task The difficulty in “acquiring a target”
(such as using your mouse to click on an icon on your 
computer screen) depends on the distance to the target and
the size of the target. According to Fitts’s Law, the index of
difficulty (ID) is given by

where W is the width of the target and A is the distance to 
the center of the target. Compare the difficulty of clicking on
an icon that is 5 mm wide to clicking on one that is 10 mm
wide. In each case, assume that the mouse is 100 mm from
the icon.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
100. The Height of the Graph of a Logarithmic 

Function Suppose that the graph of y � 2x is drawn on a
coordinate plane where the unit of measurement is an inch.
(a) Show that at a distance 2 ft to the right of the origin the

height of the graph is about 265 mi.
(b) If the graph of y � log2 x is drawn on the same set of

axes, how far to the right of the origin do we have to go
before the height of the curve reaches 2 ft?

101. The Googolplex A googol is 10100, and a googolplex is
10googol. Find

and

102. Comparing Logarithms Which is larger, log4 17 or
log5 24? Explain your reasoning.

103. The Number of Digits in an Integer Compare 
log 1000 to the number of digits in 1000. Do the same for
10,000. How many digits does any number between 1000 
and 10,000 have? Between what two values must the com-
mon logarithm of such a number lie? Use your observations 
to explain why the number of digits in any positive integer 
x is “log x‘ � 1. (The symbol “n‘ is the greatest integer 
function defined in Section 2.2.) How many digits does the
number 2100 have?

log1log1log1googolplex 222log1log1googol 22

ID �
log12A/W 2

log 2

A P P L I C A T I O N S
94. Absorption of Light A spectrophotometer measures the con-

centration of a sample dissolved in water by shining a light
through it and recording the amount of light that emerges. In
other words, if we know the amount of light that is absorbed, we
can calculate the concentration of the sample. For a certain sub-
stance the concentration (in moles per liter) is found by using the
formula

where I0 is the intensity of the incident light and I is the 
intensity of light that emerges. Find the concentration of the
substance if the intensity I is 70% of I0.

95. Carbon Dating The age of an ancient artifact can be 
determined by the amount of radioactive carbon-14 remaining
in it. If D0 is the original amount of carbon-14 and D is the
amount remaining, then the artifact’s age A (in years) is 
given by

Find the age of an object if the amount D of carbon-14 that 
remains in the object is 73% of the original amount D0.

96. Bacteria Colony A certain strain of bacteria divides every
three hours. If a colony is started with 50 bacteria, then the
time t (in hours) required for the colony to grow to N bacteria
is given by

Find the time required for the colony to grow to a million
bacteria.

97. Investment The time required to double the amount of an
investment at an interest rate r compounded continuously is
given by

Find the time required to double an investment at 6%, 7%,
and 8%.

98. Charging a Battery The rate at which a battery charges is
slower the closer the battery is to its maximum charge C0. The
time (in hours) required to charge a fully discharged battery to
a charge C is given by

t � �k ln a1 �
C

C0
b

t �
ln 2

r

t � 3 

log1N/50 2

log 2

A � �8267 ln a
D

D0
b

I0 I

C � �2500 ln a
I

I0
b
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In this section we study properties of logarithms. These properties give logarithmic func-
tions a wide range of applications, as we will see in Section 4.6.

▼ Laws of Logarithms
Since logarithms are exponents, the Laws of Exponents give rise to the Laws of Logarithms.

P R O O F We make use of the property logaax � x from Section 4.3.

Law 1 Let . When written in exponential form, these equa-
tions become

Thus

Law 2 Using Law 1, we have

so

Law 3 Let loga A � u. Then au � A, so

■

E X A M P L E  1 Using the Laws of Logarithms 
to Evaluate Expressions

Evaluate each expression.

(a) log4 2 � log4 32

(b) log2 80 � log2 5

(c) � 
1
3 log 8

loga1A
C 2 � loga1a

u 2C � loga1a
uC 2 � uC � C loga A

loga a
A

B
b � loga A � loga B

loga A � loga c a
A

B
bB d � loga a

A

B
b � loga B

 � u � √ � loga A � loga B

 loga1AB 2 � loga1a
ua√ 2 � loga1a

u�√ 2

au � A  and  a√ � B

loga A � u and loga B � √
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4.4 LAWS OF LOGARITHMS

LEARNING OBJECTIVES After completing this section, you will be able to:

Use the Laws of Logarithms to evaluate logarithmic expressions � Use the Laws
of Logarithms to expand logarithmic expressions � Use the Laws of Logarithms
to combine logarithmic expressions � Use the Change of Base Formula

L AWS OF LOGARITHMS

Let a be a positive number, with a � 1. Let A, B, and C be any real numbers with A � 0 and B � 0.

Law Description

1. The logarithm of a product of numbers is the sum of the logarithms of the numbers.

2. The logarithm of a quotient of numbers is the difference of the logarithms of the
numbers.

3. The logarithm of a power of a number is the exponent times the logarithm of the number.loga1A
C 2 � C loga A

loga a
A

B
b � loga A � loga B

loga1AB 2 � loga A � loga B
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S O L U T I O N

(a) Law 1

Because 64 � 43

(b) Law 2

Because 16 � 24

(c) Law 3

Property of negative exponents

Calculator

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 7, 9, AND 11 ■

▼ Expanding and Combining Logarithmic Expressions
The Laws of Logarithms allow us to write the logarithm of a product or a quotient as the
sum or difference of logarithms. This process, called expanding a logarithmic expression,
is illustrated in the next example.

E X A M P L E  2 Expanding Logarithmic Expressions

Use the Laws of Logarithms to expand each expression.

(a) (b) (c)

S O L U T I O N

(a) Law 1

(b) Law 1

Law 3

(c) Law 2

Law 1

Law 3

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 21, 33, AND 35 ■

The Laws of Logarithms also allow us to reverse the process of expanding that was
done in Example 2. That is, we can write sums and differences of logarithms as a single
logarithm. This process, called combining logarithmic expressions, is illustrated in the
next example.

E X A M P L E  3 Combining Logarithmic Expressions

Combine into a single logarithm.

S O L U T I O N

Law 3

Law 1

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 49 ■

E X A M P L E  4 Combining Logarithmic Expressions

Combine into a single logarithm.3 ln s � 1
2 ln t � 4 ln1t 

2 � 1 2

 � log1x31x � 1 2 1/2 2

 3 log x � 1
2 log1x � 1 2 � log x3 � log1x � 1 2 1/2

3 log x � 1
2 log1x � 1 2

 � ln a � ln b � 1
3 ln c

 � ln a � ln b � ln c1/3

 ln a
ab13 c
b � ln1ab 2 � ln 13 c

 � 3 log5 x � 6 log5 y

 log51x
3y6 2 � log5 x3 � log5 y6

log216x 2 � log2 6 � log2 x

ln a
ab13 c
blog51x

3y6 2log216x 2

 � �0.301

 � logA12B

 � 
1
3 log 8 � log 8�1/3

 � log2 16 � 4

 log2 80 � log2 5 � log2A
 80 

5 B

 � log4 64 � 3

 log4 2 � log4 32 � log412 # 32 2
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S O L U T I O N

Law 3

Law 1

Law 2

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 51 ■

Warning Although the Laws of Logarithms tell us how to compute the logarithm of a
product or a quotient, there is no corresponding rule for the logarithm of a sum or a dif-
ference. For instance,

In fact, we know that the right side is equal to . Also, don’t improperly simplify
quotients or powers of logarithms. For instance,

Logarithmic functions are used to model a variety of situations involving human be-
havior. One such behavior is how quickly we forget things we have learned. For example,
if you learn algebra at a certain performance level (say, 90% on a test) and then don’t use
algebra for a while, how much will you retain after a week, a month, or a year? Hermann
Ebbinghaus (1850–1909) studied this phenomenon and formulated the law described in
the next example.

E X A M P L E  5 The Law of Forgetting

If a task is learned at a performance level P0, then after a time interval t the performance
level P satisfies

where c is a constant that depends on the type of task and t is measured in months.

(a) Solve for P.

(b) If your score on a history test is 90, what score would you expect to get on a simi-
lar test after two months? After a year? (Assume that c � 0.2.)

S O L U T I O N

(a) We first combine the right-hand side.

Given equation

Law 3

Law 2

Because log is one-to-one

(b) Here P0 � 90, c � 0.2, and t is measured in months.

Your expected scores after two months and one year are 72 and 54, respectively.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 71 ■

 In one year:     t � 12     and     P �
90

112 � 1 2 0.2 � 54

 In two months:     t � 2     and     P �
90

12 � 1 2 0.2 � 72

 P �
P0

1t � 1 2 c

 log P � log 
P0

1t � 1 2 c

 log P � log P0 � log1t � 1 2 c

 log P � log P0 � c log1t � 1 2

log P � log P0 � c log1t � 1 2

log 6

log 2
� log a

6

2
b  and  1log2 x 2 3 � 3 log2 x

loga1xy 2

loga1x � y 2 � loga x � loga y

 � ln a
s31t

1t 
2 � 1 2 4

b

 � ln1s3t1/2 2 � ln1t 
2 � 1 2 4

 3 ln s � 1
2 ln t � 4 ln1t 

2 � 1 2 � ln s3 � ln t1/2 � ln1t 
2 � 1 2 4

Forgetting what we’ve learned depends
on how long ago we learned it.
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▼ Change of Base Formula
For some purposes we find it useful to change from logarithms in one base to logarithms
in another base. Suppose we are given loga x and want to find logb x. Let

We write this in exponential form and take the logarithm, with base a, of each side.

Exponential form

Take loga of each side

Law 3

Divide by loga b

This proves the following formula.

In particular, if we put x � a, then loga a � 1, and this formula becomes

We can now evaluate a logarithm to any base by using the Change of Base Formula to
express the logarithm in terms of common logarithms or natural logarithms and then us-
ing a calculator.

E X A M P L E  6 Evaluating Logarithms with the Change 
of Base Formula

Use the Change of Base Formula and common or natural logarithms to evaluate each
logarithm, rounded to five decimal places.

(a) log8 5 (b) log9 20

S O L U T I O N

(a) We use the Change of Base Formula with b � 8 and a � 10:

(b) We use the Change of Base Formula with b � 9 and a � e:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 57 AND 59 ■

E X A M P L E  7 Using the Change of Base Formula to Graph 
a Logarithmic Function

Use a graphing calculator to graph .f 1x 2 � log6 x

log9 20 �
ln 20

ln 9
� 1.36342

log8 5 �
log10 5

log10 8
� 0.77398

logb a �
1

loga b

 y �
loga x

loga b

 y loga b � loga x

 loga1b
y 2 � loga x

 by � x

y � logb x

372 C H A P T E R  4 | Exponential and Logarithmic Functions

CHANGE OF BASE FORMUL A

logb x �
loga x

loga b

We may write the Change of Base
Formula as

So logb x is just a constant multiple 

of loga x; the constant is .
1

loga b

logb x � a
1

loga b
b loga x
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S O L U T I O N Calculators don’t have a key for log6, so we use the Change of Base For-
mula to write

Since calculators do have an key, we can enter this new form of the function and 
graph it. The graph is shown in Figure 1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 65 ■

LN

f 1x 2 � log6 x �
ln x

ln 6
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2

_1

0 36

F I G U R E  1 f 1x 2 � log6 x �
ln x

ln 6

C O N C E P T S
1. The logarithm of a product of two numbers is the same as

the of the logarithms of these numbers. So 

log5125 1252 � � .

2. The logarithm of a quotient of two numbers is the same 

as the of the logarithms of these numbers. So

� � .

3. The logarithm of a number raised to a power is the same as 

the power the logarithm of the number. So 

log5125102 � .

4. (a) We can expand to get .

(b) We can combine 2 log x � log y � log z to get .

5. Most calculators can find logarithms with base and

base . To find logarithms with different bases, we

use the Formula. To find log7 12, we write

6. True or false? We get the same answer if we do the calculation
in Exercise 5 using ln in place of log.

S K I L L S
7–20 ■ Use the Laws of Logarithms to evaluate the expression.

7. log 4 � log 25 8. log12 9 � log12 16

9. log4 192 � log4 3 10. log2 160 � log2 5

11. 12.

13. 14.

15. log2 6 � log2 15 � log2 20

16. log3 100 � log3 18 � log3 50

17. log4 16100 18. log2 833

19. 20. ln1ln ee200

2log1log 1010,000 2

log 
111000

log3 127

3 ln 10�1
2 log 64

log7 12 �
log     

log     
�

log a
x2 y

z
b

#

log51
25
125 2

#

21–46 ■ Use the Laws of Logarithms to expand the expression.

21. 22.

23. 24.

25. log 610 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47–56 ■ Use the Laws of Logarithms to combine the expression.

47. log3 5 � 5 log3 2

48.

49.

50.

51.

52.

53.

54. 21log5 x � 2  log5 y � 3 log5 z 2

ln1a � b 2 � ln1a � b 2 � 2  ln c

log51x
2 � 1 2 � log51x � 1 2

4  log x � 1
3  log1x2 � 1 2 � 2  log1x � 1 2

3 log2 A � 5 log2 B � 2 log2 C

ln 5 � 2  ln x � 3  ln1x2 � 5 2

log 12 � 1
2  log 7 � log 2

log a
10x

x1x2 � 1 2 1x4 � 2 2
bln a

x3
 1x � 1

3x � 4
b

log 3x2y1zlog B x2 � 4

1x2 � 1 2 1x3 � 7 2 2

log a
x13 1 � x

blog 24 x2 � y2

ln 
3x2

1x � 1 2 10ln a x By

z
b

log5 Bx � 1

x � 1
log2 a

x1x2 � 1 22x2 � 1
b

loga a
x2

yz3 blog a
x3y4

z6 b

log31x 1y 2log21AB2 2

ln 1ablog21xy 2 10

log 22a4 � 1log5 23 x2 � 1

log9 24 tln 1z

log6 14 17

log4 
y

y � 3
log21x1x � 1 22

log315y 2log212x 2

4 . 4  E X E R C I S E S
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(b) Use part (a) to show that if k � 3, then doubling the area
increases the number of species eightfold.

73. Magnitude of Stars The magnitude M of a star is a mea-
sure of how bright a star appears to the human eye. It is
defined by 

where B is the actual brightness of the star and B0 is a con-
stant.
(a) Expand the right-hand side of the equation.
(b) Use part (a) to show that the brighter a star, the less its

magnitude.
(c) Betelgeuse is about 100 times brighter than Albiero. Use

part (a) to show that Betelgeuse is 5 magnitudes less
bright than Albiero.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
74. True or False? Discuss each equation, and determine

whether it is true for all possible values of the variables. (Ig-
nore values of the variables for which any term is undefined.)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

( j) �ln a
1

A
b � ln A

log1x � y 2 �
log x

log y

loga aa � a

1log2 7 2 x � x log2 7

log a

log b
� log a � log b

1log P 2 1log Q 2 � log P � log Q

log 2z � z log 2

log5 a
a

b2 b � log5 a � 2 log5 b

log21x � y 2 � log2 x � log2 y

log a
x

y
b �

log x

log y

M � �2.5 log a
B

B0
b

55.

56. loga b � c loga d � r loga s

57–64 ■ Use the Change of Base Formula and a calculator to
evaluate the logarithm, rounded to six decimal places. Use either
natural or common logarithms.

57. log2 5 58. log5 2

59. log3 16 60. log6 92

61. log7 2.61 62. log6 532

63. log4 125 64. log12 2.5

65. Use the Change of Base Formula to show that

Then use this fact to draw the graph of the function
.

66. Draw graphs of the family of functions y � loga x for a � 2, e,
5, and 10 on the same screen, using the viewing rectangle 
30, 54 by 3�3, 34. How are these graphs related?

67. Use the Change of Base Formula to show that

68. Simplify:

69. Show that .

A P P L I C A T I O N S
70. Forgetting Use the Law of Forgetting (Example 5) to esti-

mate a student’s score on a biology test two years after he got
a score of 80 on a test covering the same material. 
Assume that c � 0.3 and t is measured in months.

71. Wealth Distribution Vilfredo Pareto (1848–1923) 
observed that most of the wealth of a country is owned 
by a few members of the population. Pareto’s Principle is

where W is the wealth level (how much money a person has)
and P is the number of people in the population having that
much money.
(a) Solve the equation for P.
(b) Assume that k � 2.1, c � 8000, and that W is measured in 

millions of dollars. Use part (a) to find the number of peo-
ple who have $2 million or more. How many people have
$10 million or more?

72. Biodiversity Some biologists model the number of species
S in a fixed area A (such as an island) by the species-area rela-
tionship

where c and k are positive constants that depend on the type of
species and habitat.
(a) Solve the equation for S.

log S � log c � k log A

log P � log c � k log W

�ln1x � 2x2 � 1 2 � ln1x � 2x2 � 1 2

1log2 5 2 1log5 7 2

log e �
1

ln 10

f 1x 2 � log3 x

log3 x �
ln x

ln 3

1
3 log1x � 2 2 3 � 1

2 3 log x4 � log1x2 � x � 6 2 2 4
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76. Shifting, Shrinking, and Stretching Graphs of Functions
Let . Show that , and explain how 
this shows that shrinking the graph of f horizontally has the
same effect as stretching it vertically. Then use the identities
e2�x � e2ex and to show that for

a horizontal shift is the same as a vertical stretch
and for a horizontal shrinking is the same 
as a vertical shift.

h1x 2 � ln x
g1x 2 � ex

ln12x 2 � ln 2 � ln x

f 12x 2 � 4f 1x 2f 1x 2 � x2
75. Find the Error What is wrong with the following 

argument?

 0.1 � 0.01

 log 0.1 � log 0.01

 � log 0.01

 � log10.1 2 2
 log 0.1 � 2 log 0.1
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4.5 EXPONENTIAL AND LOGARITHMIC EQUATIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve exponential equations � Solve logarithmic equations � Solve 
problems involving compound interest � Calculate annual percentage yield

In this section we solve equations that involve exponential or logarithmic functions. The
techniques that we develop here will be used in the next section for solving applied problems.

▼ Exponential Equations
An exponential equation is one in which the variable occurs in the exponent. Some expo-
nential equations can be solved by using the fact that exponential functions are one-to-
one. This means that 

We use this property in the next example. 

E X A M P L E  1 Exponential Equations

Solve the exponential equation.

(a) (b)

S O L U T I O N

(a) We first express 125 as a power of 5 and then use the fact that the exponential
function is one-to-one:

Given equation

Because 

One-to-one property

The solution is .

(b) We first use the fact that the function is one-to-one:

Given equation

One-to-one property

Solve for x

The solution is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 3 AND 7 ■

The equations in Example 1 were solved by comparing exponents. This method is not suit-
able for solving an equation like because 160 is not easily expressed as a power of
the base 5. To solve such equations, we take the logarithm of each side and use Law 3 of log-
arithms to “bring down the exponent.” The following guidelines describe the process.

5x � 160

x � 1

 x � 1

 2x � x � 1

 52x � 5x�1

f1x 2 � 5x

x � 3

 x � 3

125 � 53 5x � 53

 5x � 125

f1x 2 � 5x

52x � 5x�15x � 125

ax � ay 1  x � y

Law 3: loga A
C � C loga A
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E X A M P L E  2 Solving an Exponential Equation

Consider the exponential equation . 

(a) Find the exact solution of the equation expressed in terms of logarithms.

(b) Use a calculator to find an approximation to the solution rounded to six decimal places.

S O L U T I O N 

(a) We take the common logarithm of each side and use Law 3:

Given equation

Take log of each side

Law 3 (bring down exponent)

Divide by log 3

Subtract 2

The exact solution is .

(b) Using a calculator we find the decimal approximation .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

E X A M P L E  3 Solving an Exponential Equation

Solve the equation 8e2x � 20.

S O L U T I O N We first divide by 8 to isolate the exponential term on one side of the
equation:

Given equation

Divide by 8

Take ln of each side

Property of ln

Divide by 2 (exact solution)

Calculator (approximate solution)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

E X A M P L E  4 Solving an Exponential Equation Algebraically
and Graphically

Solve the equation e3�2x � 4 algebraically and graphically.

 � 0.458

 x �
ln 2.5

2

 2x � ln 2.5

 ln e2x � ln 2.5

 e2x � 20
8

 8e2x � 20

x � �0.228756

x �
log 7

log 3
� 2

 x �
log 7

log 3
� 2

 x � 2 �
log 7

log 3

 1x � 2 2 log 3 � log 7

 log13x�2 2 � log 7

 3x�2 � 7

3x�2 � 7
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We could have used natural logarithms
instead of common logarithms. In 
fact, using the same steps, we get

x �
ln 7

ln 3
� 2 � �0.228756

GUIDELINES FOR SOLVING EXPONENTIAL EQUATIONS

1. Isolate the exponential expression on one side of the equation.

2. Take the logarithm of each side, then use the Laws of Logarithms to “bring
down the exponent.”

3. Solve for the variable.

C H E C K  Y O U R  A N S W E R

Substituting x � �0.228756 into the
original equation and using a calcula-
tor, we get

✓31�0.2287562�2 � 7

C H E C K  Y O U R  A N S W E R

Substituting x � 0.458 into the original
equation and using a calculator, we get

✓8e210.4582 � 20
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S O L U T I O N  1: Algebraic

Since the base of the exponential term is e, we use natural logarithms to solve this equation:

Given equation

Take ln of each side

Property of ln

Subtract 3

Multiply by 

You should check that this answer satisfies the original equation.

S O L U T I O N 2: Graphical

We graph the equations y � e3�2x and y � 4 in the same viewing rectangle as in 
Figure 1. The solutions occur where the graphs intersect. Zooming in on the point of 
intersection of the two graphs, we see that x � 0.81.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 21 ■

E X A M P L E  5 An Exponential Equation of Quadratic Type

Solve the equation .

S O L U T I O N To isolate the exponential term, we factor:

Given equation

Law of Exponents

Factor (a quadratic in ex)

Zero-Product Property

The equation ex � 3 leads to x � ln 3. But the equation ex � �2 has no solution be-
cause ex � 0 for all x. Thus x � ln 3 � 1.0986 is the only solution. You should check
that this answer satisfies the original equation.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

E X A M P L E  6 Solving an Exponential Equation

Solve the equation .

S O L U T I O N First we factor the left side of the equation:

Given equation

Factor out common factors

Divide by ex (because ex ≠ 0)

Zero-Product Property

Thus the solutions are x � 0 and x � �3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

▼ Logarithmic Equations
A logarithmic equation is one in which a logarithm of the variable occurs. Some loga-
rithmic equations can be solved by using the fact that logarithmic functions are one-to-
one. This means that 

We use this property in the next example. 

loga x � loga y 1  x � y

x � 0  or  3 � x � 0

 x13 � x 2 � 0

 x13 � x 2ex � 0

 3xex � x2ex � 0

 3xex � x2ex � 0

ex � �2 ex � 3

ex � 3 � 0  or  ex � 2 � 0

 1ex � 3 2 1ex � 2 2 � 0

 1ex 2 2 � ex � 6 � 0

 e2x � ex � 6 � 0

e2x � ex � 6 � 0

�1
2 x � 1

2 13 � ln 4 2 � 0.807

 �2x � �3 � ln 4

 3 � 2x � ln 4

 ln1e3�2x 2 � ln 4

 e3�2x � 4
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5

0 2

y=4

y=e3_2x

F I G U R E  1

If we let „ � ex, we get the quadratic
equation

which factors as

1„ � 3 2 1„ � 2 2 � 0

„2 � „ � 6 � 0

C H E C K  Y O U R  A N S W E R

:

✓

x � �3:

✓� �9e�3 � 9e�3 � 0

31�3 2e�3 � 1�3 2 2e�3

310 2e0 � 02e0 � 0

x � 0
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E X A M P L E  7 Solving a Logarithmic Equation

Solve the equation .

S O L U T I O N First we combine the logarithms on the right-hand side, and then we use
the one-to-one property of logarithms.  

Given equation

Law 1:

Expand

log is one-to-one (or raise 5 to each side)

Solve for x

The solution is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

The method of Example 7 is not suitable for solving an equation like be-
cause the right-hand side is not expressed as a logarithm (base 5). To solve such equations,
we use the following guidelines.

E X A M P L E  8 Solving Logarithmic Equations

Solve each equation for x.

(a) ln x � 8 (b)

S O L U T I O N

(a) Given equation

Exponential form

Therefore x � e8 � 2981.
We can also solve this problem another way:

Given equation

Raise e to each side

Property of ln

(b) The first step is to rewrite the equation in exponential form:

Given equation

Exponential form (or raise 2 to each side)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 51 AND 55 ■

 x � 25 � 8 � 17

 25 � x � 8

 25 � x � 23

 log2125 � x 2 � 3

 x � e8

 eln x � e8

 ln x � 8

 x � e8

 ln x � 8

log2125 � x 2 � 3

log5 x � 13

x � 7

 x � 7

 x 2 � 1 � x 2 � x � 6

 log51x
2 � 1 2 � log51x

2 � x � 6 2

loga AB � loga A � loga B log51x
2 � 1 2 � log5�1x � 2 2 1x � 3 2 �

 log51x
2 � 1 2 � log51x � 2 2 � log51x � 3 2

log1x 2 � 1 2 � log1x � 2 2 � log1x � 3 2
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GUIDELINES FOR SOLVING LOGARITHMIC EQUATIONS

1. Isolate the logarithmic term on one side of the equation; you might first need
to combine the logarithmic terms.

2. Write the equation in exponential form (or raise the base to each side of the
equation).

3. Solve for the variable.

C H E C K  Y O U R  A N S W E R

If x � 17, we get

✓log2125 � 17 2 � log2 8 � 3

Radiocarbon Dating is a method
that archeologists use to determine the
age of ancient objects. The carbon
dioxide in the atmosphere always con-
tains a fixed fraction of radioactive car-
bon, carbon-14 , with a half-life of
about 5730 years. Plants absorb carbon
dioxide from the atmosphere, which
then makes its way to animals through
the food chain.Thus, all living creatures
contain the same fixed proportions of
14C to nonradioactive 12C as the
atmosphere.

After an organism dies, it stops as-
similating 14C, and the amount of 14C in
it begins to decay exponentially. We
can then determine the time that has
elapsed since the death of the organ-
ism by measuring the amount of 14C
left in it.

For example, if a donkey bone con-
tains 73% as much 14C as a living don-
key and it died t years ago, then by the
formula for radioactive decay (Section
4.6),

We solve this exponential equation to
find t 2600, so the bone is about
2600 years old.

�

0.73 � 11.00 2e�1t ln 22/5730

114C 2

90169_Ch04_345-414.qxd  11/23/11  3:35 PM  Page 378



E X A M P L E  9 Solving a Logarithmic Equation

Solve the equation .

S O L U T I O N We first isolate the logarithmic term. This allows us to write the equation
in exponential form:

Given equation

Subtract 4

Divide by 3

Exponential form (or raise 10 to each side)

Divide by 2

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

E X A M P L E  1 0 Solving a Logarithmic Equation Algebraically 
and Graphically

Solve the equation algebraically and graphically.

S O L U T I O N  1: Algebraic

We first combine the logarithmic terms, using the Laws of Logarithms:

Law 1

Exponential form (or raise 10 to each side)

Expand left side

Subtract 10

Factor

We check these potential solutions in the original equation and find that x � �4 is not a
solution (because logarithms of negative numbers are undefined), but x � 3 is a solu-
tion. (See Check Your Answers.)

S O L U T I O N  2: Graphical

We first move all terms to one side of the equation:

Then we graph

as in Figure 2. The solutions are the x-intercepts of the graph. Thus the only solution is 
x � 3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 59 ■

E X A M P L E  1 1 Solving a Logarithmic Equation Graphically

Solve the equation .

S O L U T I O N We first move all terms to one side of the equation:

Then we graph

y � x2 � 2 ln1x � 2 2

x2 � 2 ln1x � 2 2 � 0

x2 � 2 ln1x � 2 2

y � log1x � 2 2 � log1x � 1 2 � 1

log1x � 2 2 � log1x � 1 2 � 1 � 0

x � �4  or  x � 3

 1x � 4 2 1x � 3 2 � 0
 x2 � x � 12 � 0

 x2 � x � 2 � 10

 1x � 2 2 1x � 1 2 � 10

 log 3 1x � 2 2 1x � 1 2 4 � 1

log1x � 2 2 � log1x � 1 2 � 1

 x � 5000

 2x � 104

 log12x 2 � 4

 3 log12x 2 � 12

 4 � 3 log12x 2 � 16

4 � 3 log12x 2 � 16
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C H E C K  Y O U R  A N S W E R

x � �4:

undefined ✗

x � 3:

✓� log 10 � 1

� log 5 � log 2 � log15 # 2 2

log13 � 2 2 � log13 � 1 2

� log1�2 2 � log1�5 2

log1�4 � 2 2 � log1�4 � 1 2

F I G U R E  2

3

0 6

_3

C H E C K  Y O U R  A N S W E R

If x � 5000, we get

✓ � 16

 � 4 � 314 2

 4 � 3 log 215000 2 � 4 � 3 log 10,000

In Example 11 it’s not possible to iso-
late x algebraically, so we must solve
the equation graphically.
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as in Figure 3. The solutions are the x-intercepts of the graph. Zooming in on the 
x-intercepts, we see that there are two solutions:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 69 ■

Logarithmic equations are used in determining the amount of light that reaches vari-
ous depths in a lake. (This information helps biologists to determine the types of life a
lake can support.) As light passes through water (or other transparent materials such as
glass or plastic), some of the light is absorbed. It’s easy to see that the murkier the water,
the more light is absorbed. The exact relationship between light absorption and the dis-
tance light travels in a material is described in the next example.

E X A M P L E  1 2 Transparency of a Lake

If I0 and I denote the intensity of light before and after going through a material and x is the
distance (in feet) the light travels in the material, then according to the Beer-Lambert Law,

where k is a constant depending on the type of material.

(a) Solve the equation for I.

(b) For a certain lake k � 0.025, and the light intensity is I0 � 14 lumens (lm). Find
the light intensity at a depth of 20 ft.

S O L U T I O N

(a) We first isolate the logarithmic term:

Given equation

Multiply by �k

Exponential form

Multiply by I0

(b) We find I using the formula from part (a):

From part (a)

I0 � 14, k � 0.025, x � 20

Calculator

The light intensity at a depth of 20 ft is about 8.5 lm.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 95 ■

▼ Compound Interest
Recall the formulas for interest that we found in Section 4.1. If a principal P is 
invested at an interest rate r for a period of t years, then the amount A of the investment
is given by

Simple interest (for one year)

Interest compounded n times per year

Interest compounded continuously A1t 2 � Pert

 A1t 2 � P a1 �
r
n
b

nt

 A � P11 � r 2

 � 8.49

 � 14e1�0.02521202

 I � I0e
�kx

 I � I0e
�kx

 
I

I0
� e�kx

 ln a
I

I0
b � �kx

 � 

1

k
 ln a

I

I0
b � x

� 

1

k
 ln a

I

I0
b � x

x � �0.71  and  x � 1.60
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The intensity of light in a lake 
diminishes with depth.

2

_2 3

_2

F I G U R E  3
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We can use logarithms to determine the time it takes for the principal to increase to a
given amount.

E X A M P L E  1 3 Finding the Term for an Investment to Double

A sum of $5000 is invested at an interest rate of 5% per year. Find the time required for
the money to double if the interest is compounded according to the following method.

(a) Semiannually (b) Continuously

S O L U T I O N

(a) We use the formula for compound interest with P � $5000, A1t 2 � $10,000,
r � 0.05, and n � 2 and solve the resulting exponential equation for t:

Divide by 5000

Take log of each side

Law 3 (bring down the exponent)

Divide by 2 log 1.025

Calculator

The money will double in 14.04 years.

(b) We use the formula for continuously compounded interest with P � $5000,
, and r � 0.05 and solve the resulting exponential equation for t:

Pert � A

Divide by 5000

Take ln of each side

Property of ln

Divide by 0.05

Calculator

The money will double in 13.86 years.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 85 ■

E X A M P L E  1 4 Time Required to Grow an Investment

A sum of $1000 is invested at an interest rate of 4% per year. Find the time required for
the amount to grow to $4000 if interest is compounded continuously.

S O L U T I O N We use the formula for continuously compounded interest with P � $1000,
, and r � 0.04 and solve the resulting exponential equation for t:

Pert � A

Divide by 1000

Take ln of each side

Divide by 0.04

Calculator

The amount will be $4000 in about 34 years and 8 months.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 87 ■

 t � 34.66

 t �
ln 4

0.04

 0.04t � ln 4

 e0.04t � 4

 1000e0.04t � 4000

A1t 2 � $4000

 t � 13.86

 t �
ln 2

0.05

 0.05t � ln 2

 ln e0.05t � ln 2

 e0.05t � 2

 5000e0.05t � 10,000

A1t 2 � $10,000

 t � 14.04

 t �
log 2

2 log 1.025

 2t log 1.025 � log 2

 log 1.0252t � log 2

 11.025 2 2t � 2

P a1 �
r
n
b

nt

� A  5000 a1 �
0.05

2
b

2t

� 10,000
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C O N C E P T S
1. Let’s solve the exponential equation .

(a) First, we isolate to get the equivalent equation .
(b) Next, we take ln of each side to get the equivalent equation

.

(c) Now we use a calculator to find x � .

2. Let’s solve the logarithmic equation 

(a) First, we combine the logarithms on the LHS to get the 

equivalent equation .
(b) Next, we write each side in exponential form to get the

equivalent equation .

(c) Now we find x � .

S K I L L S
3–10 ■ Find the solution of the exponential equation, as in 
Example 1.

3. 4.

5. 6.

7. 8.

9. 10.

11–36 ■ (a) Find the exact solution of the exponential equation in
terms of logarithms. (b) Use a calculator to find an approximation
to the solution rounded to six decimal places.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37–44 ■ Solve the equation.

37. 38.

39. 40. ex � 12e�x � 1 � 0e4x � 4e2x � 21 � 0

e2x � ex � 6 � 0e2x � 3ex � 2 � 0

10

1 � e�x � 2
50

1 � e�x � 4

7x/2 � 51�x23x�1 � 3x�2

101�x � 6x5x � 4x�1

4 � 35x � 8411 � 105x 2 � 9

5�x/100 � 23x/14 � 0.1

A14B
x

� 7580.4x � 5

23x � 34e2x�1 � 200

e3�5x � 16e1�4x � 2

211.00625 2 12t � 810011.04 2 2t � 300

2e12x � 173ex � 10

32x�1 � 521�x � 3

e3x � 12e�2x � 7

10�x � 410x � 25

102x2�3 � 109�x2

6x2�1 � 61�x2

ex�2 � e3x�232x�8 � 35x�1

102x�3 � 1
1052x�3 � 1

ex2

� e94x�1 � 64

log 3 � log1x � 2 2 � log x

ex

2ex � 50

41. 42.

43. 44.

45–50 ■ Solve the logarithmic equation for x, as in Example 7.

45.

46.

47.

48.

49.

50.

51–64 ■ Solve the logarithmic equation for x.

51. 52.

53. 54.

55. 56.

57.

58.

59.

60.

61.

62.

63.

64.

65. For what value of x is the following true?

66. For what value of x is it true that ?

67. Solve for x:

68. Solve for x:

69–76 ■ Use a graphing device to find all solutions of the
equation, rounded to two decimal places.

69. 70.

71. 72.

73. 74.

75. 76.

77–80 ■ Solve the inequality.

77.

78.

79. 80. x2ex � 2ex � 0

81–84 ■ Find the inverse function of f.

81. 82.

83. 84. f 1x 2 � log 3xf 1x 2 � log21x � 1 2

f 1x 2 � 3x�1f 1x 2 � 22x

2 � 10x � 5

3 � log2 x � 4

log1x � 2 2 � log19 � x 2 � 1

ex2

� 2 � x3 � x4�x � 1x

2�x � x � 1ex � �x

x � ln14 � x2 2x3 � x � log1x � 1 2

log x � x2 � 2ln x � 3 � x

log2 1log3 x 2 � 4

22/log5 x � 1
16

1log x 2 3 � 3 log x

log1x � 3 2 � log x � log 3

log31x � 15 2 � log31x � 1 2 � 2

log51x � 1 2 � log51x � 1 2 � 2

ln1x � 1 2 � ln1x � 2 2 � 1

log9 1x � 5 2 � log9 1x � 3 2 � 1

log x � log1x � 3 2 � 1

log2 x � log21x � 3 2 � 2

log21x
2 � x � 2 2 � 2

4 � log13 � x 2 � 3

log312 � x 2 � 3log13x � 5 2 � 2

log1x � 4 2 � 3log x � �2

ln12 � x 2 � 1ln x � 10

log41x � 2 2 � log4 3 � log4 5 � log412x � 3 2

log2 3 � log2 x � log2 5 � log21x � 2 2

lnAx � 1
2B � ln 2 � 2 ln x

2 log x � log 2 � log13x � 4 2

log 5  x � log 51x � 1 2 � log 5 20

log x � log1x � 1 2 � log14x 2

x2ex � xex � ex � 04x3e�3x � 3x4e�3x � 0

x210x � x10x � 2110x 2x22x � 2x � 0

4 . 5  E X E R C I S E S
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where I is measured in lumens and x in feet.
(a) Find the intensity I at a depth of 30 ft.
(b) At what depth has the light intensity dropped to I � 5?

95. Atmospheric Pressure Atmospheric pressure P (in kilo-
pascals, kPa) at altitude h (in kilometers, km) is governed by
the formula

where k � 7 and P0 � 100 kPa are constants.
(a) Solve the equation for P.
(b) Use part (a) to find the pressure P at an altitude of 4 km.

96. Cooling an Engine Suppose you’re driving your car on a
cold winter day (20�F outside) and the engine overheats (at
about 220�F). When you park, the engine begins to cool down.
The temperature T of the engine t minutes after you park
satisfies the equation

(a) Solve the equation for T.
(b) Use part (a) to find the temperature of the engine after 

20 min 1t � 202.

97. Electric Circuits An electric circuit contains a battery that
produces a voltage of 60 volts (V), a resistor with a resistance
of 13 ohms (�), and an inductor with an inductance of 5 hen-
rys (H), as shown in the figure. Using calculus, it can be
shown that the current (in amperes, A) t seconds after
the switch is closed is .
(a) Use this equation to express the time t as a function of the

current I.
(b) After how many seconds is the current 2 A?

98. Learning Curve A learning curve is a graph of a function
that measures the performance of someone learning a

skill as a function of the training time t. At first, the rate of
learning is rapid. Then, as performance increases and ap-
proaches a maximal value M, the rate of learning decreases. It
has been found that the function

where k and C are positive constants and C � M is a reason-
able model for learning.
(a) Express the learning time t as a function of the per-

formance level P.
(b) For a pole-vaulter in training, the learning curve is

given by

where is the height he is able to pole-vault afterP1t 2

P1t 2 � 20 � 14e�0.024t

P1t 2 � M � Ce�kt

P1t 2

60 V

13 �

5 H

Switch

I � 60
13 11 � e�13t/5 2

I � I1t 2

ln a
T � 20

200
b � �0.11t

ln a
P

P0
b � � 

h

k

A P P L I C A T I O N S
85. Compound Interest A man invests $5000 in an account

that pays 8.5% interest per year, compounded quarterly.
(a) Find the amount after 3 years.
(b) How long will it take for the investment to double?

86. Compound Interest A woman invests $6500 in an account
that pays 6% interest per year, compounded continuously.
(a) What is the amount after 2 years?
(b) How long will it take for the amount to be $8000?

87. Compound Interest Find the time required for an invest-
ment of $5000 to grow to $8000 at an interest rate of 7.5% per
year, compounded quarterly.

88. Compound Interest Nancy wants to invest $4000 in sav-
ing certificates that bear an interest rate of 9.75% per year,
compounded semiannually. How long a time period should she
choose to save an amount of $5000?

89. Doubling an Investment How long will it take for an in-
vestment of $1000 to double in value if the interest rate is
8.5% per year, compounded continuously?

90. Interest Rate A sum of $1000 was invested for 4 years, and
the interest was compounded semiannually. If this sum amounted
to $1435.77 in the given time, what was the interest rate?

91. Radioactive Decay A 15-g sample of radioactive iodine
decays in such a way that the mass remaining after t days is
given by , where is measured in grams.
After how many days are there only 5 g remaining?

92. Sky Diving The velocity of a sky diver t seconds after
jumping is given by . After how many
seconds is the velocity 70 ft/s?

93. Fish Population A small lake is stocked with a certain
species of fish. The fish population is modeled by the function

where P is the number of fish in thousands and t is measured
in years since the lake was stocked.
(a) Find the fish population after 3 years.
(b) After how many years will the fish population reach 5000

fish?

94. Transparency of a Lake
Environmental scientists
measure the intensity of light
at various depths in a lake to
find the “transparency” of the
water. Certain levels of trans-
parency are required for the
biodiversity of the sub-
merged macrophyte popula-
tion. In a certain lake the in-
tensity of light at depth x is
given by

I � 10e�0.008x

P �
10

1 � 4e�0.8t

√ 1t 2 � 8011 � e�0.2t 2

m1t 2m1t 2 � 15e�0.087t
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Many processes that occur in nature, such as population growth, radioactive decay, heat
diffusion, and numerous others, can be modeled by using exponential functions. Loga-
rithmic functions are used in models for the loudness of sounds, the intensity of earth-
quakes, and many other phenomena. In this section we study exponential and logarithmic
models.

▼ Exponential Growth (Doubling Time)
Suppose we start with a single bacterium, which divides every hour. After one hour we
have 2 bacteria, after two hours we have or 4 bacteria, after three hours we have or
8 bacteria, and so on (see Figure 1). We see that we can model the bacteria population af-
ter t hours by .f 1t 2 � 2t

2322

100. A Surprising Equation Take logarithms to show that the
equation

has no solution. For what values of k does the equation

have a solution? What does this tell us about the graph of the
function ? Confirm your answer using a graph-
ing device.

101. Disguised Equations Each of these equations can be
transformed into an equation of linear or quadratic type by
applying the hint. Solve each equation.
(a) [Take log of each side.]

(b) [Change all logs to base 2.]

(c) [Write as a quadratic in 2x.]4x � 2x�1 � 3

log2 x � log4 x � log8 x � 11

1x � 1 2 log1x�12 � 1001x � 1 2

f 1x 2 � x1/log x

x1/log x � k

x1/log x � 5

t months. After how many months of training is he able to
vault 12 ft?

(c) Draw a graph of the learning curve in part (b).

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
99. Estimating a Solution Without actually solving the equa-

tion, find two whole numbers between which the solution of
must lie. Do the same for . Explain how you

reached your conclusions.
9x � 1009x � 20
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4.6 MODELING WITH EXPONENTIAL AND LOGARITHMIC FUNCTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find exponential models of population growth � Find exponential models of
radioactive decay � Solve problems involving compound interest � Find
models using Newton’s Law of Cooling � Use logarithmic scales (pH, Richter,
and decibel scales)

F I G U R E  1 Bacteria population

0 1 2 3 4 5 6
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If we start with 10 of these bacteria, then the population is modeled by .
A slower-growing strain of bacteria doubles every 3 hours; in this case the population is
modeled by . In general, we have the following.

E X A M P L E  1 Bacteria Population 

Under ideal conditions a certain bacteria population doubles every three hours. Initially
there are 1000 bacteria in a colony.

(a) Find a model for the bacteria population after t hours.

(b) How many bacteria are in the colony after 15 hours?

(c) After how many hours will the bacteria count reach 100,000?

S O L U T I O N   

(a) The population at time t is modeled by 

where t is measured in hours.

(b) After 15 hours the number of bacteria is 

(c) We set in the model that we found in part (a) and solve the result-
ing exponential equation for t:

Divide by 1000

Take log of each side

Properties of log

Solve for t

The bacteria level reaches 100,000 in about 20 hours.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 1 ■

E X A M P L E  2 Rabbit Population 

A certain breed of rabbit was introduced onto a small island 8 months ago.  The current
rabbit population on the island is estimated to be 4100 and doubling every 3 months. 

(a) What was the initial size of the rabbit population?

(b) Estimate the population one year after the rabbits were introduced to the island.

(c) Sketch a graph of the rabbit population.

 t �
6

log 2
� 19.93

 2 �
t

3
  log 2

 log 100 � log 2t/3

 100 � 2t/3

n1t 2 � 1000 # 2t/3 100,000 � 1000 # 2t/3

n1t 2 � 100,000

n115 2 � 1000 # 215/3 � 32,000

n1t 2 � 1000 # 2t/3

f 1t 2 � 10 # 2t/3

f 1t 2 � 10 # 2t
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EXPONENTIAL GROW TH (DOUBLING TIME)

If the intial size of a population is and the doubling time is a, then the size of
the population at time t is 

where a and t are measured in the same time units (minutes, hours, days, years,
and so on).

n1t 2 � n 02
t/a

n 0
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S O L U T I O N   

(a) The doubling time is , so the population at time t is 

Model

where is the initial population. Since the population is 4100 when t is 8 months,
we have 

From model

Because 

Divide by 28/3 and switch sides

Calculator

Thus we estimate that 645 rabbits were introduced onto the island. 

(b) From part (a) we know that the initial population is , so we can model the
population after t months by 

Model

After one year , so

So after one year there would be about 10,000 rabbits.

(c) We first note that the domain is . The graph is shown in Figure 2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 3 ■

▼ Exponential Growth (Relative Growth Rate)
We have used an exponential function with base 2 to model population growth (in terms
of the doubling time). We could also model the same population with an exponential func-
tion with base 3 (in terms of the tripling time). In fact, we can find an exponential model
with any base. If we use the base e, we get the following model of a population in terms
of the relative growth rate r: the rate of population growth expressed as a proportion of
the population at any time. For instance, if , then at any time t the growth rate is
2% of the population at time t.

Notice that the formula for population growth is the same as that for continuously com-
pounded interest. In fact, the same principle is at work in both cases: The growth of a pop-
ulation (or an investment) per time period is proportional to the size of the population (or

r � 0.02

t  0

n112 2 � 645 # 212/3 � 10,320

t � 12

n1t 2 � 645 # 2t/3

n 0 � 645

 n 0 � 645

 n 0 �
4100

28/3

n18 2 � 4100 4100 � n 0 
28/3

 n18 2 � n 0 
28/3

n 0

n1t 2 � n 02t/3

a � 3
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0 20

20,000

F I G U R E  2 n1t 2 � 645 # 2t/3

EXPONENTIAL GROW TH (REL ATIVE GROW TH RATE)

A population that experiences exponential growth increases according to the
model

where � population at time t

n0 � initial size of the population

r � relative rate of growth (expressed as a proportion of the
population)

t � time 

n1t 2

n1t 2 � n0e
rt
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the amount of the investment). A population of 1,000,000 will increase more in one year
than a population of 1000; in exactly the same way, an investment of $1,000,000 will in-
crease more in one year than an investment of $1000.

In the following examples we assume that the populations grow exponentially.

E X A M P L E  3 | Predicting the Size of a Population

The initial bacterium count in a culture is 500. A biologist later makes a sample count
of bacteria in the culture and finds that the relative rate of growth is 40% per hour.

(a) Find a function that models the number of bacteria after t hours.

(b) What is the estimated count after 10 hours?

(c) After how many hours will the bacteria count reach 80,000?

(d) Sketch the graph of the function .

S O L U T I O N

(a) We use the exponential growth model with n0 � 500 and r � 0.4 to get

where t is measured in hours.

(b) Using the function in part (a), we find that the bacterium count after 10 hours is

(c) We set and solve the resulting exponential equation for t:

Divide by 500

Take ln of each side

Solve for t

The bacteria level reaches 80,000 in about 12.7 hours.

(d) The graph is shown in Figure 3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

E X A M P L E  4 | Comparing Different Rates of Population Growth

In 2000 the population of the world was 6.1 billion, and the relative rate of growth was
1.4% per year. It is claimed that a rate of 1.0% per year would make a significant
difference in the total population in just a few decades. Test this claim by estimating the
population of the world in the year 2050 using a relative rate of growth of (a) 1.4% per
year and (b) 1.0% per year.

Graph the population functions for the next 100 years for the two relative growth rates
in the same viewing rectangle.

S O L U T I O N

(a) By the exponential growth model we have

where is measured in billions and t is measured in years since 2000. Because
the year 2050 is 50 years after 2000, we find

The estimated population in the year 2050 is about 12.3 billion.

n150 2 � 6.1e0.014 1502 � 6.1e0.7 � 12.3

n1t 2

n1t 2 � 6.1e0.014t

 t �
ln 160

0.4
� 12.68

 ln 160 � 0.4t

 160 � e0.4t

n1t 2 � 500 # e0.4t 80,000 � 500 # e0.4t

n1t 2 � 80,000

n110 2 � 500e0.4 1102 � 500e4 � 27,300

n1t 2 � 500e0.4t

n1t 2
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0

5000

6
500

n(t)=500eº—¢‰

F I G U R E  3

The relative growth of world popula-
tion has been declining over the past
few decades—from 2% in 1995 to
1.3% in 2006.

Standing Room Only
The population of the world was about
6.1 billion in 2000 and was increasing
at 1.4% per year. Assuming that each
person occupies an average of 4 ft2 of
the surface of the earth, the exponen-
tial model for population growth pro-
jects that by the year 2801 there will be
standing room only! (The total land
surface area of the world is about 
1.8 	 1015 ft2.)
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(b) We use the function

and find

The estimated population in the year 2050 is about 10.1 billion.

The graphs in Figure 4 show that a small change in the relative rate of growth will, over
time, make a large difference in population size.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

E X A M P L E  5 Expressing a Model in Terms of e

A culture starts with 10,000 bacteria, and the number doubles every 40 minutes.

(a) Find a function that models the number of bacteria after t minutes.

(b) Find a function that models the number of bacteria after t minutes.

(c) Sketch a graph of the number of bacteria at time t.

S O L U T I O N   

(a) The initial population is . The doubling time is .
Since , the model is

(b) The initial population is . We need to find the relative growth rate r.
Since there are 20,000 bacteria when , we have

Divide by 10,000

Take ln of each side

Property of ln

Solve for r

Now that we know the relative growth rate r, we can find the model:

(c) We can graph the model in part (a) or the one in part (b). The graphs are identical.
See Figure 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 9 ■

▼ Radioactive Decay
Radioactive substances decay by spontaneously emitting radiation. The rate of decay is
proportional to the mass of the substance. This is analogous to population growth except
that the mass decreases. Physicists express the rate of decay in terms of half-life. For 
example, the half-life of radium-226 is 1600 years, so a 100-g sample decays to 50 g 
1or g2 in 1600 years, then to 25 g 1or g2 in 3200 years, and so on. In1

2 	 1
2 	 1001

2 	 100

n1t 2 � 10,000e1.0397t

 r �
3 ln 2

2
� 1.0397

 ln 2 � r12/3 2

 ln 2 � ln er12/32

 2 � er12/32

n1t 2 � 10,000ert 20,000 � 10,000er12/32

t � 2/3 h
n 0 � 10,000

n1t 2 � 10,000 # 21.5t

1/a � 3/2 � 1.5
a � 40 min � 2/3 hn 0 � 10,000

n1t 2 � n 0ert

n1t 2 � n 02t/a

 n150 2 � 6.1e0.010 1502 � 6.1e0.50 � 10.1

 n1t 2 � 6.1e0.010t
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0 100

n(t)=6.1e0.014t

n(t)=6.1e0.01t

F I G U R E  4

0 4

500,000

F I G U R E  5

Graphs of 
and y � 10,000e1.0397t

y � 10,000 # 21.5t
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general, for a radioactive substance with mass and half-life h, the amount remaining
at time t is modeled by

where h and t are measured in the same time units (minutes, hours, days, years, and so on). 
To express this model in the form , we need to find the relative decay rate

r. Since h is the half-life, we have

Model

h is the half-life

Divide by m0

Take ln of each side

Solve for r

This last equation allows us to find the rate r from the half-life h.

E X A M P L E  6 Radioactive Decay

Polonium-210 has a half-life of 140 days. Suppose a sample of this substance
has a mass of 300 mg.

(a) Find a function that models the mass remaining after t days.

(b) Find a function that models the mass remaining after t days.

(c) Find the mass remaining after one year.

(d) How long will it take for the sample to decay to a mass of 200 mg?

(e) Draw a graph of the sample mass as a function of time.

S O L U T I O N

(a) We have and , so the amount remaining after t days is

(b) We have and , so the amount remaining after t
days is

(c) We use the function we found in part (a) with t � 365 (one year):

Thus approximately 49 mg of 210Po remains after one year.

m1365 2 � 300e�0.0049513652 � 49.256

m1t 2 � 300 # e�0.00495t

r � ln 2/140 � �0.00495m 0 � 300

m1t 2 � 300 # 2�t/140

h � 140m 0 � 300

m1t 2 � m0e�rt

m1t 2 � m02�t/h

1210Po 2

 r �
ln 2

h

 ln 
1

2
� �rh

 
1

2
� e�rh

 
m 0

2
� m 0 

e�rh

 m1t 2 � m 0 
e�rt

m1t 2 � m 0 
ert

m1t 2 � m 0 
2�t/h

m 0
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The half-lives of radioactive elements
vary from very long to very short. Here
are some examples.

Element Half-life

Thorium-232 14.5 billion years
Uranium-235 4.5 billion years
Thorium-230 80,000 years
Plutonium-239 24,360 years
Carbon-14 5,730 years
Radium-226 1,600 years
Cesium-137 30 years
Strontium-90 28 years
Polonium-210 140 days
Thorium-234 25 days
Iodine-135 8 days
Radon-222 3.8 days
Lead-211 3.6 minutes
Krypton-91 10 seconds

RADIOACTIVE DEC AY MODEL

If m0 is the initial mass of a radioactive substance with half-life h, then the mass 
remaining at time t is modeled by the function

where .r �
ln 2

h

m1t 2 � m0e
�rt

In parts (c) and (d) we can also use the
model found in part (a). Check that the
result is the same using either model.
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(d) We use the function that we found in part (b) with and solve the result-
ing exponential equation for t:

m(t) = m0e
�rt

Divided by 300

Take ln of each side

Property of ln

Solve for t

Calculator

The time required for the sample to decay to 200 mg is about 82 days.

(e) We can graph the model in part (a) or the one in part (b). The graphs are identical.
See Figure 6.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

▼ Newton’s Law of Cooling
Newton’s Law of Cooling states that the rate at which an object cools is proportional to
the temperature difference between the object and its surroundings, provided that the tem-
perature difference is not too large. By using calculus, the following model can be de-
duced from this law.

E X A M P L E  7 Newton’s Law of Cooling

A cup of coffee has a temperature of 200�F and is placed in a room that has a tempera-
ture of 70�F. After 10 min the temperature of the coffee is 150�F.

(a) Find a function that models the temperature of the coffee at time t.

(b) Find the temperature of the coffee after 15 min.

 t � 81.9

 t � � 

ln 23
0.00495

 �0.00495t � ln 23

 ln e�0.00495t � ln 23

 e�0.00495t � 2
3

 300e�0.00495t � 200

m1t 2 � 200
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F I G U R E  6

Radioactive Waste
Harmful radioactive isotopes are pro-
duced whenever a nuclear reaction oc-
curs, whether as the result of an atomic
bomb test, a nuclear accident such as
the one at Chernobyl in 1986, or the
uneventful production of electricity at
a nuclear power plant.

One radioactive material that is
produced in atomic bombs is the iso-
tope strontium-90 190Sr2, with a half-life
of 28 years. This is deposited 
like calcium in human bone tissue,
where it can cause leukemia and other
cancers. However, in the decades since
atmospheric testing of nuclear
weapons was halted, 90Sr levels in the
environment have fallen to a level that
no longer poses a threat to health.

Nuclear power plants produce
radioactive plutonium-239 1239Pu2,
which has a half-life of 24,360 years. Be-
cause of its long half-life, 239Pu could
pose a threat to the environment for
thousands of years. So great care must
be taken to dispose of it properly. The
difficulty of ensuring the safety of the
disposed radioactive waste is one rea-
son that nuclear power plants remain
controversial.

©
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er
s/
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RB

IS

NEW TON’S L AW OF COOLING

If D0 is the initial temperature difference between an object and its surroundings,
and if its surroundings have temperature Ts, then the temperature of the object at
time t is modeled by the function

where k is a positive constant that depends on the type of object.

T1t 2 � Ts � D0e
�kt
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(c) After how long will the coffee have cooled to 100�F?

(d) Illustrate by drawing a graph of the temperature function.

S O L U T I O N

(a) The temperature of the room is Ts � 70�F, and the initial temperature difference is

So by Newton’s Law of Cooling, the temperature after t minutes is modeled by the
function

We need to find the constant k associated with this cup of coffee. To do this, we
use the fact that when t � 10, the temperature is . So we have

Ts � D0e
–kt � T(t)

Subtract 70

Divide by 130

Take ln of each side

Solve for k

Calculator

Substituting this value of k into the expression for , we get

(b) We use the function that we found in part (a) with t � 15.

(c) We use the function that we found in part (a) with and solve the result-
ing exponential equation for t:

Ts � D0e
–kt � T(t)

Subtract 70

Divide by 130

Take ln of each side

Solve for t

Calculator

The coffee will have cooled to 100�F after about half an hour.

(d) The graph of the temperature function is sketched in Figure 7. Notice that the line 
t � 70 is a horizontal asymptote. (Why?)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

▼ Logarithmic Scales
When a physical quantity varies over a very large range, it is often convenient to take its
logarithm in order to work with more manageable numbers. On a logarithmic scale, num-

 t � 30.2

 t �
ln 3

13

�0.04855

 �0.04855t � ln 3
13

 e�0.04855t � 3
13

 130e�0.04855t � 30

 70 � 130e�0.04855t � 100

T1t 2 � 100

T115 2 � 70 � 130e�0.048551152 � 133°F

T1t 2 � 70 � 130e�0.04855t

T1t 2

 k � 0.04855

 k � � 
1
10   ln 8

13

 �10k � ln 8
13

 e�10k � 8
13

 130e�10k � 80

 70 � 130e�10k � 150

T110 2 � 150

T1t 2 � 70 � 130e�kt

D0 � 200 � 70 � 130°F
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T=70+130e_0.04855t
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200
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t (min)

T (˚F)

F I G U R E  7 Temperature of coffee 
after t minutes
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bers are represented by their logarithms. For example, the table in the margin gives the
weights W of some animals (in kilograms) and their logarithms ( ).

The weights (W) vary enormously, but on a logarithmic scale, the weights are repre-
sented by more manageable numbers ( ). Figure 8 shows that it is difficult to com-
pare the weights W graphically but easy to compare them on a logarithmic scale. 

We discuss three commonly used logarithmic scales: the pH scale, which measures
acidity; the Richter scale, which measures the intensity of earthquakes; and the decibel
scale, which measures the loudness of sounds. Other quantities that are measured on log-
arithmic scales are light intensity, information capacity, and radiation.

The pH Scale Chemists measured the acidity of a solution by giving its hydrogen ion
concentration until Søren Peter Lauritz Sørensen, in 1909, proposed a more convenient
measure. He defined

where 3H�4 is the concentration of hydrogen ions measured in moles per liter (M). He did
this to avoid very small numbers and negative exponents. For instance,

if M, then

Solutions with a pH of 7 are defined as neutral, those with pH � 7 are acidic, and those
with pH � 7 are basic. Notice that when the pH increases by one unit, decreases by
a factor of 10.

E X A M P L E  8 | pH Scale and Hydrogen Ion Concentration

(a) The hydrogen ion concentration of a sample of human blood was measured to be
Find the pH, and classify the blood as acidic or basic.

(b) The most acidic rainfall ever measured occurred in Scotland in 1974; its pH was
2.4. Find the hydrogen ion concentration.

S O L U T I O N

(a) A calculator gives

Since this is greater than 7, the blood is basic.

(b) To find the hydrogen ion concentration, we need to solve for in the logarith-
mic equation

So we write it in exponential form:

In this case pH � 2.4, so

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 29 AND 31 ■

3H� 4 � 10�2.4 � 4.0 	 10�3 M

3H� 4 � 10�pH

log 3H� 4 � �pH

3H� 4

pH � �log 3H� 4 � �log13.16 	 10�8 2 � 7.5

3H� 4 � 3.16 	 10�8 M.

3H� 4

pH � �log10110�4 2 � �1�4 2 � 43H� 4 � 10�4

pH � �log3H�4

0

0 50,000 100,000 150,000

WhaleAnt Elephant

200,000

1 2 3 4 5 6_6 _5 _4 _3 _2 _1

log W

log W
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pH for Some Common 
Substances

Substance pH

Milk of magnesia 10.5

Seawater 8.0–8.4

Human blood 7.3–7.5

Crackers 7.0–8.5

Hominy 6.9–7.9

Cow’s milk 6.4–6.8

Spinach 5.1–5.7

Tomatoes 4.1–4.4

Oranges 3.0–4.0

Apples 2.9–3.3

Limes 1.3–2.0

Battery acid 1.0

Animal W (kg)

Ant 0.000003
Elephant 4000 3.6
Whale 170,000 5.2

�5.5

log W

F I G U R E  8 Weight graphed on the
real line (top) and on a logarithmic
scale (bottom)
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The Richter Scale In 1935 the American geologist Charles Richter (1900–1984)
defined the magnitude M of an earthquake to be

where I is the intensity of the earthquake (measured by the amplitude of a seismograph reading
taken 100 km from the epicenter of the earthquake) and S is the intensity of a “standard” earth-
quake (whose amplitude is 1 micron � 10�4 cm). The magnitude of a standard earthquake is

Richter studied many earthquakes that occurred between 1900 and 1950. The largest had
magnitude 8.9 on the Richter scale, and the smallest had magnitude 0. This corresponds
to a ratio of intensities of 800,000,000, so the Richter scale provides more manageable
numbers to work with. For instance, an earthquake of magnitude 6 is ten times stronger
than an earthquake of magnitude 5.

E X A M P L E  9 Magnitude of Earthquakes

The 1906 earthquake in San Francisco had an estimated magnitude of 8.3 on the Richter
scale. In the same year a powerful earthquake occurred on the Colombia-Ecuador bor-
der that was four times as intense. What was the magnitude of the Colombia-Ecuador
earthquake on the Richter scale?

S O L U T I O N If I is the intensity of the San Francisco earthquake, then from the defini-
tion of magnitude we have

The intensity of the Colombia-Ecuador earthquake was 4I, so its magnitude was

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

E X A M P L E  1 0 Intensity of Earthquakes

The 1989 Loma Prieta earthquake that shook San Francisco had a magnitude of 7.1 on
the Richter scale. How many times more intense was the 1906 earthquake (see 
Example 9) than the 1989 event?

S O L U T I O N If I1 and I2 are the intensities of the 1906 and 1989 earthquakes, then we
are required to find I1/I2. To relate this to the definition of magnitude, we divide the nu-
merator and denominator by S:

Divide numerator and denominator by S

Law 2 of logarithms

Definition of earthquake magnitude

Therefore

The 1906 earthquake was about 16 times as intense as the 1989 earthquake.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

I1

I2
� 10log1I1/I22 � 101.2 � 16

 � 8.3 � 7.1 � 1.2

 � log 
I1

S
� log 

I2

S

 log 
I1

I2
� log 

I1/S

I2/S

M � log 
4I

S
� log 4 � log 

I

S
� log 4 � 8.3 � 8.9

M � log 
I

S
� 8.3

M � log 
S

S
� log 1 � 0
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Largest Earthquakes

Location Date Magnitude

Chile 1960 9.5

Alaska 1964 9.2

Japan 2011 9.1

Sumatra 2004 9.1

Alaska 1957 9.1

Kamchatka 1952 9.0

Chile 2010 8.8

Ecuador 1906 8.8

Alaska 1965 8.7

Sumatra 2005 8.7

Tibet 1950 8.6

Kamchatka 1923 8.5

Indonesia 1938 8.5

M � log 
I

S

©
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The Decibel Scale The ear is sensitive to an extremely wide range of sound intensities.
We take as a reference intensity I0 � 10�12 W/m2 (watts per square meter) at a frequency of
1000 hertz, which measures a sound that is just barely audible (the threshold of hearing). The
psychological sensation of loudness varies with the logarithm of the intensity (the Weber-
Fechner Law), so the intensity level B, measured in decibels (dB), is defined as

The intensity level of the barely audible reference sound is

E X A M P L E  1 1 Sound Intensity of a Jet Takeoff

Find the decibel intensity level of a jet engine during takeoff if the intensity was mea-
sured at 100 W/m2.

S O L U T I O N From the definition of intensity level we see that

Thus the intensity level is 140 dB.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

The table in the margin lists decibel intensity levels for some common sounds ranging
from the threshold of human hearing to the jet takeoff of Example 11. The threshold of
pain is about 120 dB.

B � 10 log 
I

I0
� 10 log 

102

10�12 � 10 log 1014 � 140 dB

B � 10 log 
I0

I0
� 10 log 1 � 0 dB
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A P P L I C A T I O N S
1–16 ■ These exercises use the population growth model.

1. Bacteria Culture A certain culture of the bacterium Strep-
tococcus A initially has 10 bacteria and is observed to double
every 1.5 hours.
(a) Find an exponential model for the number of

bacteria in the culture after t hours.
(b) Estimate the number of bacteria after 35 hours.
(c) After how many hours will the bacteria count reach 10,000?

Streptococcus A
112,000 	 magnification 2

n1t 2 � n 02
t/a

2. Bacteria Culture A certain culture of the bacterium
Rhodobacter sphaeroides initially has 25 bacteria and is ob-
served to double every 5 hours.
(a) Find an exponential model for the number of

bacteria in the culture after t hours.
(b) Estimate the number of bacteria after 18 hours.
(c) After how many hours will the bacteria count reach 

1 million?

3. Squirrel Population A grey squirrel population was intro-
duced in a certain county of Great Britain 30 years ago.  Biol-
ogists observe that the population doubles every 6 years, and
now the population is 100,000.
(a) What was the initial size of the squirrel population?
(b) Estimate the squirrel population 10 years from now.
(c) Sketch a graph of the squirrel population.

4. Bird Population A certain species of bird was introduced
in a certain county 25 years ago.  Biologists observe that the
population doubles every 10 years, and now the population is
13,000.
(a) What was the initial size of the bird population?
(b) Estimate the bird population 5 years from now.
(c) Sketch a graph of the bird population.

n1t 2 � n 02
t/a

4 . 6  E X E R C I S E S

The intensity levels of sounds that
we can hear vary from very loud to very
soft. Here are some examples of the
decibel levels of commonly heard
sounds.

Source of sound B

Jet takeoff 140

Jackhammer 130

Rock concert 120

Subway 100

Heavy traffic 80

Ordinary traffic 70

Normal conversation 50

Whisper 30

Rustling leaves 10–20

Threshold of hearing 0

1dB 211 22

Im
ag

e 
co

py
rig

ht
 S

eb
as

tia
n 

Ka
ul

itz
ki

 2
00

9.
 

Us
ed

 u
nd

er
 li

ce
ns

e 
fro

m
 S

hu
tte

rs
to

ck
.c

om

B � 10 log 
I

I0

90169_Ch04_345-414.qxd  11/23/11  3:36 PM  Page 394



(c) What is the projected deer population in 2011?
(d) Estimate how long it takes the population to reach 100,000.

12. Frog Population Some bullfrogs were introduced into a
small pond.  The graph shows the bullfrog population for the
next few years.  Assume that the population grows exponentially.
(a) What was the initial bullfrog population?
(b) Find a function that models the bullfrog population t years

since the bullfrogs were put into the pond.
(c) What is the projected bullfrog population after 15 years?
(d) Estimate how long it takes the population to reach 75,000.

13. Bacteria Culture A culture starts with 8600 bacteria. After
one hour the count is 10,000.
(a) Find a function that models the number of bacteria 

after t hours.
(b) Find the number of bacteria after 2 hours.
(c) After how many hours will the number of bacteria double?

14. Bacteria Culture The count in a culture of bacteria was
400 after 2 hours and 25,600 after 6 hours.
(a) What is the relative rate of growth of the bacteria popula-

tion? Express your answer as a percentage.
(b) What was the initial size of the culture?
(c) Find a function that models the number of bacteria 

after t hours.
(d) Find the number of bacteria after 4.5 hours.
(e) After how many hours will the number of bacteria reach

50,000?

15. Population of California The population of California was
29.76 million in 1990 and 33.87 million in 2000. Assume that
the population grows exponentially.
(a) Find a function that models the population t years after 1990.
(b) Find the time required for the population to double.
(c) Use the function from part (a) to predict the population of

California in the year 2010. Look up California’s actual
population in 2010, and compare.

n1t 2

n1t 2

400
500

300
200
100

2 3 40 t

700

(2, 225)

600
Frog

population

n

51 6

Deer
population

0 1 2 43

10,000

t

n(t)

20,000

30,000
(4, 31,000)

Years since 2003

5. Fox Population The fox population in a certain region has
a relative growth rate of 8% per year. It is estimated that the
population in 2005 was 18,000.
(a) Find a function that models the population 

t years after 2005.
(b) Use the function from part (a) to estimate the fox popula-

tion in the year 2013.
(c) After how many years will the fox population reach 25,000?
(d) Sketch a graph of the fox population function for the years

2005–2013.

6. Fish Population The population of a certain species of fish
has a relative growth rate of 1.2% per year.  It is estimated that
the population in 2000 was 12 million. 
(a) Find an exponential model for the population

t years after 2000.
(b) Estimate the fish population in the year 2005.
(c) After how many years will the fish population reach 

14 million?
(d) Sketch a graph of the fish population.

7. Population of a Country The population of a country has
a relative growth rate of 3% per year. The government is try-
ing to reduce the growth rate to 2%. The population in 1995
was approximately 110 million. Find the projected population
for the year 2020 for the following conditions.
(a) The relative growth rate remains at 3% per year.
(b) The relative growth rate is reduced to 2% per year.

8. Bacteria Culture It is observed that a certain bacteria culture
has a relative growth rate of 12% per hour, but in the presence of
an antibiotic the relative growth rate is reduced to 5% per hour.
The initial number of bacteria in the culture is 22. Find the pro-
jected population after 24 hours for the following conditions.
(a) No antibiotic is present, so the relative growth rate is 12%.
(b) An antibiotic is present in the culture, so the relative

growth rate is reduced to 5%.

9. Population of a City The population of a certain city was
112,000 in 2006, and the observed doubling time for the popu-
lation is 18 years. 
(a) Find an exponential model for the population

t years after 2006.
(b) Find an exponential model for the population

t years after 2006.
(c) Sketch a graph of the population at time t.
(d) Estimate how long it takes the population to reach 500,000.

10. Bat Population The bat population in a certain Midwestern
county was 350,000 in 2009, and the observed doubling time
for the population is 25 years. 
(a) Find an exponential model for the population

t years after 2006.
(b) Find an exponential model for the population

t years after 2006.
(c) Sketch a graph of the population at time t.
(d) Estimate how long it takes the population to reach 2 million.

11. Deer Population The graph shows the deer population in a
Pennsylvania county between 2003 and 2007. Assume that the
population grows exponentially.
(a) What was the deer population in 2003?
(b) Find a function that models the deer population t years

after 2003.

n1t 2 � n 0e
rt

n1t 2 � n 02
t/a

n1t 2 � n 0e
rt

n1t 2 � n 02
t/a

n1t 2 � n 0e
rt

n1t 2 � n 0e
rt
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where t is measured in minutes and T is measured in �F.
(a) What is the initial temperature of the soup?
(b) What is the temperature after 10 min?
(c) After how long will the temperature be 100�F?

26. Time of Death Newton’s Law of Cooling is used in homi-
cide investigations to determine the time of death. The normal
body temperature is 98.6 �F. Immediately following death, the
body begins to cool. It has been determined experimentally
that the constant in Newton’s Law of Cooling is approximately 
k � 0.1947, assuming that time is measured in hours. Suppose
that the temperature of the surroundings is 60�F.
(a) Find a function that models the temperature t hours

after death.
(b) If the temperature of the body is now 72�F, how long ago

was the time of death?

27. Cooling Turkey A roasted turkey is taken from an oven
when its temperature has reached 185�F and is placed on a
table in a room where the temperature is 75�F.
(a) If the temperature of the turkey is 150�F after half an

hour, what is its temperature after 45 min?
(b) After how many hours will the turkey cool to 100�F?

28. Boiling Water A kettle full of water is brought to a boil in a
room with temperature 20�C. After 15 min the temperature of
the water has decreased from 100�C to 75�C. Find the temper-
ature after another 10 min. Illustrate by graphing the tempera-
ture function.

29–42 ■ These exercises deal with logarithmic scales.

29. Finding pH The hydrogen ion concentration of a sample of
each substance is given. Calculate the pH of the substance.
(a) Lemon juice: 3H�4 � 5.0 	 10�3 M
(b) Tomato juice: 3H�4 � 3.2 	 10�4 M
(c) Seawater: 3H�4 � 5.0 	 10�9 M

30. Finding pH An unknown substance has a hydrogen ion con-
centration of 3H�4 � 3.1 	 10�8 M. Find the pH and classify
the substance as acidic or basic.

31. Ion Concentration The pH reading of a sample of each
substance is given. Calculate the hydrogen ion concentration
of the substance.
(a) Vinegar: pH � 3.0
(b) Milk: pH � 6.5

32. Ion Concentration The pH reading of a glass of liquid is
given. Find the hydrogen ion concentration of the liquid.
(a) Beer: pH � 4.6
(b) Water: pH � 7.3

33. Finding pH The hydrogen ion concentrations in cheeses
range from 4.0 	 10�7 M to 1.6 	 10�5 M. Find the corre-
sponding range of pH readings.

T 1t 2

16. World Population The population of the world was 
5.7 billion in 1995, and the observed relative growth rate was
2% per year.
(a) Estimate how long it takes the population to double.
(b) Estimate how long it takes the population to triple.

17–24 ■ These exercises use the radioactive decay model.

17. Radioactive Radium The half-life of radium-226 is 1600
years. Suppose we have a 22-mg sample.
(a) Find a function that models the mass re-

maining after t years.
(b) Find a function that models the mass re-

maining after t years.
(c) How much of the sample will remain after 4000 years?
(d) After how many years will only 18 mg of the sample 

remain?

18. Radioactive Cesium The half-life of cesium-137 is 
30 years. Suppose we have a 10-g sample.
(a) Find a function that models the mass re-

maining after t years.
(b) Find a function that models the mass re-

maining after t years.
(c) How much of the sample will remain after 80 years?
(d) After how many years will only 2 g of the sample remain?

19. Radioactive Strontium The half-life of strontium-90 is 
28 years. How long will it take a 50-mg sample to decay to a
mass of 32 mg?

20. Radioactive Radium Radium-221 has a half-life of 30 s.
How long will it take for 95% of a sample to decay?

21. Finding Half-life If 250 mg of a radioactive element decays
to 200 mg in 48 hours, find the half-life of the element.

22. Radioactive Radon After 3 days a sample of radon-222
has decayed to 58% of its original amount.
(a) What is the half-life of radon-222?
(b) How long will it take the sample to decay to 20% of its

original amount?

23. Carbon-14 Dating A wooden artifact from an ancient 
tomb contains 65% of the carbon-14 that is present in living
trees. How long ago was the artifact made? (The half-life of
carbon-14 is 5730 years.)

24. Carbon-14 Dating The burial cloth of an Egyptian mummy
is estimated to contain 59% of the carbon-14 it contained orig-
inally. How long ago was the mummy buried? (The half-life of
carbon-14 is 5730 years.)

25–28 ■ These exercises use Newton’s Law of Cooling.

25. Cooling Soup A hot bowl of soup is served at a dinner
party. It starts to cool according to Newton’s Law of Cooling,
so its temperature at time t is given by

T1t 2 � 65 � 145e�0.05t

m1t 2 � m 0e
�rt

m1t 2 � m 02
�t/h

m1t 2 � m 0e
�rt

m1t 2 � m 02
�t/h
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40. Subway Noise The intensity of the sound of a subway train
was measured at 98 dB. Find the intensity in W/m2.

41. Comparing Decibel Levels The noise from a power
mower was measured at 106 dB. The noise level at a rock con-
cert was measured at 120 dB. Find the ratio of the intensity of
the rock music to that of the power mower.

42. Inverse Square Law for Sound A law of physics states
that the intensity of sound is inversely proportional to the
square of the distance d from the source: I � k/d 2.
(a) Use this model and the equation

(described in this section) to show that the decibel levels
B1 and B2 at distances d1 and d2 from a sound source are
related by the equation

(b) The intensity level at a rock concert is 120 dB at a dis-
tance 2 m from the speakers. Find the intensity level at a
distance of 10 m.

B2 � B1 � 20 log 
d1

d2

B � 10 log 
I

I0

34. Ion Concentration in Wine The pH readings for wines
vary from 2.8 to 3.8. Find the corresponding range of hydro-
gen ion concentrations.

35. Earthquake Magnitudes If one earthquake is 20 times as
intense as another, how much larger is its magnitude on the
Richter scale?

36. Earthquake Magnitudes The 1906 earthquake in San
Francisco had a magnitude of 8.3 on the Richter scale. At the
same time in Japan an earthquake with magnitude 4.9 caused
only minor damage. How many times more intense was the
San Francisco earthquake than the Japan earthquake? 

37. Earthquake Magnitudes The Japan earthquake of 2011
had a magnitude of 9.1 on the Richter scale. How many times
more intense was this than the 1906 San Francisco earth-
quake? (See Exercise 36.)

38. Earthquake Magnitudes The Northridge, California,
earthquake of 1994 had a magnitude of 6.8 on the Richter
scale. A year later, a 7.2-magnitude earthquake struck Kobe,
Japan. How many times more intense was the Kobe earth-
quake than the Northridge earthquake?

39. Traffic Noise The intensity of the sound of traffic at a busy
intersection was measured at 2.0 	 10�5 W/m2. Find the in-
tensity level in decibels.
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Exponential Functions (pp. 346–348)

The exponential function f with base a (where ) is
defined for all real numbers x by

The domain of f is , and the range of f is The graph of f
has one of the following shapes, depending on the value of a:

The Natural Exponential Function (p. 354)

The natural exponential function is the exponential function with
base e:

f 1x 2 � ex

10, q 2�

f 1x 2 � ax

a � 0, a � 1

The number e is defined to be the number that the expression
approaches as An approximate value for the 

irrational number e is

Compound Interest (pp. 350, 356)

If a principal P is invested in an account paying an annual interest
rate r, compounded n times a year, then after t years the amount

in the account is

If the interest is compounded continuously, then the amount is

Logarithmic Functions (pp. 359–361)

The logarithmic function with base a (where ) 
is defined for by

So is the exponent to which the base a must be raised to 
give y.

loga x

loga x � y 3 ay � x

x � 0
a � 0, a � 1loga

A1t 2 � Pert

A1t 2 � P ¢1 �
r

n
≤nt

A1t 2

e � 2.7182818284590 p

n � q.11 � 1/n 2 n
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Ï=a˛ for a>1 Ï=a˛ for 0<a<1

0 x

y

(0, 1)
0 x

y

(0, 1)
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Guidelines for Solving Logarithmic Equations (p. 378)

1. Isolate the logarithmic term(s) on one side of the equation, and
use the Laws of Logarithms to combine logarithmic terms if
necessary.

2. Rewrite the equation in exponential form.

3. Solve for the variable.

Exponential Growth Model (p. 386)

A population experiences exponential growth if it can be mod-
eled by the exponential function

where is the population at time t, is the initial population
(at time t = 0), and r is the relative growth rate (expressed as a pro-
portion of the population).

Radioactive Decay Model (p. 389)

If a radioactive substance with half-life h has initial mass m0,
then at time t the mass of the substance that remains is mod-
eled by the exponential function

where .

Newton’s Law of Cooling (p. 390)

If an object has an initial temperature that is degrees warmer
than the surrounding temperature then at time t the temperature

of the object is modeled by the function

where the constant depends on the size and type of the 
object.

Logarithmic Scales (pp. 391–394)

The pH scale measures the acidity of a solution:

The Richter scale measures the intensity of earthquakes:

The decibel scale measures the intensity of sound:

B � 10 log
I

I0

M � log 

I

S

pH � �log 3H� 4

k � 0

T1t 2 � Ts � D0 e�kt

T1t 2
Ts,

D0

r �
ln 2

h

m1t 2 � m0e
�rt

m1t 2

n0n1t 2

n1t 2 � n0e
rt

The domain of is , and the range is . For , the
graph of the function has the following shape:

y � loga x, a � 1

Common and Natural Logarithms (pp. 363–365)

The logarithm function with base 10 is called the common
logarithm and is denoted log. So

The logarithm function with base e is called the natural loga-
rithm and is denoted ln. So

Properties of Logarithms (pp. 360, 365)

1. 2.

3. 4.

Laws of Logarithms (p. 369)

Let a be a logarithm base and let A, B, and C be
any real numbers or algebraic expressions that represent real num-
bers, with and . Then:

1.

2.

3.

Change of Base Formula (p. 372)

Guidelines for Solving Exponential Equations (p. 376)

1. Isolate the exponential term on one side of the equation.

2. Take the logarithm of each side, and use the Laws of Loga-
rithms to “bring down the exponent.”

3. Solve for the variable.

logb x �
loga x

loga b

loga1A
C 2 � C loga  A

loga1A/B 2 � loga   A � loga B

loga1AB 2 � loga  A � loga B

B � 0A � 0

1a � 0, a � 1 2 ,

aloga 
x � xloga ax � x

loga a � 1loga 1 � 0

ln x � loge  x

log x � log10  x

x 

y 

0 1 

loga

a � 1�10, q 2loga
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Section After completing this chapter, you should be able to . . . Review Exercises

4.1 ■ Evaluate exponential functions 1–2
■ Graph exponential functions 5–8, 75–76, 82, 83
■ Calculate compound interest 91–92

4.2 ■ Evaluate the natural exponential function 3–4
■ Graph the natural exponential function 9–10
■ Calculate continuously compounded interest 91–92
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4.3 ■ Evaluate logarithmic functions 29–44
■ Graph logarithmic functions 11–16, 17–20, 77–78, 81, 84
■ Change between logarithmic and exponential forms of an expression 21–28
■ Use basic properties of logarithms 29–37
■ Use common and natural logarithms 23–24, 27–28, 31–33, 38–39, 44

4.4 ■ Use the Laws of Logarithms to evaluate logarithmic expressions 38–44
■ Use the Laws of Logarithms to expand logarithmic expressions 45–50
■ Use the Laws of Logarithms to combine logarithmic expressions 51–56
■ Use the Change of Base Formula 85–88

4.5 ■ Solve exponential equations 57–64, 71–76, 80
■ Solve logarithmic equations 65–70, 79
■ Solve problems involving compound interest 92–94
■ Calculate annual percentage yield 95–96

4.6 ■ Find exponential models of population growth 97–98, 103
■ Find exponential models of radioactive decay 99–102
■ Find models using Newton's Law of Cooling 104
■ Use logarithmic scales (pH, Richter, and decibel scales) 105–108

1–4 ■ Use a calculator to find the indicated values of the exponen-
tial function, rounded to three decimal places.

1.

2.

3.

4.

5–16 ■ Sketch the graph of the function. State the domain, range,
and asymptote.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17–20 ■ Find the domain of the function.

17.

18.

19.

20.

21–24 ■ Write the equation in exponential form.

21. 22.

23. 24. ln c � 17log  x � y

log6 37 � xlog2 1024 � 10

k1x 2 � ln 0 x 0

h1x 2 � ln1x2 � 4 2

g1x 2 � log12 � x � x2 2

f 1x 2 � 10x2

� log11 � 2x 2

g1x 2 � ln1x2 2g1x 2 � 2 ln  x

f 1x 2 � 3 � log51x � 4 2f 1x 2 � 2 � log2 x

g1x 2 � log1�x 2f 1x 2 � log31x � 1 2

G1x 2 � �ex�1 � 2F1x 2 � ex�1 � 1

g1x 2 � 5�x � 5g1x 2 � 3 � 2x

f 1x 2 � 2�x�1f 1x 2 � 3x�2

g1x 2 � 7
4  
e 

x�1; g1�2 2 , g123 2 , g13.6 2

g1x 2 � 4ex�2; g1�0.7 2 , g11 2 , g1p 2

f 1x 2 � 3 # 2x; f 1�2.2 2 , f 127 2 , f 15.5 2

f 1x 2 � 5x; f 1�1.5 2 , f 122 2 , f 12.5 2

25–28 ■ Write the equation in logarithmic form.

25. 26.

27. 28.

29–44 ■ Evaluate the expression without using a calculator.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45–50 ■ Expand the logarithmic expression.

45. 46.

47. 48.

49. 50.

51–56 ■ Combine into a single logarithm.

51.

52.

53. 3
2   log2 1x � y 2 � 2 log2 1x

2 � y2 2

log x � log1x2y 2 � 3 log y

log 6 � 4 log 2

ln a
23 x4 � 12

1x � 16 2  1x � 3
blog5 a

x211 � 5x 2 3/22x3 � x
b

log a
4x3

y21x � 1 2 5
bln Bx2 � 1

x2 � 1

log2 1x 2x2 � 1 2log1AB2C3 2

log log 10100log8 6 � log8 3 � log8 2

log5 250 � log5 2log2 1623

log3 1243log 25 � log 4

e2ln7log5 15

2log213log3A
1

 27 
B

log4 8ln1e6 2

log 0.00000110log 45

log8 1log2 128

ek � m10x � 74

49�1/2 � 1
726 � 64

■ E X E R C I S E S
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89. Which is larger, log4 258 or log5 620?

90. Find the inverse of the function , and state its 
domain and range.

91. If $12,000 is invested at an interest rate of 10% per year, find
the amount of the investment at the end of 3 years for each
compounding method.
(a) Semiannually (b) Monthly
(c) Daily (d) Continuously

92. A sum of $5000 is invested at an interest rate of % per
year, compounded semiannually.
(a) Find the amount of the investment after years.
(b) After what period of time will the investment amount

to $7000?
(c) If interest were compounded continously instead of semi-

annually, how long would it take for the amount to grow
to $7000?

93. A money market account pays 5.2% annual interest, com-
pounded daily. If $100,000 is invested in this account, how
long will it take for the account to accumulate $10,000 in
interest?

94. A retirement savings plan pays 4.5% interest, compounded
continuously. How long will it take for an investment in this
plan to double?

95–96 ■ Determine the annual percentage yield (APY) for 
the given nominal annual interest rate and compounding 
frequency.

95. 4.25%; daily

96. 3.2%; monthly

97. The stray-cat population in a small town grows exponen-
tially. In 1999 the town had 30 stray cats, and the relative
growth rate was 15% per year.
(a) Find a function that models the stray-cat population 

after t years.
(b) Find the projected population after 4 years.
(c) Find the number of years required for the stray-cat popu-

lation to reach 500.

98. A culture contains 10,000 bacteria initially. After an hour the
bacteria count is 25,000.
(a) Find the doubling period.
(b) Find the number of bacteria after 3 hours.

99. Uranium-234 has a half-life of 2.7 	 105 years.
(a) Find the amount remaining from a 10-mg sample after a

thousand years.
(b) How long will it take this sample to decompose until its

mass is 7 mg?

100. A sample of bismuth-210 decayed to 33% of its original
mass after 8 days.
(a) Find the half-life of this element.
(b) Find the mass remaining after 12 days.

101. The half-life of radium-226 is 1590 years.
(a) If a sample has a mass of 150 mg, find a function that

models the mass that remains after t years.
(b) Find the mass that will remain after 1000 years.
(c) After how many years will only 50 mg remain?

n1t 2

11
2

8 1
2

f 1x 2 � 23x

54.

55.

56.

57–70 ■ Solve the equation. Find the exact solution if possible;
otherwise, use a calculator to approximate to two decimals.

57. 58.

59. 60.

61. 62.

63. 64.

65.

66.

67.

68.

69.

70.

71–74 ■ Use a calculator to find the solution of the equation,
rounded to six decimal places.

71. 72.

73. 74.

75–78 ■ Draw a graph of the function and use it to determine the
asymptotes and the local maximum and minimum values.

75. 76.

77. 78.

79–80 ■ Find the solutions of the equation, rounded to two deci-
mal places.

79. 80.

81–82 ■ Solve the inequality graphically.

81. 82.

83. Use a graph of to find, approximately,
the intervals on which f is increasing and on which f is
decreasing.

84. Find an equation of the line shown in the figure.

85–88 ■ Use the Change of Base Formula to evaluate the loga-
rithm, rounded to six decimal places.

85. 86.

87. 88. log100 250log9 0.28

log71
3
4 2log4 15

xea

y=ln x

y

0

f 1x 2 � e x � 3e�x � 4x

ex � 4x2ln x � x � 2

4 � x2 � e�2x3 log  x � 6 � 2x

y � 2x2 � ln xy � log1x3 � x 2

y � 10x � 5xy � ex/1x�22

e�15k � 10,00052x�1 � 34x�1

23x�5 � 75�2x/3 � 0.63

log81x � 5 2 � log81x � 2 2 � 1

log31x � 8 2 � log3 x � 2

ln12x � 3 2 � 1 � 0

log211 � x 2 � 4

ln1x � 2 2 � ln 3 � ln15x � 7 2

log  x � log1x � 1 2 � log 12

32x � 3x � 6 � 0x2e2x � 2xe2x � 8e2x

e3x/4 � 1041�x � 32x�5

106�3x � 1823x�5 � 7

54�x � 1
12532x�7 � 27

1
2 3 ln1x � 4 2 � 5 ln1x2 � 4x 2 4

log1x � 2 2 � log1x � 2 2 � 1
2 log1x2 � 4 2

log5 2 � log5 1x � 1 2 � 1
3 log5 13x � 7 2
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104. A car engine runs at a temperature of 190�F. When the en-
gine is turned off, it cools according to Newton’s Law of
Cooling with constant k � 0.0341, where the time is mea-
sured in minutes. Find the time needed for the engine to cool
to 90�F if the surrounding temperature is 60�F.

105. The hydrogen ion concentration of fresh egg whites was
measured as

Find the pH, and classify the substance as acidic or basic.

106. The pH of lime juice is 1.9. Find the hydrogen ion
concentration.

107. If one earthquake has magnitude 6.5 on the Richter scale,
what is the magnitude of another quake that is 35 times as
intense?

108. The drilling of a jackhammer was measured at 132 dB. The
sound of whispering was measured at 28 dB. Find the ratio
of the intensity of the drilling to that of the whispering.

3H� 4 � 1.3 	 10�8 M

102. The half-life of palladium-100 is 4 days. After 20 days a
sample has been reduced to a mass of 0.375 g.
(a) What was the initial mass of the sample?
(b) Find a function that models the mass remaining after

t days.
(c) What is the mass after 3 days?
(d) After how many days will only 0.15 g remain?

103. The graph shows the population of a rare species of bird,
where t represents years since 1999 and is measured in
thousands.
(a) Find a function that models the bird population at time t

in the form .
(b) What is the bird population expected to be in the year 2010?

0 t

n(t)
4000

1 5432

1000

2000

3000
Bird

population

Years since 1999

(5, 3200)

n1t 2 � n0e rt

n1t 2
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1. Sketch the graph of each function, and state its domain, range, and asymptote. Show the x- and
y-intercepts on the graph.

(a) (b)

2. Find the domain of the function.

(a) (b)

3. (a) Write the equation in logarithmic form.

(b) Write the equation ln A � 3 in exponential form.

4. Find the exact value of each expression.

(a) (b)

(c) (d)

(e) (f)

5. Use the Laws of Logarithms to expand the expression:

(a) (b) (c)

6. Use the Laws of Logarithms to combine the expression into a single logarithm.

(a) (b) (c)

7. Find the solution of the exponential equation, rounded to two decimal places.

(a) (b)

(c) (d)

8. Solve the logarithmic equation for x.

(a) (b)

(c) (d)

9. Use the Change of Base Formula to evaluate .

10. The initial size of a culture of bacteria is 1000. After one hour the bacteria count is 8000.

(a) Find a function that models the population after t hours.

(b) Find the population after 1.5 hours.

(c) After how many hours will the number of bacteria reach 15,000?

(d) Sketch the graph of the population function.

11. Suppose that $12,000 is invested in a savings account paying 5.6% interest per year.

(a) Write the formula for the amount in the account after t years if interest is compounded
monthly.

(b) Find the amount in the account after 3 years if interest is compounded daily.

(c) How long will it take for the amount in the account to grow to $20,000 if interest is com-
pounded continuously?

12. The half-life of krypton-91 (91Kr) is 10 seconds. At time t = 0 a heavy canister contains 3 g of
this radioactive gas.

(a) Find a function that models the amount of remaining in the canister 
after t seconds.

(b) Find a function that models the amount of remaining in the canister 
after t seconds.

(c) How much 91Kr remains after one minute?

(d) After how long will the amount of 91Kr remaining be reduced to 1 mg (1 microgram, or
10�6 g)?

13. An earthquake measuring 6.4 on the Richter scale struck Japan in July 2007, causing extensive
damage. Earlier that year, a minor earthquake measuring 3.1 on the Richter scale was felt in
parts of Pennsylvania. How many times more intense was the Japanese earthquake than the
Pennsylvania earthquake?

91Krm1t 2 � m 0e
�rt

91Krm1t 2 � m02
�t/h

n1t 2 � n 0e
rt

log12 27

log21x � 2 2 � log21x � 1 2 � 25 ln13 � x 2 � 4

log1x � 1 2 � log 2 � log15x 2log12x 2 � 3

10x�3 � 62x5x/10 � 1 � 7

e3x�2 � ex2

34x � 3100

log2 3 � 3 log2 x � 1
2 log21x � 1 2ln1x 2 � 25 2 � ln1x � 5 2log a � 2 log b

log  B3 x � 2

x41x2 � 4 2
ln Bx

y
log a

xy3

z2 b

log6 4 � log6 9log8 4

log2 80 � log2 10log3 127

ln e310log 36

62x � 25

g1x 2 � log1x 2 � 1 2f 1t 2 � ln12t � 3 2

g1x 2 � log31x � 3 2f 1x 2 � 2�x � 4
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In a previous Focus on Modeling (page 340) we learned that the shape of a scatter plot 
helps us to choose the type of curve to use in modeling data. The first plot in Figure 1
strongly suggests that a line be fitted through it, and the second one points to a cubic poly-
nomial. For the third plot it is tempting to fit a second-degree polynomial. But what if an
exponential curve fits better? How do we decide this? In this section we learn how to fit
exponential and power curves to data and how to decide which type of curve fits the data
better. We also learn that for scatter plots like those in the last two plots in Figure 1, the
data can be modeled by logarithmic or logistic functions.

▼ Modeling with Exponential Functions
If a scatter plot shows that the data increase rapidly, we might want to model the data us-
ing an exponential model, that is, a function of the form

where C and k are constants. In the first example we model world population by an ex-
ponential model. Recall from Section 4.6 that population tends to increase exponentially.

E X A M P L E  1 An Exponential Model for World Population

Table 1 gives the population of the world in the 20th century.

(a) Draw a scatter plot, and note that a linear model is not appropriate.

(b) Find an exponential function that models population growth.

(c) Draw a graph of the function that you found together with the scatter plot. How
well does the model fit the data?

(d) Use the model that you found to predict world population in the year 2020.

S O L U T I O N

(a) The scatter plot is shown in Figure 2. The plotted points do not appear to lie along
a straight line, so a linear model is not appropriate.

403

F O C U S  O N  M O D E L I N G

Fitting Exponential  and Power Cur ves to Data

F I G U R E  1

f 1x 2 � Cekx

Year World population
(t) (P in millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2520
1960 3020
1970 3700
1980 4450
1990 5300
2000 6060

T A B L E  1

World population

F I G U R E  2 Scatter plot of world population

2000

6500

0
1900

0
1900 2000
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(b) Using a graphing calculator and the ExpReg command (see Figure 3(a)), we get the
exponential model

This is a model of the form y � Cbt. To convert this to the form y � Cekt, we use
the properties of exponentials and logarithms as follows:

A = elnA

ln AB = B ln A

ln 1.0137186 � 0.013625

Thus we can write the model as

(c) From the graph in Figure 3(b) we see that the model appears to fit the data fairly
well. The period of relatively slow population growth is explained by the depres-
sion of the 1930s and the two world wars.

(d) The model predicts that the world population in 2020 will be

■

▼ Modeling with Power Functions
If the scatter plot of the data we are studying resembles the graph of y � ax2, y � ax1.32,
or some other power function, then we seek a power model, that is, a function of the form

where a is a positive constant and n is any real number.
In the next example we seek a power model for some astronomical data. In astronomy,

distance in the solar system is often measured in astronomical units. An astronomical unit
(AU) is the mean distance from the earth to the sun. The period of a planet is the time it
takes the planet to make a complete revolution around the sun (measured in earth years).
In this example we derive the remarkable relationship, first discovered by Johannes 
Kepler (see page 550), between the mean distance of a planet from the sun and its period.

E X A M P L E  2 A Power Model for Planetary Periods

Table 2 gives the mean distance d of each planet from the sun in astronomical units and
its period T in years.

 � 7,405,400,000

 P12020 2 � 0.0082543e10.0136252  120202

P1t 2 � 0.0082543e0.013625t

 � e0.013625t

 � et  ln  1.0137186

 1.0137186t � eln 1.0137186 t

P1t 2 � 10.0082543 2 # 11.0137186 2 t
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F I G U R E  3 Exponential model for world population
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(a) Sketch a scatter plot. Is a linear model appropriate?

(b) Find a power function that models the data.

(c) Draw a graph of the function you found and the scatter plot on the same graph.
How well does the model fit the data?

(d) Use the model that you found to calculate the period of an asteroid whose mean
distance from the sun is 5 AU.

S O L U T I O N

(a) The scatter plot shown in Figure 4 indicates that the plotted points do not lie along
a straight line, so a linear model is not appropriate.

(b) Using a graphing calculator and the PwrReg command (see Figure 5(a)), we get the
power model

If we round both the coefficient and the exponent to three significant figures, we
can write the model as

This is the relationship discovered by Kepler (see page 550). Sir Isaac Newton 
(page 613) later used his Law of Gravity to derive this relationship theoretically,
thereby providing strong scientific evidence that the Law of Gravity must be true.

(c) The graph is shown in Figure 5(b). The model appears to fit the data very well.

(d) In this case d � 5 AU, so our model gives

The period of the asteroid is about 11.2 years. ■

▼ Linearizing Data
We have used the shape of a scatter plot to decide which type of model to use: linear, ex-
ponential, or power. This works well if the data points lie on a straight line. But it’s
difficult to distinguish a scatter plot that is exponential from one that requires a power
model. So to help decide which model to use, we can linearize the data, that is, apply a
function that “straightens” the scatter plot. The inverse of the linearizing function is then

T � 1.00039 # 51.49966 � 11.22

T � d1.5

T � 1.000396d1.49966

Fitting Exponential and Power Curves to Data 405
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F I G U R E  4 Scatter plot 
of planetary data

Planet d T

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 19.190 84.008
Neptune 30.086 164.784
Pluto 39.507 248.350

T A B L E  2

Distances and periods of the planets

45

260

0

(a) (b)

45

260

0
F I G U R E  5 Power model for 
planetary data
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an appropriate model. We now describe how to linearize data that can be modeled by ex-
ponential or power functions.

� L i n e a r i z i n g  E x p o n e n t i a l  D a t a

If we suspect that the data points lie on an exponential curve y � Cekx, then the
points

should lie on a straight line. We can see this from the following calculations:

Assume that y = Cekx and take ln

Property of ln

Property of ln

To see that ln y is a linear function of x, let Y � ln y and A � ln C; then

We apply this technique to the world population data to obtain the points 
in Table 3. The scatter plot of in Figure 6, called a semi-log plot, shows that the
linearized data lie approximately on a straight line, so an exponential model should be 
appropriate.

� L i n e a r i z i n g  Po w e r  D a t a

If we suspect that the data points lie on a power curve y � axn, then the points

should be on a straight line. We can see this from the following calculations:

Assume that y = axn and take ln

Property of ln

Property of ln

To see that ln y is a linear function of ln x, let Y � ln y, X � ln x, and A � ln a; then

We apply this technique to the planetary data in Table 2 to obtain the points
in Table 4. The scatter plot of in Figure 7, called a log-log plot,

shows that the data lie on a straight line, so a power model seems appropriate.
1ln d, ln T 21ln d, ln T 2

1d, T 2

Y � nX � A

 � ln a � n  ln x

 � ln a � ln xn

 ln y � ln axn

1ln x, ln y 2

1x,  y 2

1t, ln P 2
1t, ln P 21t, P 2

Y � kx � A

 � kx � ln C

 � ln ekx � ln C

 ln y � ln Cekx

1x, ln y 2

1x, y 2

406 Focus on Modeling

Unless otherwise noted, all content on this page is © Cengage Learning.

F I G U R E  6 Semi-log 
plot of data in Table 3

2010

23

21
1900

Population P
t (in millions) ln P

1900 1650 21.224
1910 1750 21.283
1920 1860 21.344
1930 2070 21.451
1940 2300 21.556
1950 2520 21.648
1960 3020 21.829
1970 3700 22.032
1980 4450 22.216
1990 5300 22.391
2000 6060 22.525

T A B L E  3

World population data

F I G U R E  7 Log-log
plot of data in Table 4

4

6

_2

_2

ln d ln T

�0.94933 �1.4230
�0.32435 �0.48613

0 0
0.42068 0.6318
1.6492 2.4733
2.2556 3.3829
2.9544 4.4309
3.4041 5.1046
3.6765 5.5148

T A B L E  4

Log-log table
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▼ An Exponential or Power Model?
Suppose that a scatter plot of the data points shows a rapid increase. Should we use
an exponential function or a power function to model the data? To help us decide, we draw
two scatter plots: one for the points and the other for the points . If the
first scatter plot appears to lie along a line, then an exponential model is appropriate. If
the second plot appears to lie along a line, then a power model is appropriate.

E X A M P L E  3 An Exponential or Power Model?

Data points are shown in Table 5.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Is an exponential function or a power function appropriate for modeling this data?

(d) Find an appropriate function to model the data.

S O L U T I O N

(a) The scatter plot of the data is shown in Figure 8.

(b) We use the values from Table 6 to graph the scatter plots in Figures 9 and 10.

(c) The scatter plot of in Figure 9 does not appear to be linear, so an exponen-
tial model is not appropriate. On the other hand, the scatter plot of in
Figure 10 is very nearly linear, so a power model is appropriate.

(d) Using the PwrReg command on a graphing calculator, we find that the power func-
tion that best fits the data point is

The graph of this function and the original data points are shown in Figure 11. ■

Before graphing calculators and statistical software became common, exponential and
power models for data were often constructed by first finding a linear model for the lin-
earized data. Then the model for the actual data was found by taking exponentials. For in-
stance, if we find that ln y � A ln x � B, then by taking exponentials we get the model
y � eB � eA ln x, or y � CxA (where C � eB ). Special graphing paper called “log paper” or
“log-log paper” was used to facilitate this process.

y � 1.85x1.82

1ln x, ln y 2
1x, ln y 2

1ln x, ln y 21x, ln y 2

1x,  y 2

1ln x, ln y 21x, ln y 2

1x,  y 2
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F I G U R E  8 0 11

140

x y

1 2
2 6
3 14
4 22
5 34
6 46
7 64
8 80
9 102

10 130

T A B L E  5

F I G U R E  9 Semi-log plot

11

6

0

F I G U R E  1 0 Log-log plot

2.5

5

0

x ln x ln y

1 0 0.7
2 0.7 1.8
3 1.1 2.6
4 1.4 3.1
5 1.6 3.5
6 1.8 3.8
7 1.9 4.2
8 2.1 4.4
9 2.2 4.6

10 2.3 4.9

T A B L E  6

F I G U R E  1 1

0 11

140
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▼ Modeling with Logistic Functions
A logistic growth model is a function of the form

where a, b, and c are positive constants. Logistic functions are used to model populations
where the growth is constrained by available resources. (See Exercises 25–28 of 
Section 4.2.)

E X A M P L E  4 Stocking a Pond with Catfish

Much of the fish that is sold in supermarkets today is raised on commercial fish farms, not
caught in the wild. A pond on one such farm is initially stocked with 1000 catfish, and the
fish population is then sampled at 15-week intervals to estimate its size. The population
data are given in Table 7.

(a) Find an appropriate model for the data.

(b) Make a scatter plot of the data and graph the model that you found in part (a) on
the scatter plot.

(c) How does the model predict that the fish population will change with time?

S O L U T I O N

(a) Since the catfish population is restricted by its habitat (the pond), a logistic model
is appropriate. Using the Logistic command on a calculator (see Figure 12(a)),
we find the following model for the catfish population :

(b) The scatter plot and the logistic curve are shown in Figure 12(b).

(c) From the graph of P in Figure 12(b) we see that the catfish population increases
rapidly until about t � 80 weeks. Then growth slows down, and at about t � 120
weeks the population levels off and remains more or less constant at slightly over
7900. ■

The behavior that is exhibited by the catfish population in Example 4 is typical of
logistic growth. After a rapid growth phase, the population approaches a constant level
called the carrying capacity of the environment. This occurs because as t � q, we have
e�bt � 0 (see Section 4.2), and so

Thus the carrying capacity is c.

P1t 2 �
c

1 � ae�bt ¡  
c

1 � 0
� c

P1t 2 �
7925

1 � 7.7e�0.052t

P1t 2

408 Focus on Modeling

Unless otherwise noted, all content on this page is © Cengage Learning.

f 1t 2 �
c

1 � ae�bt

Week Catfish

0 1000
15 1500
30 3300
45 4400
60 6100
75 6900
90 7100

105 7800
120 7900

T A B L E  7

F I G U R E  1 2

0

(a) (b)  Catfish population y = P(t)

180

9000
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P R O B L E M S
1. U.S. Population The U.S. Constitution requires a census every 10 years. The census data

for 1790–2010 are given in the table.

(a) Make a scatter plot of the data.

(b) Use a calculator to find an exponential model for the data.

(c) Use your model to predict the population at the 2020 census.

(d) Use your model to estimate the population in 1995.

(e) Compare your answers from parts (c) and (d) to the values in the table. Do you think an
exponential model is appropriate for these data?

2. A Falling Ball In a physics experiment a lead ball is dropped from a height of 5 m. The
students record the distance the ball has fallen every one-tenth of a second. (This can be
done by using a camera and a strobe light.) Their data are shown in the margin.

(a) Make a scatter plot of the data.

(b) Use a calculator to find a power model.

(c) Use your model to predict how far a dropped ball would fall in 3 s.

3. Health-Care Expenditures The U.S. health-care expenditures for 1970–2008 are given
in the table below, and a scatter plot of the data is shown in the figure.

(a) Does the scatter plot shown suggest an exponential model?

(b) Make a table of the values and a scatter plot, where t is the number of years
since 1970 and E is health-care expenditures in billions of dollars. Does the scatter plot
appear to be linear?

(c) Find the regression line for the data in part (b).

(d) Use the results of part (c) to find an exponential model for the growth of health-care
expenditures.

(e) Use your model to predict the total health-care expenditures in 2015.

1t, ln E 2
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Population Population Population
Year (in millions) Year (in millions) Year (in millions)

1790 3.9 1870 38.6 1950 151.3
1800 5.3 1880 50.2 1960 179.3
1810 7.2 1890 63.0 1970 203.3
1820 9.6 1900 76.2 1980 226.5
1830 12.9 1910 92.2 1990 248.7
1840 17.1 1920 106.0 2000 281.4
1850 23.2 1930 123.2 2010 308.7
1860 31.4 1940 132.2

Time Distance
(s) (m)

0.1 0.048
0.2 0.197
0.3 0.441
0.4 0.882
0.5 1.227
0.6 1.765
0.7 2.401
0.8 3.136
0.9 3.969
1.0 4.902

Health-care expenditures
Year (in billions of dollars)

1970 74.3
1980 251.1
1985 434.5
1987 506.2
1990 696.6
1992 820.3
1994 937.2
1996 1039.4
1998 1150.0
2000 1310.0
2001 1424.5
2008 2339.5

400
200

10 20 300 t
Years since 1970

40

600
800

1000
1200
1400
1600
1800
2000
2200
2400

E

U.S. health-care
expenditures
(in billions
of dollars)
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4. Half-Life of Radioactive Iodine A student is trying to determine the half-life of 
radioactive iodine-131. He measures the amount of iodine-131 in a sample solution every 
8 hours. His data are shown in the table in the margin.

(a) Make a scatter plot of the data.

(b) Use a calculator to find an exponential model.

(c) Use your model to find the half-life of iodine-131.

5. The Beer-Lambert Law As sunlight passes through the waters of lakes and oceans, the
light is absorbed, and the deeper it penetrates, the more its intensity diminishes. The light 
intensity I at depth x is given by the Beer-Lambert Law:

where I0 is the light intensity at the surface and k is a constant that depends on the murkiness
of the water (see page 380). A biologist uses a photometer to investigate light penetration in a
northern lake, obtaining the data in the table.

(a) Use a graphing calculator to find an exponential function of the form given by the Beer-
Lambert Law to model these data. What is the light intensity I0 at the surface on this day,
and what is the “murkiness” constant k for this lake? [Hint: If your calculator gives
you a function of the form I � abx, convert this to the form you want using the identities

. See Example 1(b).]

(b) Make a scatter plot of the data, and graph the function that you found in part (a) on your
scatter plot.

(c) If the light intensity drops below 0.15 lumen (lm), a certain species of algae can’t sur-
vive because photosynthesis is impossible. Use your model from part (a) to determine
the depth below which there is insufficient light to support this algae.

6. Experimenting with “Forgetting” Curves Every one of us is all too familiar with the
phenomenon of forgetting. Facts that we clearly understood at the time we first learned them
sometimes fade from our memory by the time the final exam rolls around. Psychologists have
proposed several ways to model this process. One such model is Ebbinghaus’ Law of Forget-
ting, described on page 371. Other models use exponential or logarithmic functions. To develop
her own model, a psychologist performs an experiment on a group of volunteers by asking
them to memorize a list of 100 related words. She then tests how many of these words they can
recall after various periods of time. The average results for the group are shown in the table.

(a) Use a graphing calculator to find a power function of the form y � at b that models the
average number of words y that the volunteers remember after t hours. Then find an ex-
ponential function of the form y � abt to model the data.

(b) Make a scatter plot of the data, and graph both the functions that you found in part (a)
on your scatter plot.

(c) Which of the two functions seems to provide the better model?

bx � e ln 1bx 2 � e x ln b

I � I0e
�kx

410 Focus on Modeling
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Time (h) Amount of 131I 11g22

0 4.80
8 4.66

16 4.51
24 4.39
32 4.29
40 4.14
48 4.04

Depth Light intensity Depth Light intensity 
(ft) (lm) (ft) (lm)

5 13.0 25 1.8
10 7.6 30 1.1
15 4.5 35 0.5
20 2.7 40 0.3

Time Words recalled

15 min 64.3
1 h 45.1
8 h 37.3
1 day 32.8
2 days 26.9
3 days 25.6
5 days 22.9

Light intensity decreases 
exponentially with depth.
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7. Modeling the Species-Area Relation The table gives the areas of several caves in cen-
tral Mexico and the number of bat species that live in each cave.*

(a) Find a power function that models the data.

(b) Draw a graph of the function you found in part (a) and a scatter plot of the data on the
same graph. Does the model fit the data well?

(c) The cave called El Sapo near Puebla, Mexico, has a surface area of A � 205 m2. Use the
model to estimate the number of bat species you would expect to find in that cave.

8. Auto Exhaust Emissions A study by the U.S. Office of Science and Technology in 1972
estimated the cost of reducing automobile emissions by certain percentages. Find an 
exponential model that captures the “diminishing returns” trend of these data shown in the
table below.

9. Exponential or Power Model? Data points are shown in the table.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Which is more appropriate for modeling this data: an exponential function or a power
function?

(d) Find an appropriate function to model the data.

1ln x, ln y 21x, ln y 2

1x, y 2

Fitting Exponential and Power Curves to Data 411

Cave Area 11m222 Number of species

La Escondida 18 1
El Escorpion 19 1
El Tigre 58 1
Mision Imposible 60 2
San Martin 128 5
El Arenal 187 4
La Ciudad 344 6
Virgen 511 7

Reduction in Cost per
emissions (%) car ($)

50 45
55 55
60 62
65 70
70 80
75 90
80 100
85 200
90 375
95 600

x y

2 0.08
4 0.12
6 0.18
8 0.25

10 0.36
12 0.52
14 0.73
16 1.06

The number of different bat species
in a cave is related to the size 

of the cave by a power function.

*A. K. Brunet and R. A. Medallin, “The Species-Area Relationship in Bat Assemblages of Tropical Caves.”
Journal of Mammalogy, 82(4):1114–1122, 2001.
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10. Exponential or Power Model? Data points are shown in the table in the margin.

(a) Draw a scatter plot of the data.

(b) Draw scatter plots of and .

(c) Which is more appropriate for modeling this data: an exponential function or a power
function?

(d) Find an appropriate function to model the data.

11. Logistic Population Growth The table and scatter plot give the population of black flies
in a closed laboratory container over an 18-day period.

(a) Use the Logistic command on your calculator to find a logistic model for these data.

(b) Use the model to estimate the time when there were 400 flies in the container.

12. Logarithmic Models A logarithmic model is a function of the form

Many relationships between variables in the real world can be modeled by this type of func-
tion. The table and the scatter plot show the coal production (in metric tons) from a small
mine in northern British Columbia.

(a) Use the LnReg command on your calculator to find a logarithmic model for these pro-
duction figures.

(b) Use the model to predict coal production from this mine in 2020.

y � a � b ln x

1ln x, ln y 21x, ln y 2

1x, y 2

412 Focus on Modeling
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x y

10 29
20 82
30 151
40 235
50 330
60 430
70 546
80 669
90 797

900
895
890
885

1960 1980 20001940 t
Year

905
910

920
915

2020

Metric tons
of coal

C

400

300

200

100

4 6 80 t
Days

500

Number
of flies

N

102 12 14 16 18

Time Number 
(days) of flies

0 10
2 25
4 66
6 144
8 262

10 374
12 446
16 492
18 498

Metric tons 
Year of coal

1950 882
1960 889
1970 894
1980 899
1990 905
2000 909
2010 915
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1. Let and . Find each of the following:

(a) The domain of f
(b) The domain of g
(c)

(d)

(e) The average rate of change of g between x � 5 and x � 21

(f)

(g) The inverse of g

2. Let 

(a) Evaluate 

(b) Sketch the graph of f.

3. Let f be the quadratic function 

(a) Express f in standard form.

(b) Find the maximum or minimum value of f.

(c) Sketch the graph of f.

(d) Find the interval on which f is increasing and the interval on which f is decreasing.

(e) How is the graph of obtained from the graph of f?

(f) How is the graph of obtained from the graph 
of f?

4. Without using a graphing calculator, match each of the following functions to the graphs
below. Give reasons for your choices.

5. Let .

(a) List all possible rational zeros of P.

(b) Determine which of the numbers you listed in part (a) actually are zeros of P.

(c) Factor P completely.

(d) Sketch a graph of P.

6. Let .

(a) Find all zeros of Q, real and complex, and state their multiplicities.

(b) Factor Q completely.

(c) Factor Q into linear and irreducible quadratic factors.

Q1x 2 � x5 � 3x4 � 3x3 � x2 � 4x � 2

P1x 2 � 2x3 � 11x2 � 10x � 8

 k1x 2 � 2�x � 3 h1x 2 � 2x � 5 s1x 2 �
2x � 3

x2 � 9

r1x 2 �
2x � 3

x2 � 9
g1x 2 � �x4 � 8x2f 1x 2 � x3 � 8x

h1x 2 � �21x � 3 2 2 � 81x � 3 2 � 5

g1x 2 � �2x2 � 8x � 10

f 1x 2 � �2x2 � 8x � 5.

f 10 2 , f 11 2 , f 12 2 , f 13 2 , and f 14 2 .

f 1x 2 � b4 if x 
 2

x � 3 if x � 2

f � g, g � f, f 1g112 2 2 , g1f 112 2 2

f 1x � 2 2 , g1x � 2 2 , f 12 � h 2

f 1�2 2 , f 10 2 , f 14 2 , g10 2 , g18 2 , g1�6 2

g1x 2 � 1x � 4f 1x 2 � x2 � 4x

413

C U M U L A T I V E  R E V I E W  T E S T C H A P T E R S  2 , 3 , a n d 4

0

y

x0

A y

x0

B y

x0

C y

x0

D y

x0

E y

x

F
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7. Let . Find the x- and y-intercepts and the horizontal and vertical

asymptotes. Then sketch the graph of r.

8. A survey finds that the average starting salary for young people in their first full-time job is
proportional to the square of the number of years of education they have completed. College
graduates with 16 years of education have an average starting salary of $48,000.

(a) Write an equation that expresses the relationship between years of education x and aver-
age starting salary S.

(b) What is the average starting salary for a person who drops out of high school after com-
pleting the tenth grade?

(c) A person with a master’s degree has an average starting salary of $60,750. How many
years of education does this represent?

9. Sketch graphs of the following functions on the same coordinate plane.

(a) (b)

10. (a) Find the exact value of .

(b) Use the Laws of Logarithms to expand the expression

11. Solve the equations.

(a)

(b) [Hint: Compare to the polynomial in Problem 5.]

12. A sum of $25,000 is deposited into an account paying 5.4% interest per year, compounded
daily.

(a) What will the amount in the account be after 3 years?

(b) When will the account have grown to $35,000?

(c) How long will it take for the initial deposit to double?

13. After a shipwreck, 120 rats manage to swim from the wreckage to a deserted island. The rat
population on the island grows exponentially, and after 15 months there are 280 rats on the
island.

(a) Find a function that models the population t months after the arrival of the rats.

(b) What will the population be 3 years after the shipwreck?

(c) When will the population reach 2000?

2e3x � 11e2x � 10ex � 8 � 0

log2 x � log21x � 2 2 � 3

log a
x51x � 1

2x � 3
b

log3 16 � 2 log3 36

g1x 2 � ln1x � 1 2f 1x 2 � 2 � ex

r1x 2 �
3x2 � 6x

x2 � x � 2
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Equations Working Together In the preceding chapters we learned that a real-
world situation can often be modeled by an equation. But many real-world
situations involve too many variables to be modeled by a single equation. For
example, weather depends on the relationships among many variables,
including temperature, wind speed, air pressure, and humidity. So to model
(and forecast) the weather, scientists use many equations, each having many
variables. These equations work together to model the weather. Such
collections of equations are called systems of equations. In this chapter we
learn how to solve systems of equations that consist of several equations in
several variables. Airlines use systems of equations with hundreds of variables
to establish consistent flight schedules, and telecommunications companies use
them to find efficient routings for telephone calls. In both of these situations the
problem is to allocate limited resources in an optimal way. In Focus on
Modeling at the end of the chapter we use systems of inequalities to model and
solve these types of problems. 

415
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SYSTEMS OF EQUATIONS AND INEQUALITIES

5.1 Systems of Linear Equations 
in Two Variables

5.2 Systems of Linear Equations 
in Several Variables

5.3 Partial Fractions

5.4 Systems of Nonlinear Equations

5.5 Systems of Inequalities
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▼ Systems of Linear Equations and Their Solutions
A system of equations is a set of equations that involve the same variables. A system of
linear equations (or a linear system) is a system of equations in which each equation is
linear. A solution of a system is an assignment of values for the variables that makes each
equation in the system true. To solve a system means to find all solutions of the system.

Here is an example of a system of linear equations in two variables:

We can check that x � 3 and y � 1 is a solution of this system.

Equation 1 Equation 2

✓ ✓

The solution can also be written as the ordered pair . Note that the graphs of Equa-
tions 1 and 2 are lines (see Figure 1). Since the solution satisfies each equation, the
point lies on each line. So it is the point of intersection of the two lines.

▼ Substitution Method
To solve a system using the substitution method, we start with one equation in the sys-
tem and solve for one variable in terms of the other variable. The following box describes
the procedure.

(3, 1)

1 3

2x-y=5

1

0

x+4y=7

y

x

13, 1 2
13, 1 2

13, 1 2

3 � 411 2 � 7213 2 � 1 � 5

 x � 4y � 7 2x � y � 5

Equation 1

Equation 2
b 2x �  y � 5

 x � 4y � 7

416 C H A P T E R  5 | Systems of Equations and Inequalities
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5.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve a system in two variables using the Substitution Method, the Elimination
Method, and the Graphical Method � Determine the number of solutions of a
linear system in two variables � Model with linear systems

GET READY Prepare for this section by reviewing how to solve linear equations in 

Section P.8 and how to graph lines in Section 1.3.

A linear equation in two variables is an
equation of the form

The graph of a linear equation is a line
(see Section 1.3).

ax � by � c

F I G U R E  1

SUBSTITUTION METHOD

1. Solve for One Variable. Choose one equation, and solve for one variable in
terms of the other variable.

2. Substitute. Substitute the expression you found in Step 1 into the other
equation to get an equation in one variable, then solve for that variable.

3. Back-Substitute. Substitute the value you found in Step 2 back into the 
expression found in Step 1 to solve for the remaining variable.
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E X A M P L E  1 Substitution Method

Find all solutions of the system.

S O L U T I O N Solve for one variable. We solve for y in the first equation:

Solve for y in Equation 1

Substitute. Now we substitute for y in the second equation and solve for x:

Substitute y � 1 � 2x into Equation 2

Expand

Simplify

Subtract 4

Solve for x

Back-substitute. Next we back-substitute x � �2 into the equation y � 1 � 2x:

Back-substitute

Thus x � �2 and y � 5, so the solution is the ordered pair . Figure 2 shows that
the graphs of the two equations intersect at the point .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

▼ Elimination Method
To solve a system using the elimination method, we try to combine the equations using
sums or differences so as to eliminate one of the variables.

(_2, 5)

y

x
1

2x+y=1

3x+4y=14

1

0

1�2, 5 2
1�2, 5 2

y � 1 � 21�2 2 � 5

 x � �2

 �5x �   10

 �5x � 4 �   14

 3x � 4 � 8x �   14

 3x � 411 � 2x 2 �   14

y � 1 � 2x

Equation 1

Equation 2
b 2x �  y � 1

 3x � 4y � 14
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C H E C K  Y O U R  A N S W E R

✓
b  21�2 2 � 5 � 1

31�2 2 � 415 2 � 14

x � �2, y � 5:

ELIMINATION METHOD

1. Adjust the Coefficients. Multiply one or more of the equations by appropri-
ate numbers so that the coefficient of one variable in one equation is the nega-
tive of its coefficient in the other equation.

2. Add the Equations. Add the two equations to eliminate one variable, then
solve for the remaining variable.

3. Back-Substitute. Substitute the value that you found in Step 2 back into one
of the original equations, and solve for the remaining variable.

F I G U R E  2
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E X A M P L E  2 Elimination Method

Find all solutions of the system.

S O L U T I O N Adjust the coefficients. Multiply Equation 2 by so that the coeffi-
cients of the y-terms are negatives of each other: .

Add the equations. We now add the equations to eliminate y:

System

Add

Solve for x

Back-substitute. Now we back-substitute x � 4 into one of the original equations and
solve for y. Let’s choose the second equation because it looks simpler.

Equation 2

Back-substitute x � 4 into Equation 2

Subtract 4

Solve for y

The solution is . Figure 3 shows that the graphs of the equations in the system in-
tersect at the point .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 9 ■

▼ Graphical Method
In the graphical method we use a graphing device to solve the system of equations. 

14, 1 2
14, 1 2

 y � 1

 �2y � �2

 4 � 2y � 2

 x � 2y � 2 

 x � 4

 4x    � 16

b 3x � 2y � 14

 0x � 2y � 2

x � 2y � 2

1
2

Equation 1

Equation 2
b 3x � 2y � 14

 2x � 4y � 4

418 C H A P T E R  5 | Systems of Equations and Inequalities

Unless otherwise noted, all content on this page is © Cengage Learning.

(4, 1)

y

x
1

7

2x-4y=4

3x+2y=14

1

0

F I G U R E  3

GRAPHIC AL METHOD

1. Graph Each Equation. Express each equation in a form suitable for the
graphing calculator by solving for y as a function of x. Graph the equations on
the same screen.

2. Find the Intersection Points. The solutions are the x- and y-coordinates of
the points of intersection.

M AT H E M AT I C S  I N  T H E  M O D E R N  W O R L D

Weather Prediction

Modern meteorologists do
much more than predict tomor-
row’s weather.They research
long-term weather patterns, de-
pletion of the ozone layer,
global warming, and other ef-
fects of human activity on the
weather. But daily weather pre-
diction is still a major part of

meteorology; its value is measured by the innumerable human lives
that are saved each year through accurate prediction of hurricanes,

blizzards, and other catastrophic weather phenomena. Early in the
20th century mathematicians proposed to model weather with equa-
tions that used hundreds of variables. However, it was impossible to
predict future weather with this model because it took several days to
solve the equations—too late for predicting tomorrow’s weather. Cur-
rently, new mathematical models combined with high-speed com-
puter simulations have vastly improved weather prediction. As a result,
many human as well as economic disasters have been averted. Mathe-
maticians at the National Oceanographic and Atmospheric Adminis-
tration (NOAA) are continually researching better methods of weather
prediction.
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E X A M P L E  3 Graphical Method

Find all solutions of the system.

S O L U T I O N To graph each equation we solve for y in terms of x, and we get the
equivalent system 

where we have rounded the coefficients to two decimals. Figure 4 shows that the two lines
intersect. Zooming in, we see that the solution is approximately .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 13 AND 49 ■

▼ The Number of Solutions of a Linear System in Two Variables
The graph of a linear system in two variables is a pair of lines, so to solve the system
graphically, we must find the intersection point(s) of the lines. Two lines may intersect in
a single point, they may be parallel, or they may coincide, as shown in Figure 5. So there
are three possible outcomes in solving such a system.

A system that has no solution is said to be inconsistent. A system with infinitely many
solutions is called dependent.

E X A M P L E  4 A Linear System with One Solution

Solve the system and graph the lines.

Equation 1

Equation 2
b3x �  y � 0

5x � 2y � 22

10.30, 1.30 2

b  y � 0.63x � 1.11

 y � �6.75x � 3.31

b  1.35x � 2.13y � �2.36

 2.16x � 0.32y � 1.06
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Unless otherwise noted, all content on this page is © Cengage Learning.

5

_5

_1.5 1.5

F I G U R E  4

NUMBER OF SOLUTIONS OF A LINEAR SYSTEM IN T WO VARIABLES

For a system of linear equations in two variables, exactly one of the following is
true. (See Figure 5.)

1. The system has exactly one solution.

2. The system has no solution.

3. The system has infinitely many solutions.

0 x

y

0 x

y

0 x

y

(a) Lines intersect at a
single point. The system
has one solution.

(b) Lines are parallel and
do not intersect. The
system has no solution.

(c) Lines coincide—equations
are for the same line. The system
has infinitely many solutions. F I G U R E  5

See Appendix B, Graphing with a
Graphing Calculator, for guidelines on
using a graphing calculator. See 
Appendix C, Using the TI-83/84
Graphing Calculator, for specific
graphing instructions.
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S O L U T I O N We eliminate y from the equations and solve for x.

2 � Equation 1

Add

Solve for x

Now we back-substitute into the first equation and solve for y:

Back-substitute x � 2

Subtract 6 � 2 � 12

Solve for y

The solution of the system is the ordered pair 12, 62, that is,

The graph in Figure 6 shows that the lines in the system intersect at the point 12, 62.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 23 ■

E X A M P L E  5 A Linear System with No Solution

Solve the system.

S O L U T I O N This time we try to find a suitable combination of the two equations to
eliminate the variable y. Multiplying the first equation by 3 and the second equation by
2 gives

Add

Adding the two equations eliminates both x and y in this case, and we end up with 
0 � 29, which is obviously false. No matter what values we assign to x and y, we cannot
make this statement true, so the system has no solution. Figure 7 shows that the lines 
in the system are parallel and do not intersect. The system is inconsistent.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

E X A M P L E  6 A Linear System with Infinitely Many Solutions

Solve the system.

S O L U T I O N We multiply the first equation by 4 and the second by 3 to prepare for
subtracting the equations to eliminate x. The new equations are

We see that the two equations in the original system are simply different ways of ex-
pressing the equation of one single line. The coordinates of any point on this line give a

4 � Equation 1

3 � Equation 2
b12x � 24y � 48

12x � 24y � 48

Equation 1

Equation 2
b3x � 6y � 12

4x � 8y � 16

�124x � 60 � 29

3 � Equation 1

2 � Equation 2
b 24x � 6y � 15

�24x � 6y � 14

Equation 1

Equation 2
b 8x � 2y � 5

�12x � 3y � 7

x � 2,  y � 6

 y � 6

 �2y � �12

 612 2 � 2y � 0

 x � 2

 11x � 2y � 22

b6x � 2y � 0

5x � 2y � 22
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F I G U R E  6

3x-y=0y

x2

6

5x+2y=22

(2, 6)

C H E C K  Y O U R  A N S W E R

:

✓
b312 2 �  16 2 � 0

512 2 � 216 2 � 22

x � 2, y � 6

8x-2y=5

1

1

_12x+3y=7

x0

y

F I G U R E  7
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solution of the system. Writing the equation in slope-intercept form, we have
So if we let t represent any real number, we can write the solution as

We can also write the solution in ordered-pair form as

where t is any real number. The system has infinitely many solutions (see Figure 8).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

In Example 3, to get specific solutions we have to assign values to t. For instance, if
, we get the solution . If we get the solution . For every value of

t we get a different solution. (See Figure 8.)

▼ Modeling with Linear Systems
Frequently, when we use equations to solve problems in the sciences or in other areas, we
obtain systems like the ones we’ve been considering. When modeling with systems of
equations, we use the following guidelines, which are similar to those in Section 1.5.

The next two examples illustrate how to model with systems of equations.

E X A M P L E  7 A Distance-Speed-Time Problem

A woman rows a boat upstream from one point on a river to another point 4 mi away 
in hours. The return trip, traveling with the current, takes only 45 min. How fast does
she row relative to the water, and at what speed is the current flowing?

S O L U T I O N Identify the variables. We are asked to find the rowing speed and the
speed of the current, so we let

x � rowing speed (mi/h)

y � current speed (mi/h)

11
2

14, 0 2t � 4,A1, �3
2Bt � 1

At, 12 t � 2B

 y � 1
2 t � 2

 x � t

y � 1
2 x � 2.

S E C T I O N  5 . 1 | Systems of Linear Equations in Two Variables 421

Unless otherwise noted, all content on this page is © Cengage Learning.

F I G U R E  8

t, t-2)(
1

1

1
2

x0

y

t=4

t=1

GUIDELINES FOR MODELING WITH SYSTEMS OF EQUATIONS

1. Identify the Variables. Identify the quantities that the problem asks you to
find. These are usually determined by a careful reading of the question posed
at the end of the problem. Introduce notation for the variables (call them x and 
y or some other letters).

2. Express All Unknown Quantities in Terms of the Variables. Read the 
problem again, and express all the quantities mentioned in the problem in
terms of the variables you defined in Step 1.

3. Set Up a System of Equations. Find the crucial facts in the problem that
give the relationships between the expressions you found in Step 2. Set up a
system of equations (or a model) that expresses these relationships.

4. Solve the System and Interpret the Results. Solve the system you found in
Step 3, check your solutions, and state your final answer as a sentence that 
answers the question posed in the problem.

current

4 mi
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Express unknown quantities in terms of the variable. The woman’s speed when
she rows upstream is her rowing speed minus the speed of the current; her speed down-
stream is her rowing speed plus the speed of the current. Now we translate this informa-
tion into the language of algebra.

Set up a system of equations. The distance upstream and downstream is 4 mi, so us-
ing the fact that speed � time � distance for both legs of the trip, we get

� �

� �

In algebraic notation this translates into the following equations:

Equation 1

Equation 2

(The times have been converted to hours, since we are expressing the speeds in miles
per hour.) 

Solve the system. We multiply the equations by 2 and 4, respectively, to clear the de-
nominators.

Add

Solve for x

Back-substituting this value of x into the first equation (the second works just as well)
and solving for y gives

Back-substitute x � 4

Subtract 12

Solve for y

The woman rows at 4 mi/h, and the current flows at mi/h.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 63 ■

11
3

 y � 4
3

 �3y � 8 � 12

 314 2 � 3y � 8

 1x � 3y � 4

 16x � 3y � 24

2 � Equation 1

4 � Equation 2
b3x � 3y �  8

3x � 3y � 16

 1x � y 2 34 � 4

 1x � y 2 32 � 4

distance traveledtime downstreamspeed downstream

distance traveledtime upstreamspeed upstream

In Words In Algebra

Rowing speed x
Current speed y
Speed upstream x � y
Speed downstream x � y
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Speed upstream is Speed downstream is

mi/h mi/h

and this should equal and this should equal

rowing speed � current flow rowing speed � current flow

� 4 mi/h � mi/h � mi/h ✓ � 4 mi/h � mi/h � mi/h ✓5 
1
3

4
32 

2
3

4
3

distance

time
�

4  mi
3
4 

 
h

� 5 
1
3 

distance

time
�

4  mi

11
2 

 
h

� 2 
2
3 

 

90169_Ch05_415-464.qxd  11/28/11  11:04 AM  Page 422



E X A M P L E  8 A Mixture Problem

A vintner fortifies wine that contains 10% alcohol by adding a 70% alcohol solution to
it. The resulting mixture has an alcoholic strength of 16% and fills 1000 one-liter bot-
tles. How many liters (L) of the wine and of the alcohol solution does the vintner use?

S O L U T I O N Identify the variables. Since we are asked for the amounts of wine
and alcohol, we let

x � amount of wine used (L)

y � amount of alcohol solution used (L)

Express all unknown quantities in terms of the variable. From the fact that the
wine contains 10% alcohol and the solution contains 70% alcohol, we get the following.

Set up a system of equations. The volume of the mixture must be the total of the
two volumes the vintner is adding together, so

Also, the amount of alcohol in the mixture must be the total of the alcohol contributed
by the wine and by the alcohol solution, that is,

Simplify

Multiply by 10 to clear decimals

Thus we get the system

Solve the system. Subtracting the first equation from the second eliminates the vari-
able x, and we get

Subtract Equation 1 from Equation 2

Solve for y

We now back-substitute y � 100 into the first equation and solve for x:

Back-substitute y � 100

Solve for x

The vintner uses 900 L of wine and 100 L of the alcohol solution.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 65 ■

 x � 900

 x � 100 � 1000

 y � 100

 6y � 600

Equation 1

Equation 2
b x �  y � 1000

 x � 7y � 1600

 x � 7y � 1600

 0.10x � 0.70y � 160

 0.10x � 0.70y � 10.16 21000

x � y � 1000

In Words In Algebra

Amount of wine used (L) x
Amount of alcohol solution used (L) y
Amount of alcohol in wine (L) 0.10x
Amount of alcohol in solution (L) 0.70y
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424 C H A P T E R  5 | Systems of Equations and Inequalities

C O N C E P T S
1. The system of equations

is a system of two equations in the two variables 

and . To determine whether is a solution of 
this system, we check whether and satisfy each 

in the system. Which of the following are solutions 
of this system? 

2. A system of equations in two variables can be solved by the 

method, the method,

or the method.

3. A system of two linear equations in two variables can have one 

solution, solution, or 
solutions.

4. The following is a system of two linear equations in two 
variables. 

The graph of the first equation is the same as the graph of the 

second equation, so the system has 
solutions. We express these solutions by writing

x � t
y �

where t is any real number. Some of the solutions of this 

system are 11, 2, 1�3, 2, and 15, 2.

S K I L L S
5–8 ■ Use the substitution method to find all solutions of the 
system of equations.

5. 6.

7. 8.

9–12 ■ Use the elimination method to find all solutions of the
system of equations.

9. 10.

11. 12. b4x � 3y � 11

8x � 4y � 12
b  x � 2y � 5

 2x � 3y � 8

b2x � 5y � 15

4x � 4y � 21
b3x � 4y � 10

4x � 4y � �2

b 2x � y � 7

 x � 2y � 2
b x �   y � 2

 2x � 3y � 9

b 3x � 0y � 1

 5x � 2y � 1
b 0x � 0y � 81

 4x � 3y � 18

b x �  y � 1

2x � 2y � 2

15, �1 2 , 1�1, 3 2 , 12, 1 2

y � �1x � 5
15, �1 2

b2x � 3y � 7

5x � y � 9

13–14 ■ Two equations and their graphs are given. Find the inter-
section point(s) of the graphs by solving the system.

13. 14.

15–20 ■ Graph each linear system, either by hand or using a 
graphing device. Use the graph to determine whether the system
has one solution, no solution, or infinitely many solutions. If there
is exactly one solution, use the graph to find it.

15. 16.

17. 18.

19. 20.

21–48 ■ Solve the system, or show that it has no solution. If the 
system has infinitely many solutions, express them in the ordered-
pair form given in Example 6.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. b 2x �  3y � �8

14x � 21y �    3
b 2x � 6y �     10

�3x � 9y � �15

b�3x �  5y � 2

9x � 15y � 6
b x �  4y � 8

3x � 12y � 2

b4x � 2y � 16

x � 5y � 70
b3x � 2y � 8

x � 2y � 0

b 0.2x � 0.2y � �1.8

�0.3x � 0.5y �     3.3
b 

 
1
2 x � 1

3 y � 2

 
1
5 x � 2

3 y � 8

b�4x � 12y �   0

12x �  4y � 160
bx � 2y � 7

5x � y � 2

b 4x � 3y �   28

 9x �  y � �6
b�x �  y �     2

4x � 3y � �3

b  x �  y �    7

 2x � 3y � �1
b x � 3y � 5

 2x � y � 3

b 3x � 2y � 0

 �x � 2y � 8
b 2x � 3y � 9

 4x � 3y � 9

b x �  y � 3

 x � 3y � 7
b x � y � 4

 �x � y � 0

b12x � 15y � �18

2x �   52    
y � �3 

b�x � 1
2 y � �5

  2x � 1
2 y � 10

b 2x � 6y �  0

�3x � 9y � 18
b 2x � 3y � 12

�x � 3
2 y �  4

b 2x � y � 4

 3x � y � 6
b  x � y � 4

 2x � y � 2

1

1

0

y

x
1

1

y

x0

b x � y � 2

2x � y � 5
b2x �  y � �1

 x � 2y � �8
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2200 people entered the park, and the admission fees that were
collected totaled $5050. How many children and how many
adults were admitted?

61. Gas Station A gas station sells regular gas for $2.20 per
gallon and premium gas for $3.00 a gallon. At the end of a
business day 280 gallons of gas were sold, and receipts totaled
$680. How many gallons of each type of gas were sold?

62. Fruit Stand A fruit stand sells two varieties of strawberries:
standard and deluxe. A box of standard strawberries sells for
$7, and a box of deluxe strawberries sells for $10. In one day
the stand sells 135 boxes of strawberries for a total of $1110.
How many boxes of each type were sold?

63. Airplane Speed A man flies a small airplane from Fargo to
Bismarck, North Dakota—a distance of 180 mi. Because he is
flying into a head wind, the trip takes him 2 hours. On the way
back, the wind is still blowing at the same speed, so the return
trip takes only 1 h 12 min. What is his speed in still air, and how
fast is the wind blowing?

64. Boat Speed A boat on a river travels downstream between
two points, 20 mi apart, in one hour. The return trip against the
current takes 2 �

1
2� hours. What is the boat’s speed, and how fast

does the current in the river flow?

65. Nutrition A researcher performs an experiment to test a 
hypothesis that involves the nutrients niacin and retinol. She
feeds one group of laboratory rats a daily diet of precisely
32 units of niacin and 22,000 units of retinol. She uses two
types of commercial pellet foods. Food A contains 0.12 unit 
of niacin and 100 units of retinol per gram. Food B contains
0.20 unit of niacin and 50 units of retinol per gram. How many
grams of each food does she feed this group of rats each day?

current

20 mi

Bismarck
180 mi

wind

Fargo

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49–52 ■ Use a graphing device to graph both lines in the same
viewing rectangle. (Note that you must solve for y in terms of 
x before graphing if you are using a graphing calculator.) Solve the
system rounded to two decimal places, either by zooming in and 
using or by using Intersect.

49.

50.

51.

52.

53–56 ■ Find x and y in terms of a and b.

53.

54.

55.

56.

A P P L I C A T I O N S
57. Number Problem Find two numbers whose sum is 34 and

whose difference is 10.

58. Number Problem The sum of two numbers is twice their
difference. The larger number is 6 more than twice the smaller.
Find the numbers.

59. Value of Coins A man has 14 coins in his pocket, all of
which are dimes and quarters. If the total value of his change is
$2.75, how many dimes and how many quarters does he have?

60. Admission Fees The admission fee at an amusement park
is $1.50 for children and $4.00 for adults. On a certain day,

b ax �   by � 0

 a2x � b2y � 1
 1a � 0, b � 0, a � b 2

b ax � by � 1

 bx � ay � 1
 1a2 � b2 � 0 2

b ax � by � 0

x �  y � 1
 1a � b 2

b x �  y � 0

 x � ay � 1
 1a � 1 2

b�435x � 912y �  0

132x � 455y � 994

b2371x � 6552y �  13,591

9815x �  992y � 618,555

b18.72x � 14.91y � 12.33

6.21x � 12.92y � 17.82

b0.21x � 3.17y � 9.51

2.35x � 1.17y � 5.89

TRACE

b� 1
10 x �   1

2 y � 4

    2x � 10y � �80 
b 1

3 x � 1
4 y �  2

�8x � 6y � 10

b  26x �   10y � �4

�0.6x � 1.2y �    3
b0.4x � 1.2y � 14

12x �    5y � 10

b3
2 x � 1

3 y �    
1
2

2x � 1
2 y � �1

2

b 1
2 x � 3

5 y �  3

 
5
3 x � 2y � 10

b u � 30√ � �5

�3u � 80√ �     5
b8s � 3t � �3

5s � 2t � �1

b 25x � 75y �    100

�10x � 30y � �40
b6x � 4y � 12

9x � 6y � 18
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A linear equation in n variables is an equation that can be put in the form

where a1, a2, . . . , an and c are real numbers, and x 1, x 2, . . . , x n are the variables. If we
have only three or four variables, we generally use x, y, z, and „ instead of x 1, x 2, x 3, and 
x 4. Such equations are called linear because if we have just two variables, the equation is
a1x � a2y � c, which is the equation of a line. Here are some examples of equations in
three variables that illustrate the difference between linear and nonlinear equations.

a1x1 � a2x2 � p � anxn � c

74. Area of a Triangle Find the area of the triangle that lies in
the first quadrant (with its base on the x-axis) and that is
bounded by the lines y � 2x � 4 and y � �4x � 20.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
75. The Least Squares Line The least squares line or regres-

sion line is the line that best fits a set of points in the plane. We
studied this line in the Focus on Modeling that follows Chapter
1 (see page 162). By using calculus, it can be shown that the
line that best fits the n data points 
is the line y � ax � b, where the coefficients a and b satisfy the
following pair of linear equations. (The notation stands
for the sum of all the x’s. See Section 8.1 for a complete de-
scription of sigma 1Í2 notation.)

Use these equations to find the least squares line for the fol-
lowing data points.

Sketch the points and your line to confirm that the line fits
these points well. If your calculator computes regression lines,
see whether it gives you the same line as the formulas.

11, 3 2 , 12, 5 2 , 13, 6 2 , 15, 6 2 , 17, 9 2

¢a
n

k�1
xk

2≤ 

a � ¢a
n

k�1
xk≤

 
b � a

n

k�1
xk yk

¢a
n

k�1
xk≤

 
a � nb � a

n

k�1
yk

©n
k�1 xk

1x1, y1 2 , 1x2, y2 2 , p , 1xn, yn 2

y=2x-4

0 x

y

y=_4x+20

66. Coffee Blends A customer in a coffee shop purchases a
blend of two coffees: Kenyan, costing $3.50 a pound, and 
Sri Lankan, costing $5.60 a pound. He buys 3 lb of the blend,
which costs him $11.55. How many pounds of each kind went
into the mixture?

67. Mixture Problem A chemist has two large containers of
sulfuric acid solution, with different concentrations of acid in
each container. Blending 300 mL of the first solution and 
600 mL of the second gives a mixture that is 15% acid,
whereas blending 100 mL of the first with 500 mL of the sec-
ond gives a % acid mixture. What are the concentrations of
sulfuric acid in the original containers?

68. Mixture Problem A biologist has two brine solutions, one
containing 5% salt and another containing 20% salt. How
many milliliters of each solution should she mix to obtain 
1 L of a solution that contains 14% salt?

69. Investments A woman invests a total of $20,000 in two 
accounts, one paying 5% and the other paying 8% simple 
interest per year. Her annual interest is $1180. How much did
she invest at each rate?

70. Investments A man invests his savings in two accounts,
one paying 6% and the other paying 10% simple interest per
year. He puts twice as much in the lower-yielding account be-
cause it is less risky. His annual interest is $3520. How much
did he invest at each rate?

71. Distance, Speed, and Time John and Mary leave their
house at the same time and drive in opposite directions. John
drives at 60 mi/h and travels 35 mi farther than Mary, who 
drives at 40 mi/h. Mary’s trip takes 15 min longer than John’s.
For what length of time does each of them drive?

72. Aerobic Exercise A woman keeps fit by bicycling and 
running every day. On Monday she spends hour at each 
activity, covering a total of mi. On Tuesday she runs for 
12 min and cycles for 45 min, covering a total of 16 mi. 
Assuming that her running and cycling speeds don’t change
from day to day, find these speeds.

73. Number Problem The sum of the digits of a two-digit 
number is 7. When the digits are reversed, the number is 
increased by 27. Find the number.

12 
1
2

1
2

121
2
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5.2 SYSTEMS OF LINEAR EQUATIONS IN SEVERAL VARIABLES

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve a linear system in several variables � Determine the number of solutions
of a linear system in several variables � Model with linear systems
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In this section we study systems of linear equations in three or more variables.

▼ Solving a Linear System
The following are two examples of systems of linear equations in three variables. The sec-
ond system is in triangular form; that is, the variable x doesn’t appear in the second
equation, and the variables x and y do not appear in the third equation.

A system of linear equations A system in triangular form

It’s easy to solve a system that is in triangular form by using back-substitution. So our
goal in this section is to start with a system of linear equations and change it to a system
in triangular form that has the same solutions as the original system. We begin by show-
ing how to use back-substitution to solve a system that is already in triangular form.

E X A M P L E  1 Solving a Triangular System Using Back-Substitution

Solve the system using back-substitution,

S O L U T I O N From the last equation we know that z � 3. We back-substitute this into
the second equation and solve for y:

Back-substitute z � 3 into Equation 2

Solve for y

Then we back-substitute y � �1 and z � 3 into the first equation and solve for x:

Back-substitute y � –1 and z � 3 into Equation 1

Solve for x

The solution of the system is . We can also write the solution as the
ordered triple .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

To change a system of linear equations to an equivalent system (that is, a system with
the same solutions as the original system), we use the elimination method. This means
that we can use the following operations.

12, �1, 3 2
x � 2, y � �1, z � 3

x � 2

 x � 21�1 2 � 13 2 � 1

 y � �1

 y � 213 2 � �5

Equation 1

Equation 2

Equation 3

c
x � 2y �  z �  1

y � 2z � 5

z � 3

c
x � 2y � z � 1

y � 2z � 5

z � 3

c
x � 2y �   z � 1

�x � 3y � 3z � 4

2x � 3y �   z � 10
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Not linear because it contains
the square and the square 
root of a variable

Not linear because it contains 
a product of variables

Linear equations Nonlinear equations

x1x2 � 6x3 � �6x � y � z � 2„ � 1
2

x2 � 3y � 1z � 56x1 � 3x2 � 15x3 � 10
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To solve a linear system, we use these operations to change the system to an equiva-
lent triangular system. Then we use back-substitution as in Example 1. This process is
called Gaussian elimination.

E X A M P L E  2 Solving a System of Three 
Equations in Three Variables

Solve the system using Gaussian elimination.

S O L U T I O N We need to change this to a triangular system, so we begin by eliminat-
ing the x-term from the second equation.

Equation 2

Equation 1

Equation 2 � (�1) � Equation 1 � new Equation 2

This gives us a new, equivalent system that is one step closer to triangular form.

Now we eliminate the x-term from the third equation:

Equation 3 � (�3) � Equation 1 � new Equation 3

Then we eliminate the y-term from the third equation:

Equation 3 � (�2) � Equation 2 � new Equation 3

The system is now in triangular form, but it will be easier to work with if we divide the
second and third equations by the common factors of each term.

� Equation 2 � new Equation 2

– � Equation 3 � new Equation 3

Now we use back-substitution to solve the system. From the third equation we get 
z � 4. We back-substitute this into the second equation and solve for y:

Back-substitute z � 4 into Equation 2

Solve for y y � 7

y � 14 2 � 3

1
6

1
4c

x � 2y � 3z � 1

y � 3z � 3

z � 4

c
x � 2y � 3z �  �1

x � 4y � 4z � �12

x � 2y � 6z � �24

c
x � 2y � 03z � 01

4y � 14z � 12

8y � 14z � 00

Equation 1

Equation 2

Equation 3

c
x � 2y � 3z � 1

4y � 4z � 12

3x � 2y � 5z � 3

 4y � 4z � 12

 x � 2y � 3z �  1

 x � 2y � 0z � 13

Equation 1

Equation 2

Equation 3

c
3x � 2y � 3z �  1

3x � 2y � z �  13

3x � 2y � 5z � 3

428 C H A P T E R  5 | Systems of Equations and Inequalities

OPERATIONS THAT LEAD TO AN EQUIVALENT SYSTEM

1. Add a nonzero multiple of one equation to another.

2. Multiply an equation by a nonzero constant.

3. Interchange the positions of two equations.

 8y � 14z � 0

 �3x � 6y � 9z � �3

 3x � 2y � 5z � 3

 �6z � �24

 �8y � 8z � �24

 8y � 14z � 0
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Now we back-substitute and z � 4 into the first equation and solve for x:

Back-substitute y � 7 and z � 4 into Equation 1

Solve for x

The solution of the system is x � 3, y � 7, z � 4, which we can write as the ordered
triple 13, 7, 42.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

▼ The Number of Solutions of a Linear System
The graph of a linear equation in three variables is a plane in three-dimensional space. A
system of three equations in three variables represents three planes in space. The solutions
of the system are the points where all three planes intersect. Three planes may intersect in
a point, a line, not at all, or all three planes may coincide. Figure 1 illustrates some of
these possibilities. Checking these possibilities, we see that there are three possible out-
comes when solving such a system.

A system with no solutions is said to be inconsistent, and a system with infinitely many
solutions is said to be dependent. As we see in the next example, a linear system has no
solution if we end up with a false equation after applying Gaussian elimination to the 
system.

E X A M P L E  3 A System with No Solution

Solve the following system.

Equation 1

Equation 2

Equation 3

c
x � 2y � 2z � 1

2x � 2y � z � 6

3x � 4y � 3z � 5

 x � 3

x � 217 2 � 314 2 � 1

 y � 7
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(a) The three planes intersect at a 
single point. The system has 
one solution.

(b) The three planes intersect
at more than one point. The
system has infinitely many
solutions.

(c) The three planes have no point
in common. The system has no
solution.

C H E C K  Y O U R  A N S W E R

✓ 313 2 � 217 2 � 514 2 � 3

 13 2 � 217 2 � 14 2 � 13

 13 2 � 217 2 � 314 2 � 01

x � 3, y � 7, z � 4:

F I G U R E  1

NUMBER OF SOLUTIONS OF A LINEAR SYSTEM

For a system of linear equations, exactly one of the following is true.

1. The system has exactly one solution.

2. The system has no solution.

3. The system has infinitely many solutions.
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S O L U T I O N To put this in triangular form, we begin by eliminating the x-terms from
the second equation and the third equation.

Equation 2 � (�2) � Equation 1 � new Equation 2

Equation 3 � (�3) � Equation 1 � new Equation 3

Now we eliminate the y-term from the third equation:

Equation 3 � (�1) � Equation 2 � new Equation 3

The system is now in triangular form, but the third equation says 0 � 2, which is false.
No matter what values we assign to x, y, and z, the third equation will never be true.
This means that the system has no solution.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

E X A M P L E  4 A System with Infinitely Many Solutions

Solve the following system.

S O L U T I O N To put this in triangular form, we begin by eliminating the x-terms from
the second equation and the third equation.

Equation 2 � (�2) � Equation 1 � new Equation 2

Equation 3 � (�2) � Equation 1 � new Equation 3

Now we eliminate the y-term from the third equation:

Equation 3 � (�2) � Equation 2 � new Equation 3

The new third equation is true, but it gives us no new information, so we can drop it
from the system. Only two equations are left. We can use them to solve for x and y in
terms of z, but z can take on any value, so there are infinitely many solutions.

To find the complete solution of the system, we begin by solving for y in terms of z,
using the new second equation.

Equation 2

Multiply by 

Solve for y y � 2z � 2

1
3 y � 2z � 2

 3y � 6z � 6

c
x � y � 5z � � 2

3y � 6z �   6

0 �    0

c
x � y � 5z � �2

3y � 6z �  6

6y � 12z �  12

c
x � 3y � 5z � �2

3y � 6z �    6

2x � 4y � 2z �    8

Equation 1

Equation 2

Equation 3

c
x � y � 5z � �2

2x � y � 4z � 2

2x � 4y � 2z � 8

c
x � 2y � 2z � 1

�2y � 3z � 4

0 � 2

c
x � 2y � 2z � 1

�2y � 3z � 4

�2y � 3z � 2

c
x � 2y � 2z � 1

�2y � 3z � 4

3x � 4y � 3z � 5
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Then we solve for x in terms of z, using the first equation:

Substitute y � 2z � 2 into Equation 1

Simplify

Solve for x

To describe the complete solution, we let t represent any real number. The solution is

We can also write this as the ordered triple 1�3t, 2t � 2, t2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

In the solution of Example 4 the variable t is called a parameter. To get a specific 
solution, we give a specific value to the parameter t. For instance, if we set t � 2, we get

Thus 1�6, 6, 22 is a solution of the system. Here are some other solutions of the system
obtained by substituting other values for the parameter t.

You should check that these points satisfy the original equations. There are infinitely
many choices for the parameter t, so the system has infinitely many solutions.

▼ Modeling Using Linear Systems
Linear systems are used to model situations that involve several varying quantities. In the
next example we consider an application of linear systems to finance.

E X A M P L E  5 Modeling a Financial Problem 
Using a Linear System

Jason receives an inheritance of $50,000. His financial advisor suggests that he invest
this in three mutual funds: a money-market fund, a blue-chip stock fund, and a high-
tech stock fund. The advisor estimates that the money-market fund will return 5%
over the next year, the blue-chip fund 9%, and the high-tech fund 16%. Jason wants a
total first-year return of $4000. To avoid excessive risk, he decides to invest three
times as much in the money-market fund as in the high-tech stock fund. How much
should he invest in each fund?

 z � 2

 y � 212 2 � 2 � 6

 x � �312 2 � �6

z � t

 y � 2t � 2

x � �3t

 x � �3z

 x � 3z � 2 � �2

 x � 12z � 2 2 � 5z � �2
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Parameter t Solution 11�3t, 2t � 2, t22

�1 13, 0, �12

0 10, 2, 02

3 1�9, 8, 32

10 1�30, 22, 102
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S O L U T I O N

Let x � amount invested in the money-market fund

y � amount invested in the blue-chip stock fund

z � amount invested in the high-tech stock fund

We convert each fact given in the problem into an equation:

Multiplying the second equation by 100 and rewriting the third gives the following sys-
tem, which we solve using Gaussian elimination.

Equation 2 � 4 � Equation 3 � new Equation 3

Interchange Equations 2 and 3

Now that the system is in triangular form, we use back-substitution to find that 
x � 30,000, y � 10,000, and z � 10,000. This means that Jason should invest 

$30,000 in the money-market fund

$10,000 in the blue-chip stock fund

$10,000 in the high-tech stock fund

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

c
x � y �   z � 50,000

y � 4z � 50,000

z � 10,000

(– �5
1
�) � Equation 2

(–1) � Equation 3

c
x � y � z � 50,000

z � 10,000

y � 4z � 50,000

c
x � y � z �     50,000

           �5z � � 50,000

     �y � 4z � � 50,000

Equation 2 � (�5) � Equation 1 � new Equation 2
Equation 3 � (�1) � Equation 1 � new Equation 3

c
x � y � z �     50,000

4y � 11z �   150,000

     �y � 4z � � 50,000

100 � Equation 2

Subtract 3z
c

x � y � z �0 50,000

5x � 9y � 16z � 400,000

x   � 3z � 0

Total amount invested is $50,000

Total investment return is $4000

Money-market amount is 3 � high-tech amount

x � y � z � 50,000

0.05x � 0.09y � 0.16z � 4000

x � 3z
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C O N C E P T S
1–2 ■ These exercises refer to the following system. 

c 

x �    y � z �    2

�x � 2y � z � �3

3x �   y � 2z �    2

1. If we add 2 times the first equation to the second equation, the 

second equation becomes � .

2. To eliminate x from the third equation, we add 
times the first equation to the third equation. The third equation 

becomes � .

5 . 2  E X E R C I S E S
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25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. d 

x � y � z � „ � 0

x � y � 2z � 2„ � 0

2x � 2y � 3z � 4„ � 1

2x � 3y � 4z � 5„ � 2

d  

2x � 2y � 2z � 2„ � �6

2x � 2y � 2z � 2„ � �3

2x � 2y � 2z � 2„ � �2

2x � 2y � 3z � 2„ � �0

c 

2x � 4y � z � 3

x � 2y � 4z � 6

x � 2y � 2z � 0

c 

2x � 3y � 2z � 0

2x � 3y � 4z � 4

4x � 6y � 2z � 4

c 

x � 2y � z � 3

2x � 5y � 6z � 7

2x � 3y � 2z � 5

c 

x � y � z � 0

x � 2y � 3z � �3

2x � 3y � 4z � �3

c
 x � 2y � 3z � 5

 2x � y � z � 5

 4x � 3y � 7z � 5

c 

2x � 3y � z � 1

x � 2y � 3

x � 3y � z � 4

c
�x � 2y �    5z � 4

x          �   2z � 0

4x � 2y � 11z � 2

c
 x � 2y � z � 1

 2x � 3y � 4z � �3

 3x � 6y � 3z � 4

c
y � z � �1

6x � 2y � z � 2

�x � y � 3z � �2

c
2y � 4z � �1

�2x � y � 2z � �1

4x � 2y � 0

 c
2x � y � 4z � �8

�x � y � 4z � �3

�2x � y � 4z � 18

c 
2x � 4y �   z �    2

x � 2y � 3z � �4

3x �   y �   z �    1

S K I L L S
3–6 ■ State whether the equation or system of equations is linear.

3. 4.

5. 6.

7–12 ■ Use back-substitution to solve the triangular system.

7. 8.

9. 10.

11. 12.

13–16 ■ Perform an operation on the given system that 
eliminates the indicated variable. Write the new equivalent 
system.

13. 14.

Eliminate the x-term Eliminate the x-term 
from the second equation. from the second equation.

15. 16.

Eliminate the x-term Eliminate the y-term 
from the third equation. from the third equation.

17–38 ■ Find the complete solution of the linear system, or show
that it is inconsistent.

17. 18.

19. 20.

21. 22.

23. 24. c
 x � y � 2z � 2

 3x � y � 5z � 8

 2x � y � 2z � �7

c
x � 4z � 1

2x � y � 6z � 4

2x � 3y � 2z � 8

c
x � y � z � 0

�x � 2y � 5z � 3

3x � y � 6

c 

x � y � z � 4

x � 3y � 3z � 10

2x � y � z � 3

c
x � 2y � 3z � �10

3y � z � 7

x � y � z � 7

c
x � 2y � z � �6

y � 3z � �16

x � 3y � 2z � 14

c 

 x � y � 2z � �0

x � y � 2z � �2

 x � y �   z �     2

c 

x � y �  z �    4

2y �   z � �1

�x � y � 2z �    5

c
x � 3y � 2z � �1

y � z � �1

2y � z � 1

c
2x � y � 3z � 5

2x � 3y � z � 13

6x � 5y � z � 7

c
�5x � 2y � 3z � 3

10x � 3y � z � �20

�x � 3y � z � 8

c
3x � y � z � 4

�x � y � 2z � 0

x � 2y � z � �1

c 

4x � 3z � 10

2y � 3z � �6
1
2z � �4

c
2x � y � 6z � 5

y � 4z � 0

�2z � 1

c
x � 2y � 3z � 10

2y �   z � 2

3z � 12
c 

x � 2y � z � 7

�y � 3z � 9

2z � 6

c
3x � 3y � z � 0

y � 4z � 10

z � 3

c
x � 3y � z � 0

y � z � 3

z � �2

c
x � 2y � 3z � 10

2x � 5y � 2

y � 2z � 4

c 

xy � 3y � z � 5

x � y2 � 5z � 0

2x � yz � 3

x2 � y2 � z2 � 46x � 13y � 1
2 z � 0
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A P P L I C A T I O N S
39–40 ■ Finance An investor has $100,000 to invest in three
types of bonds: short-term, intermediate-term, and long-term. 
How much should she invest in each type to satisfy the given 
conditions?

39. Short-term bonds pay 4% annually, intermediate-term bonds
pay 5%, and long-term bonds pay 6%. The investor wishes to
realize a total annual income of 5.1%, with equal amounts 
invested in short- and intermediate-term bonds.

40. Short-term bonds pay 4% annually, intermediate-term bonds
pay 6%, and long-term bonds pay 8%. The investor wishes to
have a total annual return of $6700 on her investment, with
equal amounts invested in intermediate- and long-term bonds.

41. Agriculture A farmer has 1200 acres of land on which he
grows corn, wheat, and soybeans. It costs $45 per acre to grow
corn, $60 to grow wheat, and $50 to grow soybeans. Because of
market demand, the farmer will grow twice as many acres of
wheat as of corn. He has allocated $63,750 for the cost of grow-
ing his crops. How many acres of each crop should he plant? 
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47. Stock Portfolio An investor owns three stocks: A, B, and C.
The closing prices of the stocks on three successive trading
days are given in the table.

Despite the volatility in the stock prices, the total value of the
investor’s stocks remained unchanged at $74,000 at the end of
each of these three days. How many shares of each stock does
the investor own?

48. Electricity By using Kirchhoff’s Laws, it can be shown that
the currents I1, I2, and I3 that pass through the three branches 
of the circuit in the figure satisfy the given linear system. Solve
the system to find I1, I2, and I3.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
49. Can a Linear System Have Exactly Two Solutions?

(a) Suppose that 1x0, y0, z02 and 1x1, y1, z12 are solutions of the
system

Show that is also a solution.

(b) Use the result of part (a) to prove that if the system has
two different solutions, then it has infinitely many
solutions.

¢x0 � x1

2
, 

y0 � y1

2
, 

z0 � z1

2
≤

c
a1x � b1y � c1z � d1

a2x � b2y � c2z � d2

a3x � b3y � c3z � d3

16 �
4 V

8 �
5 V

4 �

I⁄

I¤

I‹

c
I1 �  I2 �  I3 � 0

16I1 � 8I2 � 4I3 � 4

            8I2 � 4I3 � 5

Stock A Stock B Stock C

Monday $10 $25 $29
Tuesday $12 $20 $32
Wednesday $16 $15 $32

42. Gas Station A gas station sells three types of gas: Regular
for $3.00 a gallon, Performance Plus for $3.20 a gallon, and
Premium for $3.30 a gallon. On a particular day 6500 gallons
of gas were sold for a total of $20,050. Three times as many
gallons of Regular as Premium gas were sold. How many 
gallons of each type of gas were sold that day?

43. Nutrition A biologist is performing an experiment on the ef-
fects of various combinations of vitamins. She wishes to feed
each of her laboratory rabbits a diet that contains exactly 9 mg
of niacin, 14 mg of thiamin, and 32 mg of riboflavin. She has
available three different types of commercial rabbit pellets;
their vitamin content (per ounce) is given in the table. How
many ounces of each type of food should each rabbit be given
daily to satisfy the experiment requirements?

44. Diet Program Nicole started a new diet that requires each
meal to have 460 calories, 6 grams of fiber, and 11 grams of
fat. The table shows the fiber, fat, and calorie content of one
serving of each of three breakfast foods. How many servings
of each food should Nicole eat to follow her diet?

45. Juice Blends The Juice Company offers three kinds of
smoothies: Midnight Mango, Tropical Torrent, and Pineapple
Power.  Each smoothie contains the amounts of juices shown in
the table. 

On a particular day the Juice Company used 820 oz of mango
juice, 690 oz of pineapple juice, and 450 oz of orange juice.
How many smoothies of each kind were sold that day?

46. Appliance Manufacturing Kitchen Korner produces re-
frigerators, dishwashers, and stoves at three different factories. 
The table gives the number of each product produced at each
factory per day. Kitchen Korner receives an order for 110 re-
frigerators, 150 dishwashers, and 114 ovens. How many days
should each plant be scheduled to fill this order?

Appliance Factory A Factory B Factory C

Refrigerators 8 10 14
Dishwashers 16 12 10
Stoves 10 18 6

Mango Pineapple Orange
Smoothie juice (oz) juice (oz) juice (oz)

Midnight Mango 8 3 3
Tropical Torrent 6 5 3
Pineapple Power 2 8 4

Food Fiber Fat Calories

Toast 2 1 100
Cottage cheese 0 5 120
Fruit 2 0 60

Type A Type B Type C

Niacin (mg) 2 3 1
Thiamin (mg) 3 1 3
Riboflavin (mg) 8 5 7
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Best Fit Versus Exact Fit

In this project we use linear systems to find quadratic 
functions whose graphs pass through a set of given points. 
You can find the project at the book companion website:
www.stewartmath.com

❍ DISCOVERY
PROJECT
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5.3 PARTIAL FRACTIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the partial fraction decomposition of a rational expression in which the 
denominator consists of distinct linear factors, repeated linear factors,
irreducible quadratic factors, or repeated irreducible quadratic factors

To write a sum or difference of fractional expressions as a single fraction, we bring them
to a common denominator. For example,

But for some applications of algebra to calculus we must reverse this process—that is, we
must express a fraction such as as the sum of the simpler fractions 

These simpler fractions are called partial fractions.

Let r be the rational function

where the degree of P is less than the degree of Q. By the Linear and Quadratic Factors
Theorem in Section 3.6, every polynomial with real coefficients can be factored com-
pletely into linear and irreducible quadratic factors, that is, factors of the form ax � b and

where a, b, and c are real numbers. For instance,

After we have completely factored the denominator Q of r, we can express as a sum
of partial fractions of the form

This sum is called the partial fraction decomposition of r. Let’s examine the details of
the four possible cases.

▼ Distinct Linear Factors
We first consider the case in which the denominator factors into distinct linear factors.

A

1ax � b 2 i
  and  

Ax � B

1ax2 � bx � c 2 j

r1x 2

x4 � 1 � 1x2 � 1 2 1x2 � 1 2 � 1x � 1 2 1x � 1 2 1x2 � 1 2

ax2 � bx � c,

r1x 2 �
P1x 2

Q1x 2

1/ 1x � 1 2  and 1/ 12x � 1 2 .
3x/ 12x2 � x � 1 2

1

x � 1
�

1

2x � 1
�
12x � 1 2 � 1x � 1 2

1x � 1 2 12x � 1 2
�

3x

2x2 � x � 1

CASE 1: THE DENOMINATOR IS A PRODUCT OF DISTINCT LINEAR FACTORS

Suppose that we can factor Q1x2 as

with no factor repeated. In this case the partial fraction decomposition of
takes the form

P1x 2

Q1x 2
�

A

a1x � b1
�

A2

a2x � b2
� p �

An

anx � bn

P1x 2 /Q1x 2

Q1x 2 � 1a1x � b1 2 1a2x � b2 2 # # # 1anx � bn 2

Common denominator

Partial fractions

1

x � 1
�

1

2x � 1
�

3x

2x2 � x � 1
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The constants A1, A2, . . . , An are determined as in the following example.

E X A M P L E  1 Distinct Linear Factors

Find the partial fraction decomposition of .

S O L U T I O N The denominator factors as follows.

This gives us the partial fraction decomposition

Multiplying each side by the common denominator, Óx � 1ÔÓx � 1ÔÓx � 2Ô, we get

Expand

Combine like terms

If two polynomials are equal, then their coefficients are equal. Thus, since 5x � 7 has
no x2-term, we have A � B � C � 0. Similarly, by comparing the coefficients of x, we
see that 3A � B � 5, and by comparing constant terms, we get 2A � 2B � C � 7. This
leads to the following system of linear equations for A, B, and C.

We use Gaussian elimination to solve this system.

Equation 3 � (�2) � Equation 2

From the third equation we get C � �1. Back-substituting, we find that B � �1 and 
A � 2. So the partial fraction decomposition is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 3 AND 13 ■

The same approach works in the remaining cases. We set up the partial fraction decom-
position with the unknown constants A, B, C, . . . . Then we multiply each side of the result-
ing equation by the common denominator, simplify the right-hand side of the equation, and
equate coefficients. This gives a set of linear equations that will always have a unique solu-
tion (provided that the partial fraction decomposition has been set up correctly).

▼ Repeated Linear Factors
We now consider the case in which the denominator factors into linear factors, some of
which are repeated.

5x � 7

x3 � 2x2 � x � 2
�

2

x � 1
�

�1

x � 1
�

�1

x � 2

c
A � 2B � 3C � �0

A � 2B � 3C � �5

A � 2B � 3C � �3

Equation 2 � (�3) � Equation 1

Equation 3 � (�2) � Equation 1
c

A � 2B � C � 0

A � 2B � 3C � 5

A � 4B � 3C � 7

Equation 1: Coefficients of x2

Equation 2: Coefficients of x

Equation 3: Constant coefficients
c

A � B � C � 0

3A � B � 5

2A � 2B � C � 7

 � 1A � B � C 2x2 � 13A � B 2x � 12A � 2B � C 2

 � A1x2 � 3x � 2 2 � B1x 2 � x � 2 2 � C1x 2 � 1 2

 5x � 7 � A1x � 1 2 1x � 2 2 � B1x � 1 2 1x � 2 2 � C1x � 1 2 1x � 1 2

5x � 7

x3 � 2x2 � x � 2
�

A

x � 1
�

B

x � 1
�

C

x � 2

 � 1x � 1 2 1x � 1 2 1x � 2 2

x3 � 2x2 � x � 2 � x21x � 2 2 � 1x � 2 2 � 1x2 � 1 2 1x � 2 2

5x � 7

x3 � 2x2 � x � 2
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The Rhind Papyrus is the oldest
known mathematical document. It is an
Egyptian scroll written in 1650 B.C. by
the scribe Ahmes, who explains that 
it is an exact copy of a scroll written 
200 years earlier. Ahmes claims that his
papyrus contains “a thorough study of
all things, insight into all that exists,
knowledge of all obscure secrets.” Actu-
ally, the document contains rules for do-
ing arithmetic, including multiplication
and division of fractions and several ex-
ercises with solutions.The exercise
shown below reads:“A heap and its sev-
enth make nineteen; how large is the
heap?” In solving problems of this sort,
the Egyptians used partial fractions be-
cause their number system required all
fractions to be written as sums of recip-
rocals of whole numbers. For example,

would be written as .
The papyrus gives a correct formula for

the volume of a truncated pyramid,
which the ancient Egyptians used when
building the pyramids at Giza. It also
gives the formula for the area
of a circle with diameter d. How close is
this to the actual area?

A � A89  dB2

1
3 � 1

4
7

12
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E X A M P L E  2 Repeated Linear Factors

Find the partial fraction decomposition of .

S O L U T I O N Because the factor x � 1 is repeated three times in the denominator, the
partial fraction decomposition has the form

Multiplying each side by the common denominator, xÓx � 1Ô3, gives

Equating coefficients, we get the following equations.

If we rearrange these equations by putting the last one in the first position, we can easily
see (using substitution) that the solution to the system is A � �1, B � 1, C � 0, D � 2,
so the partial fraction decomposition is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 5 AND 29 ■

▼ Irreducible Quadratic Factors
We now consider the case in which the denominator has distinct irreducible quadratic factors.

x2 � 1

x1x � 1 2 3
�

�1
x

�
1

x � 1
�

2

1x � 1 2 3

Coefficients of x3

Coefficients of x2

Coefficients of x

Constant coefficients

d
A � B � 0

�3A � 2B � C � 1

3A � B � C � D � 0

�A � 1

x2 � 1

x1x � 1 2 3
�

A
x

�
B

x � 1
�

C

1x � 1 2 2
�

D

1x � 1 2 3

x2 � 1

x1x � 1 2 3

C ASE 2: THE DENOMINATOR IS  A PRODUCT OF LINEAR FACTORS, SOME

OF WHICH ARE REPEATED

Suppose the complete factorization of contains the linear factor ax � b
repeated k times; that is, Óax � bÔk is a factor of . Then, corresponding to each
such factor, the partial fraction decomposition for contains

A1

ax � b
�

A2

1ax � b 2 2
� p �

Ak

1ax � b 2 k

P1x 2 /Q1x 2
Q1x 2

Q1x 2

Expand

Combine like terms � 1A � B 2x3 � 1�3A � 2B � C 2x2 � 13A � B � C � D 2x � A

 � A1x3 � 3x2 � 3x � 1 2 � B1x3 � 2x2 � x 2 � C1x2 � x 2 � Dx

 x2 � 1 � A1x � 1 2 3 � Bx1x � 1 2 2 � Cx1x � 1 2 � Dx

C ASE 3: THE DENOMINATOR HAS IRREDUCIBLE QUADRATIC

FACTORS, NONE OF WHICH IS  REPEATED

Suppose the complete factorization of contains the quadratic factor 
ax2 � bx � c (which can’t be factored further). Then, corresponding to this, the
partial fraction decomposition of will have a term of the form

Ax � B

ax2 � bx � c

P1x 2 /Q1x 2

Q1x 2
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E X A M P L E  3 Distinct Quadratic Factors

Find the partial fraction decomposition of .

S O L U T I O N Since which can’t be factored further, we write

Multiplying by we get

Equating coefficients gives us the equations

so A � 1, B � 1, and C � �1. The required partial fraction decomposition is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 7 AND 37 ■

▼ Repeated Irreducible Quadratic Factors
We now consider the case in which the denominator has irreducible quadratic factors,
some of which are repeated.

E X A M P L E  4 Repeated Quadratic Factors

Write the form of the partial fraction decomposition of

S O L U T I O N

� � � � � � �

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 11 AND 41 ■

Jx � K
��
Óx2 � 2Ô3

Hx � I
��
Óx2 � 2Ô2

Fx � G
�
x2 � 2

Dx � E
��
x2 � x � 1

C
�
x3

B
�
x2

A
�
x

x5 � 3x2 � 12x � 1
���
x3Óx2 � x � 1ÔÓx2 � 2Ô3

x5 � 3x2 � 12x � 1
���
x3Óx2 � x � 1ÔÓx2 � 2Ô3

2x2 � x � 4

x3 � 4x
�

1
x

�
x � 1

x2 � 4

Coefficients of x2

Coefficients of x

Constant coefficients

c
A � B � �2

A �  C � �1

A �4A � �4

 � 1A � B 2x2 � Cx � 4A

 2x 2 � x � 4 � A1x 2 � 4 2 � 1Bx � C 2x

x1x2 � 4 2 ,

2x2 � x � 4

x3 � 4x
�

A
x

�
Bx � C

x2 � 4

x3 � 4x � x1x2 � 4 2 ,

2x2 � x � 4

x3 � 4x
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C ASE 4: THE DENOMINATOR HAS A REPEATED IRREDUCIBLE 

QUADRATIC FACTOR

Suppose the complete factorization of QÓxÔ contains the factor Óax2 � bx � cÔk,
where ax2 � bx � c can’t be factored further. Then the partial fraction decompo-
sition of will have the terms

�
ax

A
2

1

�

x �

bx
B
�
1

c
� � �

Óax
A
2

2

�

x
b
�

x
B
�

2

cÔ2� � � �
Óax

A
2

k

�

x
b
�

x
B
�

k

cÔk�p

P1x 2 /Q1x 2
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To find the values of A, B, C, D, E, F, G, H, I, J, and K in Example 4, we would have
to solve a system of 11 linear equations. Although possible, this would certainly involve
a great deal of work!

The techniques that we have described in this section apply only to rational functions
PÓxÔ�QÓxÔ in which the degree of P is less than the degree of Q. If this isn’t the case, we
must first use long division to divide Q into P.

E X A M P L E  5 Using Long Division to Prepare for Partial Fractions

Find the partial fraction decomposition of

S O L U T I O N Since the degree of the numerator is larger than the degree of the denom-
inator, we use long division to obtain

The remainder term now satisfies the requirement that the degree of the numerator is
less than the degree of the denominator. At this point we proceed as in Example 1 to ob-
tain the decomposition

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 43 ■

2x4 � 4x3 � 2x2 � x � 7

x3 � 2x2 � x � 2
� 2x �

2

x � 1
�

�1

x � 1
�

�1

x � 2

2x4 � 4x3 � 2x2 � x � 7

x3 � 2x2 � x � 2
� 2x �

5x � 7

x3 � 2x2 � x � 2

2x4 � 4x3 � 2x2 � x � 7

x3 � 2x2 � x � 2

2x

x3 � 2x2 � x � 2 � 2� x� 4��� 4�x�3��� 2�x�2��� x���� 7�
2x4 � 4x3 � 2x2 � 4x

5x � 7

C O N C E P T S
1–2 ■ For each rational function r, choose from (i)–(iv) the 
appropriate form for its partial fraction decomposition.

1.

ii(i) (ii)

(iii) (iv)

2.

ii(i)

i(ii)

(iii)

(iv)
Ax � B

x � 1
�

Cx � D

x2 � 4

A

x � 1
�

B

x � 2
�

C

x2 � 4

A

x � 1
�

Bx � C

x2 � 4

A

x � 1
�

B

x2 � 4

r1x 2 �
2x � 8

1x � 1 2 1x2 � 4 2

A

x
�

B

x � 2
�

Cx � D

1x � 2 2 2
A

x
�

B

x � 2
�

C

1x � 2 2 2

A

x
�

B

1x � 2 2 2
A

x
 �

B

x � 2

r1x 2 �
4

x1x � 2 2 2

S K I L L S
3–12 ■ Write the form of the partial fraction decomposition of the
function (as in Example 4). Do not determine the numerical values
of the coefficients.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13–44 ■ Find the partial fraction decomposition of the rational
function.

13. 14.

15. 16.
x � 6

x1x � 3 2

5

1x � 1 2 1x � 4 2

2x

1x � 1 2 1x � 1 2

2

1x � 1 2 1x � 1 2

1

1x3 � 1 2 1x2 � 1 2

x3 � x � 1

x12x � 5 2 31x2 � 2x � 5 2 2

x4 � x2 � 1

x21x2 � 4 2 2
x3 � 4x2 � 2

1x2 � 1 2 1x2 � 2 2

1

x4 � 1

x2

1x � 3 2 1x2 � 4 2

1

x4 � x3

x2 � 3x � 5

1x � 2 2 21x � 4 2

x

x2 � 3x � 4

1

1x � 1 2 1x � 2 2

5 . 3  E X E R C I S E S
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44.

45. Determine A and B in terms of a and b.

46. Determine A, B, C, and D in terms of a and b.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
47. Recognizing Partial Fraction Decompositions For each

expression, determine whether it is already a partial fraction
decomposition or whether it can be decomposed further.

(a) (b)

(c) (d)

48. Assembling and Disassembling Partial Fractions The
following expression is a partial fraction decomposition.

Use a common denominator to combine the terms into one
fraction. Then use the techniques of this section to find its 
partial fraction decomposition. Did you get back the original
expression?

2

x � 1
�

1

1x � 1 2 2
�

1

x � 1

x � 2

1x2 � 1 2 2
1

x � 1
�

2

1x � 1 2 2

x

1x � 1 2 2
x

x2 � 1
�

1

x � 1

ax3 � bx2

1x2 � 1 2 2
�

Ax � B

x2 � 1
�

Cx � D

1x2 � 1 2 2

ax � b

x2 � 1
�

A

x � 1
�

B

x � 1

x5 � 3x4 � 3x3 � 4x2 � 4x � 12

1x � 2 2 21x2 � 2 2
17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43.
x5 � 2x4 � x3 � x � 5

x3 � 2x2 � x � 2

2x2 � x � 8

1x2 � 4 2 2
x4 � x3 � x2 � x � 1

x1x2 � 1 2 2

x2 � x � 1

2x4 � 3x2 � 1

2x3 � 7x � 5

1x2 � x � 2 2 1x2 � 1 2

3x2 � 2x � 8

x3 � x2 � 2x � 2

x � 3

x3 � 3x

3x2 � 12x � 20

x4 � 8x2 � 16

3x3 � 22x2 � 53x � 41

1x � 2 2 21x � 3 2 2

� 2x2 � 5x � 1

x4 � 2x3 � 2x � 1

�10x2 � 27x � 14

1x � 1 2 31x � 2 2

x3 � 2x2 � 4x � 3

x4

4x2 � x � 2

x4 � 2x3

x � 4

12x � 5 2 2
2x

4x2 � 12x � 9

3x2 � 5x � 13

13x � 2 2 1x2 � 4x � 4 2

x2 � 1

x3 � x2

� 3x2 � 3x � 27

1x � 2 2 12x2 � 3x � 9 2

9x2 � 9x � 6

2x3 � x2 � 8x � 4

7x � 3

x3 � 2x2 � 3x

x

8x2 � 10x � 3

8x � 3

2x2 � x

x � 14

x2 � 2 x � 8

2x � 1

x2 � x � 2

4

x2 � 4

x � 12

x2 � 4x

12

x2 � 9
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5.4 SYSTEMS OF NONLINEAR EQUATIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Solve nonlinear systems using the Substitution Method � Solve nonlinear 
systems using the Elimination Method � Solve nonlinear systems using the
Graphical Method

GET READY Prepare for this section by reviewing how to solve equations algebraically

and graphically in Sections P.8, 1.4, and 1.6.

In this section we solve systems of equations in which the equations are not all linear.
The methods we learned in Section 5.1 can also be used to solve nonlinear systems.

▼ Substitution and Elimination Methods
To solve a system of nonlinear equations, we can use the substitution or elimination
method, as illustrated in the next examples.

E X A M P L E  1 Substitution Method

Find all solutions of the system.

Equation 1

Equation 2
b x2 � y2 � 100

 3x � y � 10
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S O L U T I O N Solve for one variable. We start by solving for y in the second equation:

Solve for y in Equation 2

Substitute. Next we substitute for y in the first equation and solve for x:

Substitute y � 3x � 10 into Equation 1

Expand

Simplify

Factor

Solve for x

Back-substitute. Now we back-substitute these values of x into the equation 
y � 3x � 10:

Back-substitute

Back-substitute

So we have two solutions: and .
The graph of the first equation is a circle, and the graph of the second equation is a line;

Figure 1 shows that the graphs intersect at the two points and .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

E X A M P L E  2 Elimination Method

Find all solutions of the system.

S O L U T I O N We choose to eliminate the x-term, so we multiply the first equation by 5
and the second equation by �3. Then we add the two equations and solve for y:

Add
Solve for y

Now we back-substitute y � �11 into one of the original equations, say, ,
and solve for x :

Back-substitute y � �11 into Equation 1

Add 22

Divide by 3

Solve for x

So we have two solutions: and .
The graphs of both equations are parabolas (see Section 3.1). Figure 2 shows that the

graphs intersect at the two points and .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 11 ■

14, �11 21�4, �11 2

14, �11 21�4, �11 2

x � � 4 or x � 4

 x 
2 � 16

 3x 
2 � 48

 3x 
2 � 21�11 2 � 26

3x 
2 � 2y � 26

 y � �11
 �11y �   121

5 � Equation 1 

(�3) � Equation 2
b 15x 

2 � 10y �   130

�15x 
2 � 21y �    �9

Equation 1

Equation 2
b 3x2 � 2y � 26

 5x2 � 7y � 3

16, 8 210, �10 2

16, 8 210, �10 2

For x � 6:  y � 316 2 � 10 �   8 

For x � 0:  y � 310 2 � 10 � �10

 x � 0  or  x � 6

 10x1x � 6 2 � 0

 10x 
2 � 60x � 0

 x 
2 � 19x2 � 60x � 100 2 � 100

 x 
2 � 13x � 10 2 2 � 100

y � 3x � 10
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F I G U R E  1

C H E C K  Y O U R  A N S W E R S

:

✓

✓
b 16 2 2 � 18 2 2 � 36 � 64 � 100

 316 2 � 18 2 � 18 � 8 � 10

x � 6, y � 8:

b 

10 2 2 � 1�10 2 2 � 100

 310 2 � 1�10 2 � 10

x � 0, y � �10

(6, 8)

(0, _10)

y

x60

6

≈+¥=100

3x-y=10

F I G U R E  2

(4, _11)

y

x
2

3≈+2y=26

5

0

(_4, _11)
5≈+7y=3

C H E C K  Y O U R  A N S W E R S

✓

✓
b 314 2 2 � 21�11 2 � 26

 514 2 2 � 71�11 2 � 3

x � 4, y � �11:

b 31�4 2 2 � 21�11 2 � 26

 51�4 2 2 � 71�11 2 � 3

x � �4, y � �11:
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▼ Graphical Method
The graphical method is particularly useful in solving systems of nonlinear equations.

E X A M P L E  3 Graphical Method

Find all solutions of the system

S O L U T I O N Graph each equation. Solving for y in terms of x, we get the equivalent
system

Find intersection points. Figure 3 shows that the graphs of these equations intersect
at two points. Zooming in, we see that the solutions are

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

1�1, �1 2 and 13, 7 2

b  y � x 
2 � 2

  y � 2x � 1

b  x 
2 � y � 2

  2x � y � �1
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M AT H E M AT I C S  I N  T H E  M O D E R N  W O R L D

Co
ur

te
sy

 o
f N

AS
A

Global Positioning System (GPS)
On a cold, foggy day in 1707 a
British naval fleet was sailing
home at a fast clip. The fleet’s
navigators didn’t know it, but the
fleet was only a few yards from
the rocky shores of England. In
the ensuing disaster the fleet was
totally destroyed. This tragedy
could have been avoided had the
navigators known their positions.
In those days latitude was deter-
mined by the position of the

North Star (and this could only be done at night in good weather),
and longitude by the position of the sun relative to where it would

be in England at that same time. So navigation required an accurate
method of telling time on ships. (The invention of the spring-loaded
clock brought about the eventual solution.)

Since then, several different methods have been developed 
to determine position, and all rely heavily on mathematics (see
LORAN, page 547). The latest method, called the Global Positioning
System (GPS), uses triangulation. In this system, 24 satellites are
strategically located above the surface of the earth. A handheld GPS
device measures distance from a satellite, using the travel time of ra-
dio signals emitted from the satellite. Knowing the distances to three
different satellites tells us that we are at the point of intersection of
three different spheres. This uniquely determines our position (see
Exercise 47, page 445).

8

_3

_3 4
≈-y=2

(3, 7)

(_1, _1)

2x-y=_1

F I G U R E  3

C H E C K  Y O U R  A N S W E R S

✓ ✓
b  32 � 7 � 2�

 213 2 � 7 � �1
b  1�1 2 2 � 1�1 2 � 2

 21�1 2 � 1�1 2 � �1

x � 3, y � 7:x � �1, y � �1:

See Appendix B, Graphing with a
Graphing Calculator, for guidelines on
using a graphing calculator. See 
Appendix C, Using the TI-83/84
Graphing Calculator, for specific
graphing instructions.
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E X A M P L E  4 Solving a System of Equations Graphically

Find all solutions of the system, rounded to one decimal place.

S O L U T I O N The graph of the first equation is a circle, and the graph of the second is a
parabola. To graph the circle on a graphing calculator, we must first solve for y in terms
of x (see Appendix B, Graphing with a Graphing Calculator).

Isolate y2 on LHS

Take square roots

To graph the circle, we must graph both functions.

In Figure 4 the graph of the circle is shown in red, and the parabola is shown in blue.
The graphs intersect in Quadrants I and II. Zooming in or using the Intersect com-
mand, we see that the intersection points are 1�0.559, 3.4192 and 12.847, 1.9742. There
also appears to be an intersection point in Quadrant IV. However, when we zoom in, we
see that the curves come close to each other but don’t intersect (see Figure 5). Thus the
system has two solutions; rounded to the nearest tenth, they are

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

1�0.6, 3.4 2 and 12.8, 2.0 2

y � 212 � x 
2  and  y � �212 � x 

2

 y � �212 � x 
2

 y 
2 � 12 � x 

2

 x 
2 � y 

2 � 12

Equation 1
Equation 2

b  x2 � y 
2 � 12

  y � 2x 
2 � 5x

5

_5

_7 7

(b)

Intersection
X=2.8467004  Y=1.973904

5

_5

_7 7

(a)

Intersection
X=-.5588296  Y=3.4187292

0.5 2.0

_4

_2

F I G U R E  5 Zooming inF I G U R E  4 x2 � y2 � 12, y � 2x2 � 5x

C O N C E P T S
1–2 ■ The system of equations 

is graphed to the right.

1. Use the graph to find the solution(s) of the system.

2. Check that the solutions you found in Exercise 1 satisfy the
system.

b2y � x 
2 � 0

 y � x   � 4

x0

y

1
1

5 . 4  E X E R C I S E S
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19–32 ■ Find all solutions of the system of equations.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33–40 ■ Use the graphical method to find all solutions of the 
system of equations, rounded to two decimal places.

33. 34.

35. 36.

37.

38.

39.

40.

A P P L I C A T I O N S
41. Dimensions of a Rectangle A rectangle has an area of 

180 cm2 and a perimeter of 54 cm. What are its dimensions?

42. Legs of a Right Triangle A right triangle has an area of 
84 ft2 and a hypotenuse 25 ft long. What are the lengths of its
other two sides?

b 

y � ex � e�x

y � 5 � x2

b 

x4 � 16y4 � 32

 x2 � 2x � y � 0 

b x2 � y2 � 3

 y � x2 � 2x � 8

•

x 2

9
�

y2

18
� 1

y � �x 2 � 6x � 2

b x2 � y2 � 17

 x2 � 2x � y2 � 13
bx2 � y2 � 25

x � 3y � 2

by � x2 � 4x

2x � y � 2
b y � x2 � 8x

y � 2x � 16

μ  

4

x2 �
6

y4 �
7

2

1

x2 �
2

y4 � 0

μ

2
x

�
3
y

� 1

�
4
x

�
7
y

� 1

b  x4 � y3 � 17

 3x4 � 5y3 � 53
b2x 2 � 8y3 � 19

 4x 2 � 16y3 � 34

b   x2 � 2y2 � 2

 2x2 � 3y � 15
b x2 � y2 � 9

 x2 � y2 � 1

b 

 x � 1y � 0

 y2 � 4x2 � 12
b x2y � 16

 x2 � 4y � 16 � 0 

b xy � 24

 2x2 � y2 � 4 � 0
b x � y � 4

 xy � 12

b 

 y � 4 � x2

 y � x2 � 4
b 

 x � 2y � 2

  y2 � x2 � 2x � 4

b 

 x � y2 � 0

 y � x2 � 0
b  y � x2 � 4x

  y � 4x � 16

S K I L L S
3–8 ■ Use the substitution method to find all solutions of the 
system of equations.

3. 4.

5. 6.

7. 8.

9–14 ■ Use the elimination method to find all solutions of the
system of equations.

9. 10.

11. 12.

13. 14.

15–18 ■ Two equations and their graphs are given. Find the inter-
section point(s) of the graphs by solving the system.

15. 16.

17. 18.

0 1

1

y

x
0

11
y

x

b  x2 � y2 � 4x

    x � y2b  x2 � y � 0

 x3 � 2x � y � 0

1
0 2

y

x

1
0 1

y

x

b x � y2 � �4

 x � y2 � 2
b x2 � y � 8

  x � 2y � � 6

b x2 � y2 � 1

2x2 � y2 � x � 3
b x � y2 � 3 � 0

2x2 � y2 � 4 � 0

b2x2 � 4y � 13

  x2 �  y2 �   72
b3x2 � y2 � 11

x2 � 4y2 � 8

b3x2 � 4y � 17

2x2 � 5y � 2
b x2 � 2y � 01

 x2 � 5y � 29

b  x2 � y � 1

 2x2 � 3y � 17
b  x � y2 � 0

 2x � 5y2 � 75

b  x2 � y � 9

 x � y � 3 � 0
b x2 � y2 � 8

 x2 � y � 0

b x2 � y2 � 25

y � 2x
b 

 y � x2

  y � x � 12
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47. Global Positioning System (GPS) The Global Positioning
System determines the location of an object from its distances
to satellites in orbit around the earth. In the simplified, two-
dimensional situation shown in the following figure, determine
the coordinates of P from the fact that P is 26 units from satel-
lite A and 20 units from satellite B.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
48. Intersection of a Parabola and a Line On a sheet of

graph paper or using a graphing calculator, draw the parabola
y � x2. Then draw the graphs of the linear equation y � x � k
on the same coordinate plane for various values of k. Try to
choose values of k so that the line and the parabola intersect at
two points for some of your k’s and not for others. For what
value of k is there exactly one intersection point? Use the re-
sults of your experiment to make a conjecture about the values
of k for which the following system has two solutions, one so-
lution, and no solution. Prove your conjecture.

49. Some Trickier Systems Follow the hints and solve the 
systems.

(a) [Hint: Add the equations.]

(b) ”Hint: Note that 4x � 22x � Ó2xÔ2.’

(c)
[Hint: Factor the left-hand side of
the second equation.]

(d)
[Hint: Add the equations, and 
factor the result.]b x2 � xy � 1

 xy � y2 � 3

b x � y � 3 
 x3 � y3 � 387

b2x � 2y � 10

4x � 4y � 68

b log x � log y � 3
2

2 log x � log y � 0

b  y � x2

  y � x � k

P(x, y)
20

26
B(28, 20)

A(22, 32)y

xPlanet

43. Dimensions of a Rectangle The perimeter of a rectangle
is 70, and its diagonal is 25. Find its length and width.

44. Dimensions of a Rectangle A circular piece of sheet
metal has a diameter of 20 in. The edges are to be cut off to
form a rectangle of area 160 in2 (see the figure). What are the
dimensions of the rectangle?

45. Flight of a Rocket A hill is inclined so that its “slope”
is , as shown in the figure. We introduce a coordinate system
with the origin at the base of the hill and with the scales on 
the axes measured in meters. A rocket is fired from the base 
of the hill in such a way that its trajectory is the parabola 

At what point does the rocket strike the
hillside? How far is this point from the base of the hill (to the
nearest centimeter)?

46. Making a Stovepipe A rectangular piece of sheet metal
with an area of 1200 in2 is to be bent into a cylindrical length
of stovepipe having a volume of 600 in3. What are the dimen-
sions of the sheet metal?

x

y

run

rise

=1
2

rise
runx

y

0

y � �x2 � 401x.

1
2
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In this section we study systems of inequalities in two variables from a graphical point 
of view. 

▼ Graphing an Inequality
We begin by considering the graph of a single inequality in two variables. We already
know that the graph of the two-variable equation  , for example, is the parabola in
Figure 1. If we replace the equal sign by the symbol 	, we obtain the two-variable in-
equality

Its graph consists of not just the parabola in Figure 1, but also every point whose 
y-coordinate is larger than x2. We indicate the solution in Figure 2(a) by shading the
points above the parabola.

Similarly, the graph of in Figure 2(b) consists of all points on and below the
parabola. However, the graphs of and do not include the points on the
parabola itself, as indicated by the dashed curves in Figures 2(c) and 2(d).

The graph of an inequality, in general, consists of a region in the plane whose bound-
ary is the graph of the equation obtained by replacing the inequality sign 1	, 
, �, or �2
with an equal sign. To determine which side of the graph gives the solution set of the in-
equality, we need only check test points.

y � x 
2y � x 

2
y 
 x 

2

y 	 x 
2

y � x 
2
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(a) y≥≈

0

y

x

1

1

1

10

y

x

1

10

y

x

1

10

y

x

(b) y≤≈ (c) y>≈ (d) y<≈

F I G U R E  2

GRAPHING INEQUALITIES

To graph an inequality, we carry out the following steps.

1. Graph Equation. Graph the equation corresponding to the inequality. Use a
dashed curve for � or � and a solid curve for 
 or 	.

2. Test Points. Test one point in each region formed by the graph in Step 1. If the
point satisfies the inequality, then all the points in that region satisfy the inequal-
ity. In that case, shade the region to indicate that it is part of the graph. If the test
point does not satisfy the inequality, then the region isn’t part of the graph.

5.5 SYSTEMS OF INEQUALITIES

LEARNING OBJECTIVES After completing this section, you will be able to:

Graph an inequality � Graph a system of inequalities � Graph a system of 
linear inequalities � Find feasible regions for applications

GET READY Prepare for this section by reviewing how to solve equations algebraically

and graphically in Sections P.8, 1.4, and 1.6.

1

10

y

x

y=≈

F I G U R E  1
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E X A M P L E  1 Graphs of Inequalities

Graph each inequality.

(a) (b)

S O L U T I O N

(a) The graph of is a circle of radius 5 centered at the origin. The points 
on the circle itself do not satisfy the inequality because it is of the form �, so we 
graph the circle with a dashed curve, as shown in Figure 3.

To determine whether the inside or the outside of the circle satisfies the inequal-
ity, we use the test points 10, 02 on the inside and 16, 02 on the outside. To do this, we
substitute the coordinates of each point into the inequality and check whether the
result satisfies the inequality. (Note that any point inside or outside the circle can
serve as a test point. We have chosen these points for simplicity.)

Thus the graph of is the set of all points inside the circle (see Figure 3).

(b) The graph of x � 2y � 5 is the line shown in Figure 4. We use the test points 10, 02
and 15, 52 on opposite sides of the line.

Our check shows that the points above the line satisfy the inequality.
Alternatively, we could put the inequality into slope-intercept form and graph it

directly:

From this form we see that the graph includes all points whose y-coordinates are
greater than those on the line ; that is, the graph consists of the points
on or above this line, as shown in Figure 4.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 11 AND 19 ■

▼ Systems of Inequalities
We now consider systems of inequalities. The solution of such a system is the set of all
points in the coordinate plane that satisfy every inequality in the system.

E X A M P L E  2 A System of Two Inequalities

Graph the solution of the system of inequalities, and label its vertices.

bx2 � y2 � 25

x � 2y 	 5

y � �1
2 x � 5

2

 y 	 �1
2 x � 5

2

 2y 	 �x � 5

x � 2y 	 5

x2 � y2 � 25

x2 � y2 � 25

x � 2y 	 5x2 � y2 � 25

Test point x � 2y 	 5 Conclusion

10, 02 Not part of graph
15, 52 Part of graph5 � 215 2 � 15 	 5

0 � 210 2 � 0  51

10

y

x

x+2y≥5

(5, 5)

F I G U R E  4
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Test point x2 � y2 � 25 Conclusion

10, 02 02 � 02 � 0 � 25 Part of graph
16, 02 62 � 02 � 36 � 25 Not part of graph

1
10

y

x

≈+¥<25

(6, 0)

F I G U R E  3
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S O L U T I O N These are the two inequalities of Example 1. In this example we wish 
to graph only those points that simultaneously satisfy both inequalities. The solution
consists of the intersection of the graphs in Example 1. In Figure 5(a) we show the two
regions on the same coordinate plane (in different colors), and in Figure 5(b) we show
their intersection.

Vertices The points and in Figure 5(b) are the vertices of the solution
set. They are obtained by solving the system of equations

We solve this system of equations by substitution. Solving for x in the second equation
gives , and substituting this into the first equation gives

Substitute x � 5 � 2y

Expand

Simplify

Factor

Thus y � 0 or y � 4. When y � 0, we have x � 5 � 2102 � 5, and when y � 4, we have
x � 5 � 2142 � �3. So the points of intersection of these curves are 15, 02 and 1�3, 42.

Note that in this case the vertices are not part of the solution set, since they don’t sat-
isfy the inequality x2 � y2 � 25 (so they are graphed as open circles in the figure).
They simply show where the “corners” of the solution set lie.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

▼ Systems of Linear Inequalities
An inequality is linear if it can be put into one of the following forms:

ax � by 	 c ax � by 
 c ax � by � c ax � by � c

In the next example we graph the solution set of a system of linear inequalities.

E X A M P L E  3 A System of Four Linear Inequalities

Graph the solution set of the system, and label its vertices.

S O L U T I O N In Figure 6 we first graph the lines given by the equations that corre-
spond to each inequality. To determine the graphs of the linear inequalities, we need to
check only one test point. For simplicity let’s use the point 10, 02.

Since 10, 02 is below the line x � 3y � 12, our check shows that the region on or below
the line must satisfy the inequality. Likewise, since 10, 02 is below the line x � y � 8,

d
x � 3y 
 12

x � y 
 8 
x 	 0 
y 	 0 

 �5y14 � y 2 � 0

 �20y � 5y2 � 0

 125 � 20y � 4y2 2 � y2 � 25

 15 � 2y 2 2 � y2 � 25

x � 5 � 2y

bx2 � y2 � 25

x � 2y � 5 

15, 0 21�3, 4 2
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F I G U R E  6

Inequality Test point (0, 0) Conclusion

x � 3y 
 12 0 � 3102 � 0 
 12 Satisfies inequality
x � y 
 8 0 � 0 � 0 
 8 Satisfies inequality

(b)

0

y

x
(8, 0)

(6, 2)
(0, 4)

12

8

(a)

0

y

x
12

8
x+y=8

x=0

y=0
x+3y=12

8

4

(a)

0

y

x

(b)

0

y

x
(5, 0)

(_3, 4)

F I G U R E  5 bx2 � y2 � 25

x � 2y 	 5
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our check shows that the region on or below this line must satisfy the inequality. The in-
equalities x 	 0 and y 	 0 say that x and y are nonnegative. These regions are sketched
in Figure 6(a), and the intersection—the solution set—is sketched in Figure 6(b).

Vertices The coordinates of each vertex are obtained by simultaneously solving the
equations of the lines that intersect at that vertex. From the system

we get the vertex 16, 22. The origin (0, 0) is also clearly a vertex. The other two vertices
are at the x- and y-intercepts of the corresponding lines: 18, 02 and 10, 42. In this case all
the vertices are part of the solution set.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

E X A M P L E  4 A System of Linear Inequalities

Graph the solution set of the system.

S O L U T I O N We must graph the lines that correspond to these inequalities and then
shade the appropriate regions, as in Example 3. We will use a graphing calculator, so we
must first isolate y on the left-hand side of each inequality.

Using the shading feature of the calculator, we obtain the graph in Figure 7. The solu-
tion set is the triangular region that is shaded in all three patterns. We then use 
or the Intersect command to find the vertices of the region. The solution set is
graphed in Figure 8. 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

When a region in the plane can be covered by a (sufficiently large) circle, it is said to
be bounded. A region that is not bounded is called unbounded. For example, the regions
graphed in Figures 3, 5(b), 6(b), and 8 are bounded, whereas those in Figures 2 and 4 are
unbounded. An unbounded region cannot be “fenced in”—it extends infinitely far in at
least one direction.

▼ Application: Feasible Regions
Many applied problems involve constraints on the variables. For instance, a factory man-
ager has only a certain number of workers who can be assigned to perform jobs on the

y

x0 1
1

(2, 3)

(4, 2)

(6, 5)

8

_2

_2 8

TRACE

c 

y 	 �1
2 x � 4

y 
 1
2 x � 2

y 	 3
2 x � 4

c
x � 2y 	 8

�x � 2y 
 4

3x � 2y 
 8

bx � 3y � 12

x �  y �  8 

F I G U R E  8F I G U R E  7

See Appendix B, Graphing with a
Graphing Calculator, for guidelines on
using a graphing calculator. See 
Appendix C, Using the TI-83/84
Graphing Calculator, for specific
graphing instructions.
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factory floor. A farmer deciding what crops to cultivate has only a certain amount of land
that can be seeded. Such constraints or limitations can usually be expressed as systems of
inequalities. When dealing with applied inequalities, we usually refer to the solution set
of a system as a feasible region, because the points in the solution set represent feasible
(or possible) values for the quantities being studied.

E X A M P L E  5 Restricting Pollutant Outputs

A factory produces two agricultural pesticides, A and B. For every barrel of A, the fac-
tory emits 0.25 kg of carbon monoxide (CO) and 0.60 kg of sulfur dioxide (SO2); and
for every barrel of B, it emits 0.50 kg of CO and 0.20 kg of SO2. Pollution laws restrict
the factory’s output of CO to a maximum of 75 kg and its output of SO2 to a maximum
of 90 kg per day.

(a) Find a system of inequalities that describes the number of barrels of each pesticide
the factory can produce and still satisfy the pollution laws. Graph the feasible region.

(b) Would it be legal for the factory to produce 100 barrels of A and 80 barrels of 
B per day?

(c) Would it be legal for the factory to produce 60 barrels of A and 160 barrels of 
B per day?

S O L U T I O N

(a) To set up the required inequalities, it is helpful to organize the given information
into a table.

We let

x � number of barrels of A produced per day

y � number of barrels of B produced per day

From the data in the table and the fact that x and y can’t be negative, we obtain the
following inequalities.

Multiplying the first inequality by 4 and the second by 5 simplifies this to

The feasible region is the solution of this system of inequalities, shown in Figure 9.

(b) Since the point 1100, 802 lies inside the feasible region, this production plan is legal
(see Figure 9).

(c) Since the point 160, 1602 lies outside the feasible region, this production plan is not
legal. It violates the CO restriction, although it does not violate the SO2 restriction
(see Figure 9).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

c
x � 2y 
 300

3x � y 
 450

x 	 0, y 	 0

CO inequality

SO2 inequalityc 

0.25x � 0.50y 
 75

0.60x � 0.20y 
 90

x 	 0, y 	 0
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y

x

(100, 80)

(60, 160)

300200100

200

100

400

300
3x+y=450

x+2y=300

F I G U R E  9

A B Maximum

CO (kg) 0.25 0.50 75
SO2 (kg) 0.60 0.20 90
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C O N C E P T S
1. To graph an inequality, we first graph the corresponding 

. So to graph , we first graph the equation

. To decide which side of the graph of the equation 

is the graph of the inequality, we use points. Using
10, 02 as such a point, graph the inequality by shading the
appropriate region.

2. Shade the solution of each system of inequalities on the given
graph. 

(a) (b)

(c) (d)

S K I L L S
3–20 ■ Graph the inequality.

3. 4.

5. 6. x 
 �1y 	 2

y 	 3xy � 2x

y

x+y=2

x-y=0

x1

1

y

x+y=2

x-y=0

x1

1

bx � y 
 0

x � y 	 2
bx � y 	 0

x � y 
 2

bx � y 
 0

x � y 
 2
b 

x � y 	 0

x � y 	 2

x

y

y=x+1

0 1

1

y 
 x � 1

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21–24 ■ An equation and its graph are given. Find an inequality
whose solution is the shaded region.

21. 22. y � x2 � 2

23. x2 � y2 � 4 24. y � x3 � 4x

25–52 ■ Graph the solution of the system of inequalities. Find the
coordinates of all vertices, and determine whether the solution set
is bounded.

25. 26.

27. 28.

29. 30.

31. 32. c 

x � 2 
 y � 12

2x � 4y � 8 
d

x 	 0 
y 	 0 

3x � 5y 
 15

3x � 2y 
 9 

c 

4x � 3y 
 18

2x � y 
 8

x 	 0, y 	 0

c 

y 
 �2x � 8

y 
 �1
2 x � 5

x 	 0, y 	 0

b 

x � y � 0 
4 � y 
 2x

b  

y � 1
4 x � 2

y 	 2x � 5

b 

2x � 3y � 12

3x �  y � 21
b 

x � y 
 4

y 	 x

1

1
0

y

x1

1

0

y

x

1
1

0

y

x

1
1

0

y

x

y � 1
2 x � 1

1x � 1 2 2 � 1y � 2 2 2 � 25x 2 � y2 	 100

�x 2 � y 
 �1x 2 � y 	 3

�5x � 3y � �102x � 3y 
 9

3x � 4y 
 12�3x � 7y � 21

�3x � y � �9�2x � y 
 4

y 
 �x � 1y � x � 3

y � 1x � 2

5 . 5  E X E R C I S E S

y

x+y=2

x-y=0

x1

1

y

x+y=2

x-y=0

x1

1
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A P P L I C A T I O N S
57. Publishing Books A publishing company publishes 

a total of no more than 100 books every year. At least 
20 of these are nonfiction, but the company always publishes
at least as much fiction as nonfiction. Find a system of in-
equalities that describes the possible numbers of fiction and
nonfiction books that the company can produce each year con-
sistent with these policies. Graph the solution set.

58. Furniture Manufacturing A man and his daughter manu-
facture unfinished tables and chairs. Each table requires 
3 hours of sawing and 1 hour of assembly. Each chair requires
2 hours of sawing and 2 hours of assembly. Between the two
of them, they can put in up to 12 hours of sawing and 8 hours
of assembly work each day. Find a system of inequalities that
describes all possible combinations of tables and chairs that
they can make daily. Graph the solution set.

59. Coffee Blends A coffee merchant sells two different coffee
blends. The Standard blend uses 4 oz of arabica beans and 
12 oz of robusta beans per package; the Deluxe blend uses 
10 oz of arabica beans and 6 oz of robusta beans per package.
The merchant has 80 lb of arabica beans and 90 lb of robusta
beans available. Find a system of inequalities that describes
the possible number of Standard and Deluxe packages the
merchant can make. Graph the solution set.

60. Nutrition A cat food manufacturer uses fish and beef by-
products. The fish contains 12 g of protein and 3 g of fat per
ounce. The beef contains 6 g of protein and 9 g of fat per
ounce. Each can of cat food must contain at least 60 g of pro-
tein and 45 g of fat. Find a system of inequalities that de-
scribes the possible number of ounces of fish and beef that can
be used in each can to satisfy these minimum requirements.
Graph the solution set.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
61. Shading Unwanted Regions To graph the solution of a

system of inequalities, we have shaded the solution of each in-
equality in a different color; the solution of the system is the
region where all the shaded parts overlap. Here is a different
method: For each inequality, shade the region that does not
satisfy the inequality. Explain why the part of the plane that is
left unshaded is the solution of the system. Solve the follow-
ing system by both methods. Which do you prefer? Why?

d
x � 2y � 4

�x � y � 1

x � 3y � 9

x � 3

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53–56 ■ Use a graphing calculator to graph the solution of the
system of inequalities. Find the coordinates of all vertices, rounded
to one decimal place.

53. 54.

55. 56. c 
y 	 x3

2x � y 	 0

y 
 2x � 6
b 

y 
 6x � x

x � y 	 4

c
 x � y 	 12

2x � y 
 24

 x � y 	 �6

c  

y 	 x � 3

y 	 �2x � 6

y 
 8

c
      y 	 x3

      y 
 2x � 4

x � y 	 0

c 

x2 � y2 � 9

x � y � 0

x 
 0

c
x2 � y 	 0

x � y � 6

x � y � 6

c 

x2 � y2 
 8

x 	 2

y 	 0

c
 x � y � 12

       y � 1
2 x � 6

3x � y � 6
c

y � x � 1

x � 2y 
 12

x � 1 � 0

d
x 	 0

y 	 0

y 
 4

2x � y 
 8

d 

x 	 0

y 	 0

x 
 5

x � y 
 7

c
     y � x � 6

3x � 2y 	 12

 x � 2y 
 2
c 

x � 2y 
 14

3x � y 	 0 
x � y 	 2 

bx 2 � y2 
 4

x 2 � 2y � 1
bx 2 � y2 
 9

x 2 � 2y 
 1

b2x 2 � y � 4

x 2 � y 
 8
b 

x2 � y 
 0 
2x2 � y 
 12

d
x � 0

y � 0

x � y � 10

x2 � y2 � 9

b 

x 2 � y2 
 4

x � y � 0

b 

y 	 x2

x � y 	 6  
b 

y � 9 � x2

y 	 x � 3  

c 

y 	 x2

y 
 4

x 	 0

b 

y 
 9 � x2

x 	 0, y 	 0
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C H A P T E R  5 | Review 453

Substitution Method (p. 416)

To solve a pair of equations in two variables by substitution:

1. Solve for one variable in terms of the other variable in one
equation.

2. Substitute into the other equation to get an equation in one
variable, and solve for this variable.

3. Substitute the value(s) of the variable you have found into ei-
ther original equation, and solve for the remaining variable.

Elimination Method (p. 417)

To solve a pair of equations in two variables by elimination:

1. Multiply the equations by appropriate constants so that the
term(s) involving one of the variables are of opposite sign in
the equations.

2. Add the equations to eliminate that one variable; this gives an
equation in the other variable. Solve for this variable.

3. Substitute the value(s) of the variable that you have found into
either original equation, and solve for the remaining variable.

Graphical Method (p. 418)

To solve a pair of equations in two variables graphically:

1. Put each equation in function form, .

2. Use a graphing calculator to graph the equations on a common
screen.

3. Find the points of intersection of the graphs. The solutions are
the x- and y-coordinates of the points of intersection.

Gaussian Elimination (p. 428)

When we use Gaussian elimination to solve a system of linear
equations, we use the following operations to change the system to
an equivalent simpler system:

1. Add a nonzero multiple of one equation to another.

2. Multiply an equation by a nonzero constant.

3. Interchange the position of two equations in the system.

Number of Solutions of a System of 
Linear Equations (pp. 419, 429)

A system of linear equations can have:

1. A unique solution for each variable.

2. No solution, in which case the system is inconsistent.

3. Infinitely many solutions, in which case the system is dependent.

How to Determine the Number of Solutions of 
a Linear System (p. 429)

When we use Gaussian elimination to solve a system of linear
equations, then we can tell that the system has:

1. No solution (is inconsistent) if we arrive at a false equation of
the form 0 � c, where c is nonzero.

2. Infinitely many solutions (is dependent) if the system is con-
sistent but we end up with fewer equations than variables (after
discarding redundant equations of the form 0 � 0).

y � f 1x 2

Partial Fractions (p. 435)

The partial fraction decomposition of a rational function 

(where the degree of P is less than the degree of Q) is a sum of
simpler fractional expressions that equal when brought to a
common denominator. The denominator of each simpler fraction 
is either a linear or quadratic factor of Q(x) or a power of such a
linear or quadratic factor. So to find the terms of the partial frac-
tion decomposition, we first factor Q(x) into linear and irreducible
quadratic factors. The terms then have the following forms, de-
pending on the factors of Q(x).

1. For every distinct linear factor , there is a term of the
form 

2. For every repeated linear factor , there are terms of
the form

3. For every distinct quadratic factor , there is a
term of the form 

4. For every repeated quadratic factor , there
are terms of the form

Graphing Inequalities (p. 446)

To graph an inequality:

1. Graph the equation that corresponds to the inequality. This
“boundary curve” divides the coordinate plane into separate
regions.

2. Use test points to determine which region(s) satisfy the
inequality.

3. Shade the region(s) that satisfy the inequality, and use a solid
line for the boundary curve if it satisfies the inequality (
 or
	) and a dashed line if it does not (< or >).

Graphing Systems of Inequalities (p. 447)

To graph the solution of a system of inequalities (or feasible 
region determined by the inequalities):

1. Graph all the inequalities on the same coordinate plane.

2. The solution is the intersection of the solutions of all the in-
equalities, so shade the region that satisfies all the inequalities.

3. Determine the coordinates of the intersection points of all the
boundary curves that touch the solution set of the system.
These points are the vertices of the solution.

A1x � B1

ax2 � bx � c
�

A2x � B2

1ax2 � bx � c 2 2
� p �

Amx � Bm

1ax2 � bx � c 2m

1ax2 � bx � c 2m

Ax � B

ax2 � bx � c

ax2 � bx � c

A1

ax � b
�

A2

1ax � b 2 2
� p �

Am

1ax � b 2m

1ax � b 2m

A

ax � b

ax � b

r1x 2

r1x 2 �
P1x 2

Q1x 2
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13–16 ■ Use a graphing device to solve the system, rounded to the
nearest hundredth.

13. 14.

15. 16.

17–24 ■ Find the complete solution of the system, or show that the
system has no solution.

17. 18.

19. 20.

21. 22. c
2x � 3y � 4z � 03

4x � 5y � 9z � 13

2x � 3y � 7z � 60

e
0x � 3y � 15z � 4

4x � 3y � 15z � 5

d
x � 0y � 0z � 0„ � 2

2x � 2y � 3z � 4w � 5

x � 2y � 2z � 4„ � 9

x � 0y � 2z � 3„ � 5

c
x � 2y � 03z � 1

2x � 0y � 05z � 3

2x � 7y � 11z � 2

c
x � 2y � 3z � 1

x � 3y � 0z � 0

2x � 3y � 6z � 6

c
x � 0y � 2z � 06

2x � 2y � 5z � 12

0x � 2y � 3z � 09

e
y � 5x � x

y � x5 � 5
e

x � y2 � 10

x � 1
22 y � 12

e
212 x �  322 y � 00,660

7137x � 3931y � 20,000
e

0.32x � 0.43y � 000

0.07x � 0.12y � 341

1–8 ■ Solve the system of equations and graph the lines.

1. 2.

3. 4.

5. 6.

7. 8.

9–12 ■ Solve the system of equations.

9. 10.

11. 12. e
x2 � y2 � 10

x2 � 2y2 � 7y � 0
d

3x �
4
y

� 6

x �
8
y

� 4

e
x2 � y2 � 8

y � x � 2
e

y � x2 � 2x

y � 6 � x

c
2x � 5y � 09

�x � 3y � 01

7x � 2y � 14

c
2x � 0y � 01

x � 3y � 10

3x � 4y � 15

by � 2x � 6  

2y � 3 � 4x
b 6x � 8y � 16

�3
2x � 2y � �2

b 3x � 2y � 6 

 y � �5x � 4
e

2x � 7y � 2

y � 2
7 x � 4

b4x � 12y � 8

3x � 9y � 6
e

3x � y � 5

2x � y � 5
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Section After completing this chapter, you should be able to . . . Review Exercises

5.1 ■ Solve a system of linear equations in two variables using the substitution method 3–4. 6
■ Solve a system of linear equations in two variables using the elimination method 1–2, 5, 7–8, 11
■ Solve a system of linear equations in two variables using the graphical method 13–16
■ Determine whether a system of two linear equations in two variables has one 1–6

solution, infinitely many solutions, or no solution
■ Model with linear systems in two variables 25–26

5.2 ■ Use Gaussian elimination to solve a system of three (or more) linear equations 17–24
■ Determine whether a system of (three or more) linear equations has one solution, 17–24

infinitely many solutions, or no solution
■ Model with linear systems in three (or more) variables 27–28

5.3 ■ Find the form of the partial fraction decomposition of rational expression in 
the following cases:

Denominator contains distinct linear factors 29–30

Denominator contains repeated linear factors 31–32

Denominator contains distinct quadratic factors 33–34

Denominator contains repeated quadratic factors 35–36
■ Find the partial fractions decomposition of a rational expression in the above cases 29–36 

5.4 ■ Solve a system of nonlinear equations in two variables using the substitution 9–10, 12
and elimination methods

■ Solve a system of nonlinear equations in two variables using the graphical method 37–40

5.5 ■ Graph the solution of an inequality 41–46
■ Graph the solution of a system of inequalities 47–54
■ Graph the solution of a system of linear inequalities 49–50, 53–54

■ E X E R C I S E S
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39. 40.

41–42 ■ An equation and its graph are given. Find an inequality
whose solution is the shaded region.

41. 42.

43–46 ■ Graph the inequality.

43. 44.

45. 46.

47–50 ■ The figure shows the graphs of the equations
corresponding to the given inequalities. Shade the solution set of
the system of inequalities.

47. 48.

49. 50.

4

40

y

x

1
1
0

y

x

c 

y 	 �2x

y 
 2x

y 
 �1
2 x � 2

c
x � y 	 2

y � x 
 2

x 
 3

1

1

0

y

x

11
0

y

x

by 	 x � 1

x2 � y2 
 1
b 

y 	 x2 � 3x

y 
 1
3 x � 1

y � x 2 � 4x2 � y2 � 9

y 	 x2 � 33x � y 
 6

1

1
0

y

x1

1
0

y

x

x2 � y2 � 8x � y2 � 4

2
10

y

x
10

1

y

x

e
x � y � �2

x2 � y2 � 4y � 4
e

x2 � y � 2

x2 � 3x � y � 023.

24.

25. Eleanor has two children, Kieran and Siobhan. Kieran is 4 years
older than Siobhan, and the sum of their ages is 22. How old are
the children?

26. A man invests his savings in two accounts, one paying 6% 
interest per year and the other paying 7%. He has twice as much
invested in the 7% account as in the 6% account, and his annual
interest income is $600. How much is invested in each account?

27. A piggy bank contains 50 coins, all of them nickels, dimes, or
quarters. The total value of the coins is $5.60, and the value of
the dimes is five times the value of the nickels. How many coins
of each type are there?

28. Tornie is a commercial fisherman who trolls for salmon on the
British Columbia coast. One day he catches a total of 25 fish of
three salmon species: coho, sockeye, and pink. He catches three
more coho than the other two species combined; moreover, he
catches twice as many coho as sockeye. How many fish of each
species has he caught?

29–36 ■ Find the partial fraction decomposition of the rational
function.

29. 30.

31. 32.

33. 34.

35. 36.

37–40 ■ Two equations and their graphs are given. Find the inter-
section point(s) of the graphs by solving the system.

37. 38.

20
2

y

x
1

1

0

y

x

e
3x � y � 8

y � x2 � 5x
e

2x � 3y � 7

x � 2y � 0

x2 � x � 1

x1x2 � 1 2 2
3x2 � x � 6

1x2 � 2 2 2

5x2 � 3x � 10

x4 � x2 � 2

2x � 1

x3 � x

6x � 4

x3 � 2x2 � 4x � 8

2x � 4

x1x � 1 2 2

8

x3 � 4x

3x � 1

x2 � 2x � 15

d
x � 0y � z � 0„ � 02

2x � 0y � z � 2„ � 12

3y � z � 0„ � 04

x � 3y � z � 0w � 10

c
�x � 4y �    z �      8

2x � 6y �    z �   �9

x � 6y � 4z � �15
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56.

57. For what values of k do the following three lines have a 
common point of intersection?

58. For what value of k does the following system have infinitely
many solutions?

c
kx � 0y � z � 0

x � 2y � kz � 0

�x � 3z � 0

 y � x � 2k

 kx � y � 0

 x � y � 12

c 

ax � by � cz � a � b � c

bx � by � cz � c

cx � cy � cz � c

 1a � b, b � c, c � 0 2

51–54 ■ Graph the solution set of the system of inequalities. Find
the coordinates of all vertices, and determine whether the solution
set is bounded or unbounded.

51. 52.

53. 54.

55–56 ■ Solve for x, y, and z in terms of a, b, and c.

55. c
�x � y � z � a

x � y � z � b

x � y � z � c

c 
x 	 4

x � y 	 24

x 
 2y � 12

c 
x 	 0, y 	 0

x � 2y 
 12

y 
 x � 4

b y � x2 	 4

y � 20
b 

x2 � y2 � 9

x � y � 0
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1–3 ■ A system of equations is given. (a) Determine whether the system is linear or nonlinear.
(b) Find all solutions of the system. 

1. 2. 3.

4. Use a graphing device to find all solutions of the system rounded to two decimal places.

5. In 2�
1
2� hours an airplane travels 600 km against the wind. It takes 50 min to travel 300 km with

the wind. Find the speed of the wind and the speed of the airplane in still air.

6–9 ■ A system of linear equations is given. (a) Find the complete solution of the system, or
show that there is no solution. (b) State whether the system is inconsistent, dependent, or neither.

6. 7.

8. 9.

10. Anne, Barry, and Cathy enter a coffee shop. Anne orders two coffees, one juice, and two
doughnuts and pays $6.25. Barry orders one coffee and three doughnuts and pays $3.75.
Cathy orders three coffees, one juice, and four doughnuts and pays $9.25. Find the price of
coffee, juice, and doughnuts at this coffee shop.

11. Graph the inequality.

(a) (b)

12–13 ■ Graph the solution set of the system of inequalities. Label the vertices with their 
coordinates.

12. 13.

14–15 ■ Find the partial fraction decomposition of the rational function.

14. 15.
2x � 3

x3 � 3x

4x � 1

1x � 1 2 21x � 2 2

e
x2 � y � 5

y � 2x � 5
c

2x � 0y � �8

x � 0y � �2

x � 2y � �4

�x 2 � y � 33x � 4y � 6

c
x � y � 2z � 08

2x � y � 20

2x � 2y � 5z � 15

c
2x � 0y � 0z � �0

3x � 2y � 3z � �1

x � 4y � 5z � �1

c
x � y � 9z � �8

�4z �      7

3x � y � 0z �      5

c
x � 2y � 0z � 3

x � 3y � 2z � 3

2x � 3y � 0z � 8

e
x � 2y � 1

y � x3 � 2x2

b x 2 � y2 � 100

 y � 3x
b10x � y2 � 4

02x � y � 2
b3x � 5y � 4

0x � 4y � 7
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Linear programming is a modeling technique that is used to determine the optimal al-
location of resources in business, the military, and other areas of human endeavor. For
example, a manufacturer who makes several different products from the same raw ma-
terials can use linear programming to determine how much of each product should be
produced to maximize the profit. This modeling technique is probably the most impor-
tant practical application of systems of linear inequalities. In 1975 Leonid Kantorovich
and T. C. Koopmans won the Nobel Prize in economics for their work in the develop-
ment of this technique.

Although linear programming can be applied to very complex problems with hun-
dreds or even thousands of variables, we consider only a few simple examples to which
the graphical methods of Section 5.5 can be applied. (For large numbers of variables a
linear programming method based on matrices is used.) Let’s examine a typical 
problem.

E X A M P L E  1 Manufacturing for Maximum Profit

A small shoe manufacturer makes two styles of shoes: oxfords and loafers. Two ma-
chines are used in the process: a cutting machine and a sewing machine. Each type of
shoe requires 15 min per pair on the cutting machine. Oxfords require 10 min of sewing
per pair, and loafers require 20 min of sewing per pair. Because the manufacturer can
hire only one operator for each machine, each process is available for just 8 hours per
day. If the profit is $15 on each pair of oxfords and $20 on each pair of loafers, how
many pairs of each type should be produced per day for maximum profit?

S O L U T I O N First we organize the given information into a table. To be consistent,
let’s convert all times to hours.

We describe the model and solve the problem in four steps.

� C h o o s e t h e V a r i a b l e s . To make a mathematical model, we first give names to
the variable quantities. For this problem we let

x � number of pairs of oxfords made daily

y � number of pairs of loafers made daily

� F i n d  t h e  O b j e c t i v e  F u n c t i o n . Our goal is to determine which values for x and y
give maximum profit. Since each pair of oxfords provides $15 profit and each pair of
loafers $20, the total profit is given by

This function is called the objective function.

� G r a p h  t h e  F e a s i b l e  R e g i o n . The larger x and y are, the greater is the profit. But
we cannot choose arbitrarily large values for these variables because of the restrictions,
or constraints, in the problem. Each restriction is an inequality in the variables.

P � 15x � 20y

Oxfords Loafers Time available

Time on cutting machine (h) �
1
4� �

1
4� 8

Time on sewing machine (h) �
1
6� �

1
3� 8

Profit $15 $20

458

F O C U S  O N  M O D E L I N G

Linear Programming

Because loafers produce more profit, it
would seem best to manufacture only
loafers. Surprisingly, this does not turn
out to be the most profitable solution.
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In this problem the total number of cutting hours needed is . Since only 
8 hours are available on the cutting machine, we have

Similarly, by considering the amount of time needed and available on the sewing ma-
chine, we get

We cannot produce a negative number of shoes, so we also have

Thus x and y must satisfy the constraints

If we multiply the first inequality by 4 and the second by 6, we obtain the simplified 
system

The solution of this system (with vertices labeled) is sketched in Figure 1. The only val-
ues that satisfy the restrictions of the problem are the ones that correspond to points of
the shaded region in Figure 1. This is called the feasible region for the problem.

� F i n d  t h e  M a x i m u m  P r o f i t . As x or y increases, profit increases as well. Thus it
seems reasonable that the maximum profit will occur at a point on one of the outside
edges of the feasible region, where it is impossible to increase x or y without going
outside the region. In fact, it can be shown that the maximum value occurs at a vertex.
This means that we need to check the profit only at the vertices. The largest value of P
occurs at the point 116, 162, where P � $560. Thus the manufacturer should make 
16 pairs of oxfords and 16 pairs of loafers, for a maximum daily profit of $560.

■

The linear programming problems that we consider all follow the pattern of Example 1.
Each problem involves two variables. The problem describes restrictions, called con-
straints, that lead to a system of linear inequalities whose solution is called the 
feasible region. The function that we wish to maximize or minimize is called the objec-
tive function. This function always attains its largest and smallest values at the vertices
of the feasible region. This modeling technique involves four steps, summarized in the fol-
lowing box.

d 

x � 2y 
 32

x � 2y 
 48

� 2yx 
 0

� 2xy 
 0

x 	 0  and   y 	 0

1
6 x � 1

3 y 
 8

1
4 x � 1

4 y 
 8

1
4 x � 1

4 y

Linear Programming 459

d
y 	 0

x 	 0

1
6 x � 1

3 y 
 8

1
4 x � 1

4 y 
 8

Vertex P � 15x � 20y

10, 02 0
10, 242 15102 � 20 1242 � $480
116, 162 151162 � 20 1162 � $560
132, 02 151322 � 20 102 � $480

Maximum profit

y

x10

10

x+y=32

x+2y=48

(0, 24)

(0, 0) (32, 0)

(16, 16)

F I G U R E  1

Linear Programming helps the tele-
phone industry to determine the most
efficient way to route telephone calls.
The computerized routing decisions
must be made very rapidly so that
callers are not kept waiting for connec-
tions. Since the database of customers
and routes is huge, an extremely fast
method for solving linear programming
problems is essential. In 1984 the 28-
year-old mathematician Narendra
Karmarkar, working at Bell Labs in Mur-
ray Hill, New Jersey, discovered just such
a method. His idea is so ingenious and
his method so fast that the discovery
caused a sensation in the mathematical
world. Although mathematical discov-
eries rarely make the news, this one was
reported in Time, on December 3, 1984.
Today airlines routinely use Karmarkar’s
technique to minimize costs in schedul-
ing passengers, flight personnel, fuel,
baggage, and maintenance workers.
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E X A M P L E  2 A Shipping Problem

A car dealer has warehouses in Millville and Trenton and dealerships in Camden and
Atlantic City. Every car that is sold at the dealerships must be delivered from one of
the warehouses. On a certain day the Camden dealers sell 10 cars, and the Atlantic City
dealers sell 12. The Millville warehouse has 15 cars available, and the Trenton ware-
house has 10. The cost of shipping one car is $50 from Millville to Camden, $40 from
Millville to Atlantic City, $60 from Trenton to Camden, and $55 from Trenton to 
Atlantic City. How many cars should be moved from each warehouse to each dealer-
ship to fill the orders at minimum cost?

S O L U T I O N Our first step is to organize the given information. Rather than construct-
ing a table, we draw a diagram to show the flow of cars from the warehouses to the
dealerships (see Figure 2 below). The diagram shows the number of cars available at
each warehouse or required at each dealership and the cost of shipping between these
locations.

� C h o o s e  t h e  V a r i a b l e s . The arrows in Figure 2 indicate four possible routes, so the
problem seems to involve four variables. But we let

x � number of cars to be shipped from Millville to Camden

y � number of cars to be shipped from Millville to Atlantic City

To fill the orders, we must have

10 � x � number of cars shipped from Trenton to Camden

12 � y � number of cars shipped from Trenton to Atlantic City

So the only variables in the problem are x and y.

Camden
Sell 10

Millville
15 cars

Atlantic City
Sell 12

Trenton
10 cars

$50

$40

$60

$55

Ship
x cars

Ship
10-x

cars

Ship
y cars

Ship
12-y

cars

460 Focus on Modeling

GUIDELINES FOR LINEAR PROGRAMMING

1. Choose the Variables. Decide what variable quantities in the problem
should be named x and y.

2. Find the Objective Function. Write an expression for the function we want
to maximize or minimize.

3. Graph the Feasible Region. Express the constraints as a system of inequali-
ties, and graph the solution of this system (the feasible region).

4. Find the Maximum or Minimum. Evaluate the objective function at the ver-
tices of the feasible region to determine its maximum or minimum value.

F I G U R E  2
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� F i n d  t h e  O b j e c t i v e  F u n c t i o n . The objective of this problem is to minimize cost.
From Figure 2 we see that the total cost C of shipping the cars is

This is the objective function.

� G r a p h  t h e  F e a s i b l e  R e g i o n . Now we derive the constraint inequalities that
define the feasible region. First, the number of cars shipped on each route can’t be
negative, so we have

Second, the total number of cars shipped from each warehouse can’t exceed the number
of cars available there, so

Simplifying the latter inequality, we get

The inequalities 10 � x 	 0 and 12 � y 	 0 can be rewritten as x 
 10 and y 
 12.
Thus the feasible region is described by the constraints

The feasible region is graphed in Figure 3.

� F i n d  t h e  M i n i m u m  C o s t . We check the value of the objective function at each
vertex of the feasible region.

The lowest cost is incurred at the point Ó3, 12Ô. Thus the dealer should ship

3 cars from Millville to Camden
12 cars from Millville to Atlantic City
7 cars from Trenton to Camden
0 cars from Trenton to Atlantic City ■

In the 1940s mathematicians developed matrix methods for solving linear program-
ming problems that involve more than two variables. These methods were first used by the
Allies in World War II to solve supply problems similar to (but, of course, much more
complicated than) Example 2. Improving such matrix methods is an active and exciting
area of current mathematical research.

Vertex C � 1260 � 10x � 15y

10, 122 1260 � 10 102 � 151122 � $1080
13, 122 1260 � 10 132 � 151122 � $1050
110, 52 1260 � 101102 � 15152 � $1085
110, 22 1260 � 10 1102 � 15122 � $1130

d
x � y 
 15

x � y 	 12

0 
 x 
 10

0 
 y 
 12

22 � x � y 
 10

�x � y 
 �12

x � y 	 12

x � y 
 15

110 � x 2 � 112 � y 2 
 10

x 	 0  y 	 0

10 � x 	 0   12 � y 	 0

C � 50x � 40y � 60110 � x 2 � 55112 � y 2

� 50x � 40y � 600 � 60x � 660 � 55y

� 1260 � 10x � 15y

Linear Programming 461

Minimum cost

y

x

x+y=12

y=12
(0, 12)

(3, 12)

x+y=15

x=10

(10, 2)

(10, 5)

F I G U R E  3
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P R O B L E M S
1–4 ■ Find the maximum and minimum values of the given objective function on the indicated
feasible region.

1. M � 200 � x � y 2. N � x � y � 40

3. P � 140 � x � 3y 4. Q � 70x � 82y

5. Making Furniture A furniture manufacturer makes wooden tables and chairs. The produc-
tion process involves two basic types of labor: carpentry and finishing. A table requires
2 hours of carpentry and 1 hour of finishing, and a chair requires 3 hours of carpentry and

hour of finishing. The profit is $35 per table and $20 per chair. The manufacturer’s employees
can supply a maximum of 108 hours of carpentry work and 20 hours of finishing work per day.
How many tables and chairs should be made each day to maximize profit?

6. A Housing Development A housing contractor has subdivided a farm into 100 building
lots. She has designed two types of homes for these lots: colonial and ranch style. A colonial
requires $30,000 of capital and produces a profit of $4000 when sold. A ranch-style house
requires $40,000 of capital and provides an $8000 profit. If the contractor has $3.6 million of
capital on hand, how many houses of each type should she build for maximum profit? Will any
of the lots be left vacant?

7. Hauling Fruit A trucker hauls citrus fruit from Florida to Montreal. Each crate of 
oranges is 4 ft3 in volume and weighs 80 lb. Each crate of grapefruit has a volume of 6 ft3

and weighs 100 lb. His truck has a maximum capacity of 300 ft3 and can carry no more than
5600 lb. Moreover, he is not permitted to carry more crates of grapefruit than crates of 
oranges. If his profit is $2.50 on each crate of oranges and $4 on each crate of grapefruit,
how many crates of each fruit should he carry for maximum profit?

1
2

d
x 	 0, y 	 0

x 
 10, y 
 20

x � y 	 5

x � 2y 
 18

c
x 	 0, y 	 0

2x � y 
 10

2x � 4y 
 28

y

x1

1

4

4

y=x
y

x0 4

2

5

1
4

1
2
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8. Manufacturing Calculators A manufacturer of calculators produces two models: stan-
dard and scientific. Long-term demand for the two models mandates that the company manu-
facture at least 100 standard and 80 scientific calculators each day. However, because of limi-
tations on production capacity, no more than 200 standard and 170 scientific calculators can
be made daily. To satisfy a shipping contract, a total of at least 200 calculators must be
shipped every day.

(a) If the production cost is $5 for a standard calculator and $7 for a scientific one, how
many of each model should be produced daily to minimize this cost?

(b) If each standard calculator results in a $2 loss but each scientific one produces a $5
profit, how many of each model should be made daily to maximize profit?

9. Shipping Stereos An electronics discount chain has a sale on a certain brand of stereo.
The chain has stores in Santa Monica and El Toro and warehouses in Long Beach and
Pasadena. To satisfy rush orders, 15 sets must be shipped from the warehouses to the Santa
Monica store, and 19 must be shipped to the El Toro store. The cost of shipping a set is $5
from Long Beach to Santa Monica, $6 from Long Beach to El Toro, $4 from Pasadena to
Santa Monica, and $5.50 from Pasadena to El Toro. If the Long Beach warehouse has 24 sets
and the Pasadena warehouse has 18 sets in stock, how many sets should be shipped from
each warehouse to each store to fill the orders at a minimum shipping cost?

10. Delivering Plywood A man owns two building supply stores, one on the east side and
one on the west side of a city. Two customers order some �

1
2�-inch plywood. Customer A needs 

50 sheets, and customer B needs 70 sheets. The east-side store has 80 sheets, and the west-
side store has 45 sheets of this plywood in stock. The east-side store’s delivery costs per
sheet are $0.50 to customer A and $0.60 to customer B. The west-side store’s delivery costs
per sheet are $0.40 to customer A and $0.55 to customer B. How many sheets should be
shipped from each store to each customer to minimize delivery costs?

11. Packaging Nuts A confectioner sells two types of nut mixtures. The standard-mixture
package contains 100 g of cashews and 200 g of peanuts and sells for $1.95. The deluxe-
mixture package contains 150 g of cashews and 50 g of peanuts and sells for $2.25. The 
confectioner has 15 kg of cashews and 20 kg of peanuts available. On the basis of past sales,
the confectioner needs to have at least as many standard as deluxe packages available. 
How many bags of each mixture should he package to maximize his revenue?

12. Feeding Lab Rabbits A biologist wishes to feed laboratory rabbits a mixture of two types
of foods. Type I contains 8 g of fat, 12 g of carbohydrate, and 2 g of protein per ounce. 
Type II contains 12 g of fat, 12 g of carbohydrate, and 1 g of protein per ounce. Type I costs
$0.20 per ounce and type II costs $0.30 per ounce. The rabbits each receive a daily minimum
of 24 g of fat, 36 g of carbohydrate, and 4 g of protein, but get no more than 5 oz of food per
day. How many ounces of each food type should be fed to each rabbit daily to satisfy the di-
etary requirements at minimum cost?

13. Investing in Bonds A woman wishes to invest $12,000 in three types of bonds: municipal
bonds paying 7% interest per year, bank investment certificates paying 8%, and high-risk
bonds paying 12%. For tax reasons she wants the amount invested in municipal bonds to be
at least three times the amount invested in bank certificates. To keep her level of risk man-
ageable, she will invest no more than $2000 in high-risk bonds. How much should she invest
in each type of bond to maximize her annual interest yield? [Hint: Let x � amount in mu-
nicipal bonds and y � amount in bank certificates. Then the amount in high-risk bonds will
be 12,000 � x � y.]

14. Annual Interest Yield Refer to Problem 13. Suppose the investor decides to increase the
maximum invested in high-risk bonds to $3000 but leaves the other conditions unchanged.
By how much will her maximum possible interest yield increase?

15. Business Strategy A small software company publishes computer games and educational
and utility software. Their business strategy is to market a total of 36 new programs each
year, at least four of these being games. The number of utility programs published is never
more than twice the number of educational programs. On average, the company makes an
annual profit of $5000 on each computer game, $8000 on each educational program, and
$6000 on each utility program. How many of each type of software should the company 
publish annually for maximum profit?
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16. Feasible Region All parts of this problem refer to the following feasible region and ob-
jective function:

(a) Graph the feasible region.

(b) On your graph from part (a), sketch the graphs of the linear equations obtained by set-
ting P equal to 40, 36, 32, and 28.

(c) If you continue to decrease the value of P, at which vertex of the feasible region will
these lines first touch the feasible region?

(d) Verify that the maximum value of P on the feasible region occurs at the vertex you chose
in part (c).

P � x � 4y

d 

x 	 0 
x 	 y 

x � 2y 
 12

x � 0y 
 10
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Information in Categories Much of the information we see in newspapers,
magazines, books, and other sources is presented in the form of a table. The
rows and columns of a table represent different categories of information. For
example, the results of a survey might be presented as a table where the 
columns are the political affiliations of the respondents (Democrat, Republican,
Independent) and the rows represent sex (male, female). The table presents the
results of the survey in a very efficient manner. From the table we can immedi-
ately determine the number of respondents in each category (the number of
male Democrats, female Independents, etc.).  

In mathematics a rectangular array (or table) of numbers is called a matrix.
We'll see that a linear system of equations can be represented by a matrix. But
in mathematics, presenting information is not enough; we'll learn to perform
operations on matrices (such as addition, subtraction, multiplication, and 
inversion). These operations are powerful tools for getting additional informa-
tion from a matrix. For example, we'll see how to solve a system of equations
by applying special operations to the matrix that represents the system. 

In Focus on Modeling at the end of the chapter we represent a figure in the
plane as a matrix and then perform operations on the matrix that transform the
figure in different ways.
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466 C H A P T E R  6 | Matrices and Determinants

A matrix is simply a rectangular array of numbers. Matrices* are used to organize informa-
tion into categories that correspond to the rows and columns of the matrix. For example, a
scientist might organize information on a population of endangered whales as follows:

Immature Juvenile Adult

Male

Female

This is a compact way of saying that there are 12 immature males, 15 immature females,
18 adult males, and so on.

In this section we represent a linear system by a matrix, called the augmented matrix
of the system:

Linear system Augmented matrix

The augmented matrix contains the same information as the system, but in a simpler form.
The operations we learned for solving systems of equations can now be performed on the
augmented matrix.

▼ Matrices
We begin by defining the various elements that make up a matrix.

B2 �1 5

1 4 7
Rb2x �   y � 5

  x � 4y � 7

B12     52     18
15     42     11

R

6.1 MATRICES AND SYSTEMS OF LINEAR EQUATIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the augmented matrix of a linear system � Solve a linear system using 
elementary row operations � Solve a linear system using the row-echelon
form of its matrix � Solve a linear system using the reduced row-echelon form
of its matrix � Determine the number of solutions of a linear system from the
row-echelon form of its matrix � Model using linear systems

Equation 2

Equation 1

x y

*The plural of matrix is matrices.

DEFINITION OF MATRIX

An m � n matrix is a rectangular array of numbers with m rows and n columns.

c c c c
n columns

We say that the matrix has dimension m � n. The numbers aij are the entries of
the matrix. The subscript on the entry aij indicates that it is in the ith row and the
jth column.

E
a11 a12 a13

p a1n

a21 a22 a23
p a2n

a31 a32 a33
p a3n

o o o ∞ o
am1 am2 am3

p amn

U
d
d
d

d

⎫
⎪
⎪
⎬ m rows
⎪
⎪
⎭⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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Here are some examples of matrices:

Matrix Dimension

2 rows by 3 columns

1 row by 4 columns

▼ The Augmented Matrix of a Linear System
We can write a system of linear equations as a matrix, called the augmented matrix of
the system, by writing only the coefficients and constants that appear in the equations.
Here is an example.

Linear system Augmented matrix

Notice that a missing variable in an equation corresponds to a 0 entry in the augmented
matrix.

E X A M P L E  1 Finding the Augmented Matrix of a Linear System

Write the augmented matrix of the system of equations.

S O L U T I O N First we write the linear system with the variables lined up in columns:

The augmented matrix is the matrix whose entries are the coefficients and the constants
in this system.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 11 ■

▼ Elementary Row Operations
The operations that we used in Section 5.2 to solve linear systems correspond to opera-
tions on the rows of the augmented matrix of the system. For example, adding a multiple
of one equation to another corresponds to adding a multiple of one row to another.

C
6 �2 �1 4

1 0 3 1

0 7 1 5

S

c
6x � 2y �    z � 4

  x          � 3z � 1

          7y �   z � 5

c
6x � 2y �  z � 4

x � 3z � 1

7y � z � 5

C
3 �2 1 5

1 3 �1 0

�1 0 4 11

Sc
  3x � 2y � z �   5

    x � 3y � z �   0

�x �      4z � 11

1 � 436 �5 0 1 4

2 � 3B1 3 0

2 4 �1
R

S E C T I O N  6 . 1 | Matrices and Systems of Linear Equations 467

ELEMENTARY ROW OPERATIONS

1. Add a multiple of one row to another.

2. Multiply a row by a nonzero constant.

3. Interchange two rows.
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468 C H A P T E R  6 | Matrices and Determinants

Note that performing any of these operations on the augmented matrix of a system does
not change its solution. We use the following notation to describe the elementary row 
operations:

Symbol Description

Ri � kRj S Ri Change the ith row by adding k times row j to it, and 
then put the result back in row i.

kRi Multiply the ith row by k.

Ri 4 Rj Interchange the ith and jth rows.

In the next example we compare the two ways of writing systems of linear equations.

E X A M P L E  2 Using Elementary Row Operations 
to Solve a Linear System

Solve the system of linear equations.

S O L U T I O N Our goal is to eliminate the x-term from the second equation and the 
x- and y-terms from the third equation. For comparison we write both the system of
equations and its augmented matrix.

System Augmented matrix

Now we use back-substitution to find that x � 2, y � 7, and z � 3. The solution is 
12, 7, 32.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

▼ Gaussian Elimination
In general, to solve a system of linear equations using its augmented matrix, we use ele-
mentary row operations to arrive at a matrix in a certain form. This form is described in
the following box.

C
1 �1 3 4

0 1 �2 1

0 0 1 3

Sc
x �  y � 3z �  4

y � 2z �  1

z �  3

C
1 �1 3 4

0 0 1 3

0 1 �2 1

Sc
x �  y � 3z �  4

z �  3

y � 2z �  1

C
1 �1 3 4

0 3 �5 6

0 1 �2 1

Sc
x �  y � 3z �  4

3y � 5z �  6

y � 2z �  1

C
1 �1 3 4

0 3 �5 6

0 2 �4 2

Sc
x �  y � 3z �  4

3y � 5z �  6

2y � 4z �  2

C
1 �1 3 4

1 2 �2 10

3 �1 5 14

Sc
x �  y � 3z �  4

x � 2y � 2z � 10

3x �  y � 5z � 14

c
x �  y � 3z �  4

x � 2y � 2z � 10

3x �  y � 5z � 14

Add 1�12 � Equation 1 to Equation 2.
Add 1�32 � Equation 1 to Equation 3.

  R2 � R1 � R2  !
R3 � 3R1 � R3

Interchange Equations 2 and 3.

Multiply Equation 3 by .1
2

Add 1�32 � Equation 3 to Equation 2
(to eliminate y from Equation 2).

R2 4 R3!

R2 � 3R3 � R2!

1
2R3!
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S E C T I O N  6 . 1 | Matrices and Systems of Linear Equations 469

In the following matrices the first one is not in row-echelon form. The second one is in
row-echelon form, and the third one is in reduced row-echelon form. The entries in red
are the leading entries.

Not in row-echelon form Row-echelon form Reduced row-echelon form

Here is a systematic way to put a matrix in row-echelon form using elementary row
operations:

■ Start by obtaining 1 in the top left corner. Then obtain zeros below that 1 by
adding appropriate multiples of the first row to the rows below it.

■ Next, obtain a leading 1 in the next row, and then obtain zeros below that 1.
■ At each stage make sure that every leading entry is to the right of the leading entry

in the row above it—rearrange the rows if necessary.
■ Continue this process until you arrive at a matrix in row-echelon form.

This is how the process might work for a 3 � 4 matrix:

Once an augmented matrix is in row-echelon form, we can solve the corresponding lin-
ear system using back-substitution. This technique is called Gaussian elimination, in
honor of its inventor, the German mathematician C. F. Gauss (see page 306).

C
1 � � �

0 1 � �

0 0 1 �

SC
1 � � �

0 1 � �

0 0 � �

SC
1 � � �

0 � � �

0 � � �

S

D
1 3 0 0 0

0 0 1 0 �3

0 0 0 1 1
2

0 0 0 0 0

TD
1 3 �6 10 0

0 0 1 4 �3

0 0 0 1 1
2

0 0 0 0 0

TD
0 1 �1

2 0 6

1 0 3 4 �5

0 0 0 1 0.4

0 1 1 0 0

T

ROW-ECHELON FORM AND REDUCED ROW-ECHELON FORM OF A MATRIX

A matrix is in row-echelon form if it satisfies the following conditions.

1. The first nonzero number in each row (reading from left to right) is 1. This is
called the leading entry.

2. The leading entry in each row is to the right of the leading entry in the row 
immediately above it.

3. All rows consisting entirely of zeros are at the bottom of the matrix.

A matrix is in reduced row-echelon form if it is in row-echelon form and also
satisfies the following condition.

4. Every number above and below each leading entry is a 0.

Leading 1’s 
have 0’s above 
and below them

Leading 1’s shift to
the right in 
successive rows

Leading 1’s do not
shift to the right in
successive rows

SOLVING A SYSTEM USING GAUSSIAN ELIMINATION

1. Augmented Matrix. Write the augmented matrix of the system.

2. Row-Echelon Form. Use elementary row operations to change the aug-
mented matrix to row-echelon form.

3. Back-Substitution. Write the new system of equations that corresponds to
the row-echelon form of the augmented matrix and solve by back-substitution.
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Need a 1 here

Need 0’s here

Need a 1 here

Need a 0 here

Need a 1 here

E X A M P L E  3 Solving a System Using Row-Echelon Form

Solve the system of linear equations using Gaussian elimination.

S O L U T I O N We first write the augmented matrix of the system, and then we use ele-
mentary row operations to put it in row-echelon form.

We now have an equivalent matrix in row-echelon form, and the corresponding system
of equations is

Back-substitute: We use back-substitution to solve the system:

Back-substitute z � �2 into Equation 2

Solve for y

Back-substitute y � 1 and z � �2 into Equation 1

Solve for x

So the solution of the system is 1�3, 1, �22.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 31 ■

Graphing calculators have a “row-echelon form” command that puts a matrix in 
row-echelon form. (On the TI-83 this command is ref.) For the augmented matrix in 
Example 3 the ref command gives the output shown in Figure 1. Notice that the 

 x � �3

 x � 211 2 � 1�2 2 � 1

 y � 1

y � 41�2 2 � �7

c
x � 2y �  z � �1

x � 2y � 4z � �7

x � 2y � 4z � �2

C
1 2 �1 1

0 1 4 �7

0 0 1 �2

S� 1
10 R3!

C
1 2 �1 1

0 1 4 �7

0 0 �10 20

SR3 � 5R2 � R3!

C
1 2 �1 1

0 1 4 �7

0 5 10 �15

S1
2R2!

C
1 2 �1 1

0 2 8 �14

0 5 10 �15

SR2 � 3R1 � R2!
R3 � 2R1 � R3

C
1 2 �1 1

3 8 5 �11

�2 1 12 �17

S1
4R1!

C
4 8 �4 4

3 8 5 �11

�2 1 12 �17

S

c
4x � 8y � 14z � �14

3x � 8y � 15z � �11

�2x � 8y � 12z � �17

Augmented matrix:

Row-echelon form:

ref([A])
   [[1 2 -1 1 ]
    [0 1 2  -3]
    [0 0 1  -2]]

F I G U R E  1
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Need a 0 here

Need 0’s here

row-echelon form that is obtained by the calculator differs from the one we got in Exam-
ple 3. This is because the calculator used different row operations than we did. You should
check that your calculator’s row-echelon form leads to the same solution as ours.

▼ Gauss-Jordan Elimination
If we put the augmented matrix of a linear system in reduced row-echelon form, then we
don’t need to back-substitute to solve the system. To put a matrix in reduced row-echelon
form, we use the following steps.

■ Use the elementary row operations to put the matrix in row-echelon form.
■ Obtain zeros above each leading entry by adding multiples of the row containing

that entry to the rows above it. Begin with the last leading entry and work up.

Here is how the process works for a 3 � 4 matrix:

Using the reduced row-echelon form to solve a system is called Gauss-Jordan elimina-
tion. The process is illustrated in the next example.

E X A M P L E  4 Solving a System Using Reduced 
Row-Echelon Form

Solve the system of linear equations, using Gauss-Jordan elimination.

S O L U T I O N In Example 3 we used Gaussian elimination on the augmented matrix of
this system to arrive at an equivalent matrix in row-echelon form. We continue using
elementary row operations on the last matrix in Example 3 to arrive at an equivalent
matrix in reduced row-echelon form.

We now have an equivalent matrix in reduced row-echelon form, and the corresponding
system of equations is

Hence we immediately arrive at the solution .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

1�3, 1, �2 2

c 

x � �3

y � �1

z � �2

c
�4x � 8y �  4z � �14

�3x � 8y �  5z � �11

�2x �  y � 12z � �17

C
1 0 0 �

0 1 0 �

0 0 1 �

SC
1 � 0 �

0 1 0 �

0 0 1 �

SC
1 � � �

0 1 � �

0 0 1 �

S

Since the system is in reduced row-
echelon form, back-subsitution is not
required to get the solution.

� �

C
1 0 0 �3

0 1 0 1

0 0 1 �2

SR1 � 2R2 � R1

SSSSSSSO

C
1 2 0 �1

0 1 0 1

0 0 1 �2

SR2 � 4R3 � R2

SSSSSSSO
R1 � R3 � R1

C
1 2 �1 1

0 1 4 �7

0 0 1 �2

S

See Appendix C, Using the TI-83/84
Graphing Calculator, for specific 
instructions on working with matrices.
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Graphing calculators also have a command that puts a matrix in reduced row-echelon
form. (On the TI-83 this command is rref.) For the augmented matrix in Example 4, the
rref command gives the output shown in Figure 2. The calculator gives the same reduced
row-echelon form as the one we got in Example 4. This is because every matrix has a
unique reduced row-echelon form.

▼ Inconsistent and Dependent Systems
The systems of linear equations that we considered in Examples 1–4 had exactly one
solution. But as we know from Section 5.2, a linear system may have one solution, no
solution, or infinitely many solutions. Fortunately, the row-echelon form of a system
allows us to determine which of these cases applies, as described in the following box.

First we need some terminology. A leading variable in a linear system is one that
corresponds to a leading entry in the row-echelon form of the augmented matrix of the
system.

The matrices below, all in row-echelon form, illustrate the three cases described above.

No solution One solution Infinitely many solutions

E X A M P L E  5 A System with No Solution

Solve the system.

c
x � 3y � 2z � 12

2x � 5y � 5z � 14

x � 2y � 3z � 20

C
1 2 �3 1

0 1 5 �2

0 0 0 0

SC
1 6 �1 3

0 1 2 �2

0 0 1 8

SC
1 2 5 7

0 1 3 4

0 0 0 1

S

rref([A])
    [[1 0 0 -3]
     [0 1 0 1 ]
     [0 0 1 -2]]

F I G U R E  2

THE SOLUTIONS OF A LINEAR SYSTEM IN ROW-ECHELON FORM

Suppose the augmented matrix of a system of linear equations has been trans-
formed by Gaussian elimination into row-echelon form. Then exactly one of the
following is true.

1. No solution. If the row-echelon form contains a row that represents the equa-
tion 0 � c, where c is not zero, then the system has no solution. A system with
no solution is called inconsistent.

2. One solution. If each variable in the row-echelon form is a leading variable,
then the system has exactly one solution, which we find using back-substitution
or Gauss-Jordan elimination.

3. Infinitely many solutions. If the variables in the row-echelon form are not all
leading variables and if the system is not inconsistent, then it has infinitely
many solutions. In this case the system is called dependent. We solve the sys-
tem by putting the matrix in reduced row-echelon form and then expressing
the leading variables in terms of the nonleading variables. The nonleading
variables may take on any real numbers as their values.

Each variable is a
leading variable

z is not a leading
variable

Last equation
says 0 = 1

See Appendix C, Using the TI-83/84
Graphing Calculator, for specific 
instructions on working with matrices.
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S O L U T I O N We transform the system into row-echelon form.

This last matrix is in row-echelon form, so we can stop the Gaussian elimination process.
Now if we translate the last row back into equation form, we get 0x � 0y � 0z � 1, or 
0 � 1, which is false. No matter what values we pick for x, y, and z, the last equation
will never be a true statement. This means that the system has no solution.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

Figure 3 shows the row-echelon form produced by a TI-83 calculator for the aug-
mented matrix in Example 5. You should check that this gives the same solution.

E X A M P L E  6 A System with Infinitely Many Solutions

Find the complete solution of the system.

S O L U T I O N We transform the system into reduced row-echelon form. (The rref
command on a TI-83 calculator gives the same result, as shown in Figure 4.)

The third row corresponds to the equation 0 � 0. This equation is always true, no matter
what values are used for x, y, and z. Since the equation adds no new information about the
variables, we can drop it from the system. So the last matrix corresponds to the system

Now we solve for the leading variables x and y in terms of the nonleading variable z:

Solve for x in Equation 1

Solve for y in Equation 2  y � 3z � 1

 x � 7z � 5

Equation 1

Equation 2
e

x  � 7z � �5

  y � 3z � 1

C
1 0 �7 �5

0 1 �3 1

0 0 0 0

SR1 � R2 � R1

SSSSSSSO

C
1 1 �10 �4

0 1 �3 1

0 0 0 0

SR3 � 2R2 � R3

SSSSSSSSOC
1 1 �10 �4

0 1 �3 1

0 �2 6 �2

SR2 � R1 � R2

SSSSSSSO
R3 � 3R1 � R3

C
1 1 �10 �4

�1 0 7 5

�3 �5 36 10

SR1 PRRO R3
SSSSSOC

�3 �5 36 10

�1 0 7 5

1 1 �10 �4

S

c
�3x � 5y � 36z �  10

�x       �  7z �    5

 x �   y � 10z � �4

C
1 �3 2 12

0 1 1 �10

0 0 0 1

S�1
1
8� R3

SSSOC
1 �3 2 12

0 1 1 �10

0 0 0 18

SR3 � R2 � R3

SSSSSSSO

C
1 �3 2 12

0 1 1 �10

0 1 1 8

SR2 � 2R1 � R2

SSSSSSSO
R3 � R1 � R3

C
1 �3 2 12

2 �5 5 14

1 �2 3 20

S

ref([A])
[[1 -2.5 2.5 7  ]
 [0 1    1   -10]
 [0 0    0   1  ]]

F I G U R E  3

Leading variables

rref([A])
   [[1 0 -7 -5]
    [0 1 -3 1 ]
    [0 0 0  0 ]]

F I G U R E  4 Reduced row-echelon
form on the TI-83 calculator
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To obtain the complete solution, we let t represent any real number, and we express x, y,
and z in terms of t:

We can also write the solution as the ordered triple , where t is any
real number.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

In Example 6, to get specific solutions, we give a specific value to t. For example, if 
, then

Here are some other solutions of the system obtained by substituting other values for
the parameter t.

E X A M P L E  7 A System with Infinitely Many Solutions

Find the complete solution of the system.

S O L U T I O N We transform the system into reduced row-echelon form.

This is in reduced row-echelon form. Since the last row represents the equation 0 � 0,
we may discard it. So the last matrix corresponds to the system

e
x        �3z � 4„ � 0

     y           � 5

C
1 0 �3 �4 0

0 1 0 0 5

0 0 0 0 0

SR1 � 2R2 � R1

SSSSSSSSOC
1 2 �3 �4 10

0 1 0 0 5

0 0 0 0 0

SR3 � 2R2 � R3

SSSSSSSSO

C
1 2 �3 �4 10

0 1 0 0 5

0 �2 0 0 �10

SR2 � R1 � R2

SSSSSSSO
R3 � 2R1 � R3

C
1 2 �3 �4 10

1 3 �3 �4 15

2 2 �6 �8 10

S

c
x � 2y � 3z � 4„ � 10

x � 3y � 3z � 4„ � 15

2x � 2y � 6z � 8„ � 10

Parameter t Solution 117t � 5, 3t � 1, t22

�1 1�12, �2, �12

0 1�5, 1, 02

2 19, 7, 22

5 130, 16, 52

x � 711 2 � 5 � 2

y � 311 2 � 1 � 4

z � 1

t � 1

17t � 5, 3t � 1, t 2

x � 7t � 5

y � 3t � 1

z � t

474 C H A P T E R  6 | Matrices and Determinants

Leading variables

90169_Ch06a_465-500.qxd  11/23/11  3:45 PM  Page 474



S E C T I O N  6 . 1 | Matrices and Systems of Linear Equations 475

To obtain the complete solution, we solve for the leading variables x and y in terms of
the nonleading variables z and „, and we let z and „ be any real numbers. Thus the
complete solution is

where s and t are any real numbers.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 61 ■

Note that s and t do not have to be the same real number in the solution for Example 7.
We can choose arbitrary values for each if we wish to construct a specific solution to the sys-
tem. For example, if we let s � 1 and t � 2, then we get the solution 111, 5, 1, 22. You should
check that this does indeed satisfy all three of the original equations in Example 7.

Examples 6 and 7 illustrate this general fact: If a system in row-echelon form has n
nonzero equations in m variables 1m � n2, then the complete solution will have m � n non-
leading variables. For instance, in Example 6 we arrived at two nonzero equations in the
three variables x, y, and z, which gave us 3 � 2 � 1 nonleading variable.

▼ Modeling with Linear Systems
Linear equations, often containing hundreds or even thousands of variables, occur fre-
quently in the applications of algebra to the sciences and to other fields. For now, let’s
consider an example that involves only three variables.

E X A M P L E  8 Nutritional Analysis Using a System 
of Linear Equations

A nutritionist is performing an experiment on student volunteers. He wishes to feed one
of his subjects a daily diet that consists of a combination of three commercial diet
foods: MiniCal, LiquiFast, and SlimQuick. For the experiment it is important that the
subject consume exactly 500 mg of potassium, 75 g of protein, and 1150 units of vita-
min D every day. The amounts of these nutrients in one ounce of each food are given in
the table. How many ounces of each food should the subject eat every day to satisfy the
nutrient requirements exactly?

S O L U T I O N Let x, y, and z represent the number of ounces of MiniCal, LiquiFast, and
SlimQuick, respectively, that the subject should eat every day. This means that he will
get 50x mg of potassium from MiniCal, 75y mg from LiquiFast, and 10z mg from Slim-
Quick, for a total of 50x � 75y � 10z mg potassium in all. Since the potassium require-
ment is 500 mg, we get the first equation below. Similar reasoning for the protein and
vitamin D requirements leads to the system

Potassium

Protein

Vitamin D

c
50x �   75y � 10z �   500

  5x �   10y �   3z �     75

90x � 100y � 50z � 1150

MiniCal LiquiFast SlimQuick

Potassium (mg) 50 75 10
Protein (g) 5 10 3
Vitamin D (units) 90 100 50

x  � 3s � 4t

y � 5

z � s

„ � t
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Dividing the first equation by 5 and the third one by 10 gives the system

We can solve this system using Gaussian elimination, or we can use a graphing calcula-
tor to find the reduced row-echelon form of the augmented matrix of the system. Using
the rref command on the TI-83, we get the output in Figure 5. From the reduced row-
echelon form we see that x � 5, y � 2, z � 10. The subject should be fed 5 oz of Mini-
Cal, 2 oz of LiquiFast, and 10 oz of SlimQuick every day.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 69 ■

A more practical application might involve dozens of foods and nutrients rather than
just three. Such problems lead to systems with large numbers of variables and equations.
Computers or graphing calculators are essential for solving such large systems.

rref([A])
   [[1 0 0 5 ]
    [0 1 0 2 ]
    [0 0 1 10]]

c
10x � 15y � 2z � 100

5x � 10y � 3z � 75

9x � 10y � 5z � 115

F I G U R E  5

C H E C K  Y O U R  A N S W E R

✓

c
1015 2 � 1512 2 � 2110 2 � 100

515 2 � 1012 2 � 3110 2 � 75

 915 2 � 1012 2 � 5110 2 � 115

x � 5, y � 2, z � 10:

C O N C E P T S
1. If a system of linear equations has infinitely many solutions,

then the system is called . If a system of linear 

equations has no solution, then the system is called .

2. Write the augmented matrix of the following system of 
equations.

System Augmented matrix

3. The following matrix is the augmented matrix of a system of
linear equations in the variables x, y, and z. (It is given in 
reduced row-echelon form.)

(a) The leading variables are .

C
1 0 �1 3

0 1 2 5

0 0 0 0

S

C
. . . .
. . . .
. . . .

Sc
x �   y �   z �    1

x         � 2z � �3

       2y �   z �    3

(b) Is the system inconsistent or dependent?

(c) The solution of the system is:

, ,

4. The augmented matrix of a system of linear equations is given
in reduced row-echelon form. Find the solution of the system.

(a) (b) (c)

S K I L L S
5–10 ■ State the dimension of the matrix.

5. 6. c
�1 5 4 0

0 2 11 3
dC

2 7

0 �1

5 �3

S

z � _____z � _____z � _____

y � _____y � _____y � _____

x � _____x � _____x � _____

C
1 0 0 2

0 1 0 1

0 0 0 3

SC
1 0 1 2

0 1 1 1

0 0 0 0

SC
1 0 0 2

0 1 0 1

0 0 1 3

S

z � _____y � _____x � _____

6 . 1 E X E R C I S E S
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27.

28.

29–38 ■ The system of linear equations has a unique solution. Find
the solution using Gaussian elimination or Gauss-Jordan elimination.

29. 30.

31. 32.

33. 34.

35. 36.

37.

38.

39–48 ■ Determine whether the system of linear equations is 
inconsistent or dependent. If it is dependent, find the complete 
solution.

39. 40.

41. 42.

43. 44. c
�2x � 6y � 2z � �12

      x � 3y � 2z �    10

  �x � 3y � 2z �      6

c
  x �   y �   3z �   3

4x � 8y � 32z � 24

2x � 3y � 11z �   4

c
     x � 2y �   5z �    3

�2x � 6y � 11z �    1

�3x � 16y � 20z � �26

c
   2x � 3y � 9z � �5

     x          � 3z �    2

�3x �   y � 4z � �3

c
x � y � 3z � 3

2x � y � 2z � 5

�y � 8z � 8

c
x � y �  z � 2

y � 3z � 1

2x � y � 5z � 0

c
10x � 10y � 20z � �60

15x � 20y � 30z � �25

�5x � 30y � 10z � �45

c
2x � 3y �  z � 13

�x � 2y � 5z �  6

5x �  y �  z � 49

c
2x1 � 2x2 � 4x3 � 17

2x1 � 2x2 � 4x3 � 16

3x1 � 2x2 � 4x3 � 11

c
x1 � 2x2 �  x3 �     9

2x1 �2x2 �  x3 � �2

3x1 � 5x2 � 2x3 �   22

c
2y � z �  4

x �  y � z �  4

3x � 3y � z � 10

c
 x � 2y � z � �2

x � 2y � z � �0

2x �  y � z � �3

c
x �  y �  z � � 4

�x � 2y � 3z � �17

2x �  y � 3z� �7

c
x �  y �  z � 2

2x � 3y � 2z � 4

4x �  y � 3z � 1

c
x �  y � 6z � 3

x �  y � 3z � 3

x � 2y � 4z � 7

c
x � 2y �  z � 1

  y � 2z � 5

x �  y � 3z � 8

D
1 0 �2 2 5

0 1 3 0 �1

0 0 1 �1 0

0 0 0 1 �1

T

D
1 2 3 �1 7

0 1 �2 0 5

0 0 1 2 5

0 0 0 1 3

T7. 8.

9. 10.

11–12 ■ Write the augmented matrix for the system of linear
equations.

11. 12.

13–20 ■ A matrix is given. (a) Determine whether the matrix is in
row-echelon form. (b) Determine whether the matrix is in reduced
row-echelon form. (c) Write the system of equations for which the
given matrix is the augmented matrix.

13. 14.

15. 16.

17. 18.

19. 20.

21–24 ■ Perform the indicated elementary row operation.

21. 22.

Add 3 times Row 1 to Add 2 times Row 1 to 
Row 2. Row 2. 

23. 24.

Add �3 times Row 1 to Add �2 times Row 2 to 
Row 3. Row 3.

25–28 ■ A matrix is given in row-echelon form. (a) Write the sys-
tem of equations for which the given matrix is the augmented ma-
trix. (b) Use back-substitution to solve the system.

25. 26. C
1 1 �3 8

0 1 �3 5

0 0 1 �1

SC
1 �2 4 3

0 1 2 7

0 0 1 2

S

C
1 �3 2 �1

0 1 1 �1

0 2 �1 1

SC
2 1 �3 5

2 3 1 13

6 �5 �1 7

S

C
�5 2 �3 3

10 �3 1 �20

�1 3 1 8

SC
�1 1 2 0

3 1 1 4

1 �2 �1 �1

S

D
1 3 0 1 0 0

0 1 0 4 0 0

0 0 0 1 1 2

0 0 0 1 0 0

TD
1 3 0 �1 0

0 0 1 2 0

0 0 0 0 1

0 0 0 0 0

T

C
1 0 0 1

0 1 0 2

0 0 1 3

SC
1 0 0 0

0 0 0 0

0 1 5 1

S

C
1 0 �7 0

0 1 3 0

0 0 0 1

SC
1 2 8 0

0 1 3 2

0 0 0 0

S

c
1 3 �3

0 1 5
dc

1 0 �3

0 1 5
d

c
�x � z � �1

3y � 2z � 7

x � y � 3z � 3

c
3x � y � z � 2

2x � y � 1

x � z � 3

c
1 0

0 1
d31 4 7 4

C
�3

0

1

Sc
12

35
d

S E C T I O N  6 . 1 | Matrices and Systems of Linear Equations 477

90169_Ch06a_465-500.qxd  11/23/11  3:45 PM  Page 477



478 C H A P T E R  6 | Matrices and Determinants

64.

65–68 ■ Solve the system of linear equations by using the rref
command on a graphing calculator. State your answer rounded to
two decimal places.

65.

66.

67.

68.

A P P L I C A T I O N S
69. Nutrition A doctor recommends that a patient take 50 mg

each of niacin, riboflavin, and thiamin daily to alleviate a 
vitamin deficiency. In his medicine chest at home the patient
finds three brands of vitamin pills. The amounts of the relevant
vitamins per pill are given in the table. How many pills of 
each type should he take every day to get 50 mg of each 
vitamin?

70. Mixtures A chemist has three acid solutions at various con-
centrations. The first is 10% acid, the second is 20%, and the
third is 40%. How many milliliters of each should she use to 
make 100 mL of 18% solution, if she has to use four times as
much of the 10% solution as the 40% solution?

71. Distance, Speed, and Time Amanda, Bryce, and Corey 
enter a race in which they have to run, swim, and cycle over a
marked course. Their average speeds are given in the table. Corey
finishes first with a total time of 1 h 45 min. Amanda comes in

VitaMax Vitron VitaPlus

Niacin (mg) 5 10 15
Riboflavin (mg) 15 20 0
Thiamin (mg) 10 10 10

d
49x � 27y � 52z � �145

27y � 43„ � �118.7

�31y � 42z � �72.1

73x � 54y � �132.7

d
42x � 31y � 42„ � �0.4

�6x � 9„ � 4.5

35x � 67z � 32„ � 348.8

31y � 48z � 52„ � �76.6

c
1.31x � 2.72y � 3.71z � �13.9534

�0.21x � 3.73z � 13.4322

2.34y � 4.56z � �21.3984

c
0.75x � 3.75y � 2.95z � 4.0875

0.95x � 8.75y � 3.375

1.25x � 0.15y � 2.75z � 3.6625

d 

�2x � 2y � 2z � 2„ � 10

�3x � 2y � 2z � 2„ � 10

�2x � 2y � 2z � 4„ � 12

�2x � 2y � 2z � 5„ � 16

45. 46.

47. 48.

49–64 ■ Solve the system of linear equations.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59.

60.

61.

62. 

63. d
   x       � z �     „ �     4

          y � z         � �4

   x � 2y � 3z �    „ �  12

 2x       � 2z � 5„ � �1

c
  2x �   y � 2z � „ � 5

 �x �   y � 4z � „ � 3

  3x � 2y � 4z        � 0

c
  x �   y    �   „ � 0

3x      � z � 2„ � 0

  x � 4y � z � 2„ � 0

d 

3x � 3y � 2z � 2„ � 1�2

3x � 2y � 2z � 2„ � �10

3x � 3y � 2z � 5„ � �15

3x � 3y � 2z � 5„ � 1�3

d
    x �   y � 2z � 2„ � �2

            3y �   z � 2„ � 2

      x � y          � 3„ � 2

�3x      �   z � 2„ � �5

d 

  x �   y � z � 4„ � � 6

2x �          z � 3„ � 8

  x �   y � 4„ � �10

3x � 5y � z � 4„ � 20

d 

�x � 2y � 4z � 3„ � 3

 3x � 4y � 4z � 3„ � 9

�x � 4y � 4z � 3„ � 0

 2x � 4y � 4z � 2„ � 3

c
  3x �   y � 2z � �1

  4x � 2y �   z � �7

�x � 3y � 2z � �1
c 

x �   y � 6z � 8

x � z � 5

x � 3y � 14z � �4

c 

�3x � 3y � z � 2

�4x � 3y � z � 4

�2x � 5y � z � 0

c 

�2x � 2y � 3z � 1�5

�2x � 4y � 6z � 1 10

 �3x � 7y � 2z � �13

c
�4x �   y � 36z � 24

x       � 2y �   9z � 3

�2x �   y �   6z � 6

c
  2x �   y � 3z �   9

�x          � 7z � 10

  3x � 2y �    z �   4

c 

 2x � 3y � 5z � �14

 4x � 3y � 2z � �17

�x � 3y � 5z � �13

c 

�4x � 3y � 3z � �8

�2x � 3y � 3z � �4

�2x � 3y � 2z � �3

c 
           y � 5z � 7

3x � 2y � 12

3x � 10z � 80

c
  2x �   y � 2z �   12

�x � 1
2  
y  � z �  �6

  3x � 3
2  
y � 3z �   18

c
3r � 2s � 3t �  10

  r �   s �   t � �5

  r � 4s �   t �  20

c
  x � 4y �   2z � �3

2x �   y �   5z �  12

8x � 5y � 11z �  30
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ables x, y, z, and „ represent the number of cars that travel
along the portions of First, Second, Avocado, and Birch Streets
during this period. Find x, y, z, and „, assuming that none of
the cars stop or park on any of the streets shown.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
75. Polynomials Determined by a Set of Points We all

know that two points uniquely determine a line y � ax � b in
the coordinate plane. Similarly, three points uniquely deter-
mine a quadratic (second-degree) polynomial

four points uniquely determine a cubic (third-degree)
polynomial 

and so on. (Some exceptions to this rule are if the three points
actually lie on a line, or the four points lie on a quadratic or
line, and so on.) For the following set of five points, find the line
that contains the first two points, the quadratic that contains the
first three points, the cubic that contains the first four points, and
the fourth-degree polynomial that contains all five points.

Graph the points and functions in the same viewing rectangle
using a graphing device.

10, 0 2 , 11, 12 2 , 12, 40 2 , 13, 6 2 , 1�1, �14 2  

y � ax3 � bx2 � cx � d

y � ax2 � bx � c

180 70

20

200

30200

400

200
FIRST STREET

SECOND STREET

AVOCADO
STREET

BIRCH
STREET

x

y

z „

second with a time of 2 h 30 min. Bryce finishes last with a time
of 3 h. Find the distance (in miles) for each part of the race.

72. Classroom Use A small school has 100 students who oc-
cupy three classrooms: A, B, and C. After the first period of
the school day, half the students in room A move to room B,
one-fifth of the students in room B move to room C, and one-
third of the students in room C move to room A. Nevertheless,
the total number of students in each room is the same for both
periods. How many students occupy each room?

73. Manufacturing Furniture A furniture factory makes
wooden tables, chairs, and armoires. Each piece of furniture
requires three operations: cutting the wood, assembling, and
finishing. Each operation requires the number of hours (h)
given in the table. The workers in the factory can provide 
300 hours of cutting, 400 hours of assembling, and 590 hours
of finishing each work week. How many tables, chairs, and ar-
moires should be produced so that all available labor-hours are
used? Or is this impossible?

74. Traffic Flow A section of a city’s street network is shown in
the figure. The arrows indicate one-way streets, and the num-
bers show how many cars enter or leave this section of the city
via the indicated street in a certain one-hour period. The vari-

Table Chair Armoire

Cutting (h) �
1
2� 1 1

Assembling (h) �
1
2� 1�

1
2� 1

Finishing (h) 1 1�
1
2� 2

Average speed (mi/h)

Running Swimming Cycling

Amanda 10 4 20
Bryce 7�

1
2� 6 15

Corey 15 3 40

S E C T I O N  6 . 2 | The Algebra of Matrices 479

6.2 THE ALGEBRA OF MATRICES

LEARNING OBJECTIVES After completing this section, you will be able to:

Determine whether two matrices are equal � Perform addition, subtraction,
and scalar multiplication of matrices � Perform matrix multiplication
� Express a linear system in matrix form

Thus far, we have used matrices simply for notational convenience when solving linear
systems. Matrices have many other uses in mathematics and the sciences, and for most of
these applications a knowledge of matrix algebra is essential. Like numbers, matrices can
be added, subtracted, multiplied, and divided. In this section we learn how to perform
these algebraic operations on matrices.

▼ Equality of Matrices
Two matrices are equal if they have the same entries in the same positions.
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E X A M P L E  1 Equal Matrices

Find a, b, c, and d, if

S O L U T I O N Since the two matrices are equal, corresponding entries must be the
same. So we must have a � 1, b � 3, c � 5, and d � 2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 5 AND 7 ■

▼ Addition, Subtraction, and Scalar Multiplication of Matrices
Two matrices can be added or subtracted if they have the same dimension. (Otherwise,
their sum or difference is undefined.) We add or subtract the matrices by adding or sub-
tracting corresponding entries. To multiply a matrix by a number, we multiply every ele-
ment of the matrix by that number. This is called the scalar product.

E X A M P L E  2 Performing Algebraic Operations on Matrices

Let

C � c
7 �3 0

0 1 5
d  D � c

6 0 �6

8 1 9
d

A � C
2 �3

0 5

7 �1
2

S  B � C
1 0

�3 1

2 2

S

c
a b

c d
d � c

1 3

5 2
d

EQUALIT Y OF MATRICES

The matrices A � ”aij’ and B � ”bij’ are equal if and only if they have the same
dimension m � n, and corresponding entries are equal, that is,

aij � bij

for i � 1, 2, . . . , m and j � 1, 2, . . . , n.

Equal matrices

� 

Unequal matrices

� c
1 3 5

2 4 6
dC

1 2

3 4

5 6

S

c
2 4 1
1
2

2
2 0

dc
24 22 e0

0.5 1 1 � 1
d

SUM, DIFFERENCE, AND SC AL AR PRODUCT OF MATRICES

Let A � ”aij’ and B � ”bij’ be matrices of the same dimension m � n, and let c
be any real number.

1. The sum A � B is the m � n matrix obtained by adding corresponding entries
of A and B. 

2. The difference A � B is the m � n matrix obtained by subtracting corre-
sponding entries of A and B. 

3. The scalar product cA is the m � n matrix obtained by multiplying each
entry of A by c. 

cA � 3caij 4

A � B � 3aij � bij 4

A � B � 3aij � bij 4
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Carry out each indicated operation, or explain why it cannot be performed.

(a) (b) (c) (d)

S O L U T I O N

(a) A � B � 

(b) C � D � 

(c) C � A is undefined because we can’t add matrices of different dimensions.

(d) 5A � 5 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 23 AND 25 ■

The properties in the box follow from the definitions of matrix addition and scalar
multiplication and the corresponding properties of real numbers.

E X A M P L E  3 Solving a Matrix Equation

Solve the matrix equation

for the unknown matrix X, where

S O L U T I O N We use the properties of matrices to solve for X:

Given equation

Add the matrix A to each side

Multiply each side by the scalar 1
2 X � 1

2 1B � A 2

 2X � B � A

 2X � A � B

A � c
2 3

�5 �1
d  B � c

4 �1

1 3
d

2X � A � B

C
2 �3

0 5

7 �1
2

S � C
10 �15

0 25

35 �5
2

S

� c
1 �3 6

�8 0 �4
d

c
7 �3 0

0 1 5
d � c

6 0 �6

8 1 9
d

C
2 �3

0 5

7 �1
2

S � C
1 0

�3 1

2 2

S � C
3 �3

�3 6

9 3
2

S

5AC � AC � DA � B
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J U L I A  R O B I N S O N (1919–1985) was
born in St. Louis, Missouri, and grew up
at Point Loma, California. Because of an
illness, Robinson missed two years of
school, but later, with the aid of a tutor,
she completed fifth, sixth, seventh, and
eighth grades, all in one year. Later, at
San Diego State University, reading bi-
ographies of mathematicians in E. T.
Bell’s Men of Mathematics awakened in
her what became a lifelong passion for
mathematics. She said,“I cannot
overemphasize the importance of such
books . . . in the intellectual life of a stu-
dent.” Robinson is famous for her work
on Hilbert’s tenth problem (page 502),
which asks for a general procedure for
determining whether an equation has
integer solutions. Her ideas led to a
complete answer to the problem. Inter-
estingly, the answer involved certain
properties of the Fibonacci numbers
(page 574) discovered by the then 22-
year-old Russian mathematician Yuri
Matijasevič. As a result of her brilliant
work on Hilbert’s tenth problem,
Robinson was offered a professorship
at the University of California, Berkeley,
and became the first woman mathe-
matician elected to the National Acad-
emy of Sciences. She also served as
president of the American Mathemati-
cal Society.
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PROPERTIES OF ADDITION AND SC AL AR MULTIPLIC ATION OF MATRICES

Let A, B, and C be m � n matrices, and let c and d be scalars.

Commutative Property of Matrix Addition

Associative Property of Matrix Addition

Associative Property of Scalar Multiplication

Distributive Properties of Scalar Multiplicationc1A � B 2 � cA � cB
1c � d 2A � cA � dA

c1dA 2 � cdA

1A � B 2 � C � A � 1B � C 2

A � B � B � A
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482 C H A P T E R  6 | Matrices and Determinants

So Substitute the matrices A and B

Add matrices

Multiply by the scalar 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

▼ Multiplication of Matrices
Multiplying two matrices is more difficult to describe than other matrix operations. In
later examples we will see why multiplying matrices involves a rather complex proce-
dure, which we now describe.

First, the product AB 1or A 	 B2 of two matrices A and B is defined only when the num-
ber of columns in A is equal to the number of rows in B. This means that if we write their
dimensions side by side, the two inner numbers must match:

Matrices A B

Dimensions m � n n � k

If the dimensions of A and B match in this fashion, then the product AB is a matrix of di-
mension m � k. Before describing the procedure for obtaining the elements of AB, we de-
fine the inner product of a row of A and a column of B.

If ”a1 a2
. . . an’ is a row of A, and if is a column of B, then their inner product 

is the number a1b1 � a2b2 � . . . � anbn. For example, taking the inner product of 

[2 �1 0 4] and gives

We now define the product AB of two matrices.

2 # 5 � 1�1 2 # 4 � 0 # 1�3 2 � 4 # 1
2 � 8

D
5

4

�3
1
2

 T

D
b1

b2

o
bn

T

1
2� c

3 1

�2 2
d

�
1

2
c

6 2

�4 4
d

 X �
1

2
 a c

4 �1

1 3
d � c

2 3

�5 1
d b

Columns in A Rows in B

MATRIX MULTIPLIC ATION

If A � ”aij’ is an m � n matrix and B � ”bij’ an n � k matrix, then their product
is the m � k matrix

C � ”cij’

where cij is the inner product of the ith row of A and the jth column of B. We
write the product as

C � AB
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Entry in ith row and
jth column of AB

Inner numbers match,
so product is defined

Outer numbers give dimension
of product: 2 � 3

2 � 2 2 � 3

Not equal, so product
not defined

2 � 3 2 � 2

ith row of A

This definition of matrix product says that each entry in the matrix AB is obtained from
a row of A and a column of B as follows: The entry cij in the ith row and jth column of the
matrix AB is obtained by multiplying the entries in the ith row of A with the correspond-
ing entries in the jth column of B and adding the results.

E X A M P L E  4 Multiplying Matrices

Let

Calculate, if possible, the products AB and BA.

S O L U T I O N Since A has dimension 2 � 2 and B has dimension 2 � 3, the product
AB is defined and has dimension 2 � 3. We can therefore write

where the question marks must be filled in using the rule defining the product of two
matrices. If we define C � AB � ”cij’, then the entry c11 is the inner product of the first
row of A and the first column of B:

Similarly, we calculate the remaining entries of the product as follows:

Entry Inner product of: Value Product matrix

Thus we have

The product BA is not defined, however, because the dimensions of B and A are

The inner two numbers are not the same, so the rows and columns won’t match up
when we try to calculate the product.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27 ■

2 � 3  and  2 � 2

AB � c
�1 17 23

1 �5 �2
d

c23     c
1 3

�1 0
d  c

�1 5 2

0 4 7
d  1�1 2 # 2 � 0 # 7 � �2  c

�1 17 23

1 �5 �2
d

c22     c
1 3

�1 0
d  c

�1 5 2

0 4 7
d  1�1 2 # 5 � 0 # 4 � �5  c

�1 17 23

1 �5
d

c21     c
1 3

�1 0
d  c

�1 5 2

0 4 7
d  1�1 2 # 1�1 2 � 0 # 0 � 1  c

�1 17 23

1
d

c13     c
1 3

�1 0
d  c

�1 5 2

0 4 7
d  1 # 2 � 3 # 7 � 23    c

�1 17 23
d

c12     c
1 3

�1 0
d  c

�1 5 2

0 4 7
d  1 # 5 � 3 # 4 � 17    c

�1 17   
 d

c
1 3

�1 0
d  c

�1 5 2

0 4 7
d  1 # 1�1 2 � 3 # 0 � �1

AB � c
1 3

�1 0
d  c

�1 5 2

0 4 7
d � c

? ? ?

? ? ?
d

A � c
1 3

�1 0
d    and   B � c

�1 5 2

0 4 7
d

C cij SC
�

�

�

SC� � �S

jth column of B
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Graphing calculators and computers are capable of performing matrix algebra. For
instance, if we enter the matrices in Example 4 into the matrix variables [A] and [B]
on a TI-83 calculator, then the calculator finds their product as shown in Figure 1.

▼ Properties of Matrix Multiplication
Although matrix multiplication is not commutative, it does obey the Associative and 
Distributive Properties.

The next example shows that even when both AB and BA are defined, they aren’t 
necessarily equal. This result proves that matrix multiplication is not commutative.

E X A M P L E  5 Matrix Multiplication Is Not Commutative
Let

Calculate the products AB and BA.

S O L U T I O N Since both matrices A and B have dimension 2 � 2, both products AB
and BA are defined, and each product is also a 2 � 2 matrix.

This shows that, in general, AB � BA. In fact, in this example AB and BA don’t even
have an entry in common.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

▼ Applications of Matrix Multiplication
We now consider some applied examples that give some indication of why mathemati-
cians chose to define the matrix product in such an apparently bizarre fashion. Exam-
ple 6 shows how our definition of matrix product allows us to express a system of lin-
ear equations as a single matrix equation.

 � c
�1 7

48 63
d

 BA � c
1 2

9 �1
d c

5 7

�3 0
d � c

1 # 5 � 2 # 1�3 2 1 # 7 � 2 # 0

9 # 5 � 1�1 2 # 1�3 2 9 # 7 � 1�1 2 # 0
d

 � c
68 3

�3 �6
d

 AB � c
5 7

�3 0
d c

1 2

9 �1
d � c

5 # 1 � 7 # 9 5 # 2 � 7 # 1�1 2

1�3 2 # 1 � 0 # 9 1�3 2 # 2 � 0 # 1�1 2
 d

A � c
5 7

�3 0
d  and  B � c

1 2

9 �1
d

PROPERTIES OF MATRIX MULTIPLIC ATION

Let A, B, and C be matrices for which the following products are defined. Then

Associative Property

Distributive Property
 1B � C 2A � BA � CA

 A1B � C 2 � AB � AC

 A1BC 2 � 1AB 2C

[A]*[B]
    [[-1 17 23]
     [1  -5 -2]]

F I G U R E  1

See Appendix C, Using the TI-83/84
Graphing Calculator, for specific 
instructions on working with matrices.
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E X A M P L E  6 Writing a Linear System as a Matrix Equation

Show that the following matrix equation is equivalent to the system of equations in 
Example 2 of Section 6.1.

S O L U T I O N If we perform matrix multiplication on the left side of the equation, we get

Because two matrices are equal only if their corresponding entries are equal, we equate
entries to get

This is exactly the system of equations in Example 2 of Section 6.1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 47 ■

E X A M P L E  7 Representing Demographic Data by Matrices

In a certain city the proportions of voters in each age group who are registered as Dem-
ocrats, Republicans, or Independents are given by the following matrix.

Age
18–30 31–50 Over 50

The next matrix gives the distribution, by age and sex, of the voting population of this 
city.

For this problem, let’s make the (highly unrealistic) assumption that within each age
group, political preference is not related to gender. That is, the percentage of Democrat
males in the 18–30 group, for example, is the same as the percentage of Democrat fe-
males in this group.

(a) Calculate the product AB.

(b) How many males are registered as Democrats in this city?

(c) How many females are registered as Republicans?

S O L U T I O N

(a) AB � C
0.30 0.60 0.50

0.50 0.35 0.25

0.20 0.05 0.25

S  C
5,000 6,000

10,000 12,000

12,000 15,000

S � C
13,500 16,500

9,000 10,950

4,500 5,550

S

C
0.30 0.60 0.50

0.50 0.35 0.25

0.20 0.05 0.25

S � A

c
x � y � 3z � 4

x � 2y � 2z � 10

3x � y � 5z � 14

C
 x �  y � 3z
 x � 2y � 2z
3x �  y � 5z

S � C
4

10

14

S

C
1 �1 3

1 2 �2

3 �1 5

S C
x

y

z
S � C

4

10

14

S

S E C T I O N  6 . 2 | The Algebra of Matrices 485

Democrat

Republican

Independent

18–30

Age 31–50

Over 50

C
5,000 6,000

10,000 12,000

12,000 15,000

S � B

Male Female

Matrix equations like this one are stud-
ied in more detail on page 495.
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(b) When we take the inner product of a row in A with a column in B, we are adding
the number of people in each age group who belong to the category in question.
For example, the entry c21 of AB 1the 90002 is obtained by taking the inner product
of the Republican row in A with the Male column in B. This number is therefore
the total number of male Republicans in this city. We can label the rows and
columns of AB as follows:

Thus 13,500 males are registered as Democrats in this city.

(c) There are 10,950 females registered as Republicans.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

In Example 7 the entries in each column of A add up to 1. (Can you see why this has
to be true, given what the matrix describes?) A matrix with this property is called sto-
chastic. Stochastic matrices are used extensively in statistics, where they arise frequently
in situations like the one described here.

▼ Computer Graphics
One important use of matrices is in the digital representation of images. A digital camera
or a scanner converts an image into a matrix by dividing the image into a rectangular ar-
ray of elements called pixels. Each pixel is assigned a value that represents the color,
brightness, or some other feature of that location. For example, in a 256-level gray-scale
image each pixel is assigned a value between 0 and 255, where 0 represents white, 255
represents black, and the numbers in between represent increasing gradations of gray. The
gradations of a much simpler 8-level gray scale are shown in Figure 2. We use this eight-
level gray scale to illustrate the process.

To digitize the black and white image in Figure 3(a), we place a grid over the picture as
shown in Figure 3(b). Each cell in the grid is compared to the gray scale and then assigned
a value between 0 and 7 depending on which gray square in the scale most closely matches
the “darkness” of the cell. (If the cell is not uniformly gray, an average value is assigned.)
The values are stored in the matrix shown in Figure 3(c). The digital image corresponding
to this matrix is shown in Figure 3(d). Obviously, the grid that we have used is far too coarse
to provide good image resolution. In practice, currently available high-resolution digital
cameras use matrices with dimension 4096 � 4096 or larger.

Once the image is stored as a matrix, it can be manipulated by using matrix operations.
For example, to darken the image, we add a constant to each entry in the matrix; to lighten
the image, we subtract a constant. To increase the contrast, we darken the darker areas and

O L G A  TA U S S K Y - T O D D (1906–1995)
was instrumental in developing appli-
cations of matrix theory. Described as
“in love with anything matrices can do,”
she successfully applied matrices to
aerodynamics, a field used in the design
of airplanes and rockets. Taussky-Todd
was also famous for her work in num-
ber theory, which deals with prime
numbers and divisibility. Although
number theory has often been called
the least applicable branch of mathe-
matics, it is now used in significant ways
throughout the computer industry.

Taussky-Todd studied mathematics
at a time when young women rarely
aspired to be mathematicians. She said,
“When I entered university I had no
idea what it meant to study mathe-
matics.” One of the most respected
mathematicians of her day, she was for
many years a professor of mathematics
at Caltech in Pasadena.
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C
13,500 16,500

9,000 10,950

4,500 5,550

S � AB
Democrat

Republican

Independent

Male Female

0 1 2 3 4 5 6 7

(a) Original image (b) 10 � 10 grid (d) Digital image(c) Matrix representation

1 1 1 1 1 1 1 2 2 1
1 1 1 1 1 1 4 6 5 2
1 1 1 1 2 3 3 5 5 3
1 1 1 1 3 5 4 6 3 2
1 1 1 1 1 2 3 2 2 1
1 1 1 1 1 3 3 2 1 1
1 1 1 1 1 1 4 1 1 1
1 1 1 1 2 2  4 2 2 2
2 2 3 5 5 2 2 3 4 4
3 3 3 4 3 2 3 3 3 4

F I G U R E  2

F I G U R E  3
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lighten the lighter areas, so we could add 1 to each entry that is 4, 5, or 6, and subtract 1
from each entry that is 1, 2, or 3. (Note that we cannot darken an entry of 7 or lighten a
0.) Applying this process to the matrix in Figure 3(c) produces the new matrix in Figure
4(a). This generates the high-contrast image shown in Figure 4(b).

Other ways of representing and manipulating images using matrices are discussed in
Focus on Modeling on pages 518–521.

(b) High contrast image(a) Matrix modified to
increase contrast

0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 5 7 6 1
0 0 0 0 1 2 2 6 6 2
0 0 0 0 2 6 5 7 2 1
0 0 0 0 0 1 2 1 1 0
0 0 0 0 0 2 2 1 0 0
0 0 0 0 0 0 5 0 0 0
0 0 0 0 1 1  5 1 1 1
1 1 2 6 6 1 1 2 5 5
2 2 2 5 2 1 2 2 2 5

F I G U R E  4

C O N C E P T S
1. We can add (or subtract) two matrices only if they have the 

same .

2. (a) We can multiply two matrices only if the number of 

in the first matrix is the same as the number of 

in the second matrix.

(b) If A is a 3 � 3 matrix and B is a 4 � 3 matrix, which of
the following matrix multiplications are possible?  

(i) (ii) (iii) (iv)

3. Which of the following operations can we perform for a 
matrix A of any dimension?

(i) (ii) (iii)

4. Fill in the missing entries in the product matrix.

S K I L L S
5–6 ■ Determine whether the matrices A and B are equal.

5.

6. A � c
1
4 ln  1

2 3
d  B � c

0.25 014 6
2

d

A � c  

1 �2 0
1
2   6 0

d  B � c
1 �2
1
2 6

d

C
3 1 2

�1 2 0

1 3 �2

S  C
�1 3 �2

3 �2 �1

2 1 0

S � C
4 � �7

7 �7 �

� �5 �5

S

A # A2AA � A

BBAABAAB

7–8 ■ Find the values of a and b that make the matrices A and B
equal.

7.

8.

9–16 ■ Perform the matrix operation, or if it is impossible,
explain why.

9. 10.

11. 12.

13. 14.

15. 16.

17–22 ■ Solve the matrix equation for the unknown matrix X, or 
explain why no solution exists.

17. 18. 3X � B � C2X � A � B

C � C
2 3

1 0

0 2

S  D � C
10 20

30 20

10 0

S

A � c
4 6

1 3
d  B � c

2 5

3 7
d

C
2 �3

0 1

1 2

S  c
5

1
dc

1 2

�1 4
d c

1 �2 3

2 2 �1
d

c
2 1 2

6 3 4
d  C

1 �2

3 6

�2 0

SC
2 6

1 3

2 4

S  C
1 �2

3 6

�2 0

S

2C
1 1 0

1 0 1

0 1 1

S �

1 1

C2 1

3 1

S3C
1 2

4 �1

1 0

S

c
0 1 1

1 1 0
d � c

2 1 �1

1 3 �2
dc

2 6

�5 3
d � c

�1 �3

6 2
d

B � c
3 5 b

�4 �5 2
dA � c

3 5 7

�4 a 2
d

B � c
b 4

�1 �5
dA � c

3 4

�1 a
d

6 . 2  E X E R C I S E S
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47–50 ■ Write the system of equations as a matrix equation (see
Example 6).

47. 48.

49.

50.

51. The matrices A, B, and C are defined as follows

Determine which of the following products are defined, and
calculate the ones that are.

52. (a) Prove that if A and B are matrices, then

(b) If A and B are matrices, is it necessarily true that

A P P L I C A T I O N S
53. Fast-Food Sales A small fast-food chain with restaurants in

Santa Monica, Long Beach, and Anaheim sells only hamburg-
ers, hot dogs, and milk shakes. On a certain day, sales were
distributed according to the following matrix.

Number of items sold

Santa Long 
Monica Beach Anaheim

The price of each item is given by the following matrix.

Hamburger Hot dog Milk shake

”$0.90 $0.80 $1.10’ � B

(a) Calculate the product BA.
(b) Interpret the entries in the product matrix BA.

54. Car-Manufacturing Profits A specialty-car manufacturer
has plants in Auburn, Biloxi, and Chattanooga. Three models
are produced, with daily production given in the following 
matrix.

Hamburgers
Hot dogs

Milk shakes
  C

4000   1000   3500

400 300 200

700 500 9000

S � A

1A � B 2 2 � A2 � 2AB � B2

2 � 2

1A � B 2 2 � A2 � AB � BA � B2

2 � 2

ABC

BCA
  

ACB

CAB
  

BAC

CBA

B � 31 7 �9 2 4

C � D
1

0

�1

�2

TA � c
1 0 6 �1

2 1
2 4 0

d

d
      x �       y �     z � 2

  4x �   2y �     z � 2

      x �    y � 5z � 2

 �x �   y �    z � 2

c
 3x1 � 2x2 � x3 � x4 � 0

   x1            � x3             � 5

         3x2 � x3 � x4 � 4

c
 6x � y � z � 12

 2x � z � 7

 y � 2z � 4

e
2x � 5y � 7

3x � 2y � 4

19. 20.

21. 22.

23–36 ■ The matrices A, B, C, D, E, F, G and H are defined as 
follows.

Carry out the indicated algebraic operation, or explain why it 
cannot be performed.

23. (a) (b)

24. (a) (b)

25. (a) (b)

26. (a) (b)

27. (a) (b)

28. (a) (b)

29. (a) (b)

30. (a) (b)

31. (a) (b)

32. (a) (b)

33. (a) (b)

34. (a) (b)

35. (a) (b)

36. (a) (b)

37–42 ■ The matrices A, B, and C are defined as follows. 

Use a graphing calculator to carry out the indicated algebraic oper-
ation, or explain why it cannot be performed. 

37. AB 38. BA 39. BC 40. CB 41. 42.

43–46 ■ Solve for x and y.

43. 44.

45.

46. c
x y

�y x
d � c

y x

x �y
d � c

4 �4

�6 6
d

2 c
x y

x � y x � y
d � c

2 �4

�2 6
d

3 c
x y

y x
d � c

6 �9

�9 6
dc

x 2y

4 6
d � c

2 �2

2x �6y
d

A2B � C

C � c
�0.2 0.2 0.1

1.1 2.1 �2.1
d

B � C
1.2 �0.1

0 �0.5

0.5 �2.1

SA � C
0.3 1.1 2.4

0.9 �0.1 0.4

�0.7 0.3 �0.5

S

BF � FEDB � DC

AHEABE

D1AB 21DA 2B

A3A2

F2B2

GEGF

BFBC

HAAH

HDDH

DAAD

2H � D3B � 2C

C � 5A5A

2C � 6BC � B

B � FB � C

G � C
5 �3 10

6 1 0

�5 2 2

S     H � c
3 1

2 �1
d

D � 37 3 4  E � C
1

2

0

S  F � C
1 0 0

0 1 0

0 0 1

S

C � c
2 �5

2 0

0 2 �3
dA � c

2 �5

0 7
d  B � c

3 1
2 5

1 �1 3
d

2A � B � 3X1
5 1X � D 2 � C

51X � C 2 � D21B � X 2 � D

90169_Ch06a_465-500.qxd  11/23/11  3:45 PM  Page 488



Unless otherwise noted, all content on this page is © Cengage Learning.

number of pounds of each product sold by each sibling on Sat-
urday and Sunday.

Saturday

Melons Squash Tomatoes

Sunday

Melons Squash Tomatoes

The matrix C gives the price per pound (in dollars) for each
type of produce that they sell.

Price per pound

Perform each of the following matrix operations, and interpret
the entries in each result.
(a) AC (b) BC (c) A � B (d) ÓA � BÔC

57. Digital Images A four-level gray scale is shown below.

(a) Use the gray scale to find a 6 � 6 matrix that digitally
represents the image in the figure.

(b) Find a matrix that represents a darker version of the image
in the figure.

(c ) The negative of an image is obtained by reversing light
and dark, as in the negative of a photograph. Find the ma-
trix that represents the negative of the image in the figure.
How do you change the elements of the matrix to create
the negative?

(d) Increase the contrast of the image by changing each 1 to a
0 and each 2 to a 3 in the matrix you found in part (b).
Draw the image represented by the resulting matrix. Does
this clarify the image?

0 1 2 3

Melons
Squash

Tomatoes
  C

0.10

0.50

1.00

S � C

Amy
Beth

Chad
  C

100   60   30

35 20 20

60 25 30

S � B

Amy
Beth

Chad
  C

120   50   60

40 25 30

60 30 20

S � A

Cars produced each day

Model K Model R Model W

Because of a wage increase, February profits are lower
than January profits. The profit per car is tabulated by
model in the following matrix.

January February

(a) Calculate AB.
(b) Assuming that all cars produced were sold, what was the

daily profit in January from the Biloxi plant?
(c) What was the total daily profit (from all three plants) in

February?

55. Canning Tomato Products Jaeger Foods produces tomato
sauce and tomato paste, canned in small, medium, large, and
giant sized cans. The matrix A gives the size (in ounces) of
each container.

Small Medium Large Giant
Ounces

The matrix B tabulates one day’s production of tomato sauce
and tomato paste.

Cans of Cans of
sauce paste

(a) Calculate the product of AB.
(b) Interpret the entries in the product matrix AB.

56. Produce Sales A farmer’s three children, Amy, Beth, and
Chad, run three roadside produce stands during the summer
months. One weekend they all sell watermelons, yellow
squash, and tomatoes. The matrices A and B tabulate the 

  D
2000  2500

3000 1500

2500 1000

1000 500

T � B

36    10    14    28 4 � A

Model K
Model R

Model W
  C

$1000 $500

$2000 $1200

$1500 $1000

S � B

Auburn
Biloxi

Chattanooga
  C

12    10   0

4   4    20

8  9 12

S � A
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Small

Medium

Large

Giant
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490 C H A P T E R  6 | Matrices and Determinants

60. Powers of a Matrix Let . Calculate A2, A3,

A4, . . . until you detect a pattern. Write a general formula for An.

61. Square Roots of Matrices A square root of a matrix B is
a matrix A with the property that A2 � B. (This is the same 
definition as for a square root of a number.) Find as many
square roots as you can of each matrix:

[Hint: If , write the equations that and

d would have to satisfy if A is the square root of the given matrix.]

a, b, c, A � c
a b

c d
d

c
4 0

0 9
d  c

1 5

0 9
d

A � c
1 1

1 1
d(e) Draw the image represented by the matrix I. Can you recog-

nize what this is? If you don’t, try increasing the contrast.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
58. When Are Both Products Defined? What must be true
about the dimensions of the matrices A and B if both products AB
and BA are defined?

59. Powers of a Matrix Let

Calculate A2, A3, A4, . . . until you detect a pattern. Write a
general formula for An.

A � c
1 1

0 1
d

I � F

1 2 3 3 2 0

0 3 0 1 0 1

1 3 2 3 0 0

0 3 0 1 0 1

1 3 3 2 3 0

0 1 0 1 0 1

V

Will the Species Survive?

In this project we investigate matrix models for species popula-
tions and how multiplication by a transition matrix can predict
future population trends. You can find the project at the book
companion website: www.stewartmath.com

❍ DISCOVERY
PROJECT

6.3 INVERSES OF MATRICES AND MATRIX EQUATIONS

LEARNING OBJECTIVES After completing this section, you will be able to:

Determine whether two matrices are inverses of each other � Find the inverse
of a 2 � 2 matrix � Find the inverse of an n � n matrix � Solve a matrix 
equation � Solve a linear system by expressing it as a matrix equation
� Model using matrix equations

In the preceding section we saw that when the dimensions are appropriate, matrices can
be added, subtracted, and multiplied. In this section we investigate division of matrices.
With this operation we can solve equations that involve matrices.

▼ The Inverse of a Matrix
First, we define identity matrices, which play the same role for matrix multiplication as the
number 1 does for ordinary multiplication of numbers; that is, 1 	 a � a 	 1 � a for all num-
bers a. A square matrix is one that has the same number of rows as columns. The main di-
agonal of a square matrix consists of the entries whose row and column numbers are the
same. These entries stretch diagonally down the matrix, from top left to bottom right.

Thus the 2 � 2, 3 � 3, and 4 � 4 identity matrices are

I2 � I3 � I4 � D
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

TC
1 0 0
0 1 0
0 0 1

SB1 0
0 1

R

IDENTIT Y MATRIX

The identity matrix In is the n � n matrix for which each main diagonal entry is 
a 1 and for which all other entries are 0.
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Identity matrices behave like the number 1 in the sense that

A 	 In � A and In 	 B � B

whenever these products are defined. 

E X A M P L E  1 Identity Matrices

The following matrix products show how multiplying a matrix by an identity matrix of
the appropriate dimension leaves the matrix unchanged.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 1(a), (b) ■

If A and B are n � n matrices, and if AB � BA � In, then we say that B is the inverse
of A, and we write B � A�1. The concept of the inverse of a matrix is analogous to that
of the reciprocal of a real number.

E X A M P L E  2 Verifying That a Matrix Is an Inverse

Verify that B is the inverse of A, where

S O L U T I O N We perform the matrix multiplications to show that AB � I and BA � I:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 3 ■

▼ Finding the Inverse of a 2 � 2 Matrix
The following rule provides a simple way for finding the inverse of a 2 � 2 matrix, when
it exists. For larger matrices there is a more general procedure for finding inverses, which
we consider later in this section.

BA � c
3 �1

�5 2
d  c

2 1

5 3
d  �  c

3 #  2 � 1�1 25 3 #  1 � 1�1 23

1�5 22 � 2 #  5 1�5 21 � 2 #  3
d  �  c

1 0

0 1
d

AB � c
2 1

5 3
d  c

3 �1

�5 2
d  �  c

2 #  3 � 11�5 2 21�1 2 � 1 #  2

5 #  3 � 31�5 2 51�1 2 � 3 #  2
d  �  c

1 0

0 1
d

A � c
2 1

5 3
d  and   B � c

3 �1

�5 2
d

C
�1 7 1

2

12 1 3

�2 0 7

S  C
1 0 0

0 1 0

0 0 1

S  �  C
�1 7 1

2

12 1 3

�2 0 7

S

c
1 0

0 1
d  c

3 5 6

�1 2 7
d  �  c

3 5 6

�1 2 7
d

S E C T I O N  6 . 3 | Inverses of Matrices and Matrix Equations 491

INVERSE OF A MATRIX

Let A be a square n � n matrix. If there exists an n � n matrix A�1 with the
property that

AA�1 � A�1A � In

then we say that A�1 is the inverse of A.
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492 C H A P T E R  6 | Matrices and Determinants

E X A M P L E  3 Finding the Inverse of a 2 � 2 Matrix

Let

Find A�1, and verify that AA�1 � A�1A � I2.

S O L U T I O N Using the rule for the inverse of a 2 � 2 matrix, we get

To verify that this is indeed the inverse of A, we calculate AA�1 and A�1A:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

The quantity that appears in the rule for calculating the inverse of a 
2 � 2 matrix is called the determinant of the matrix. If the determinant is 0, then the ma-
trix does not have an inverse (since we cannot divide by 0).

▼ Finding the Inverse of an n � n Matrix
For 3 � 3 and larger square matrices the following technique provides the most
efficient way to calculate their inverses. If A is an n � n matrix, we first construct the
n � 2n matrix that has the entries of A on the left and of the identity matrix In on the
right.

We then use the elementary row operations on this new large matrix to change the left side
into the identity matrix. (This means that we are changing the large matrix to reduced
row-echelon form.) The right side is transformed automatically into A�1. (We omit the
proof of this fact.)

D
a11 a12 p a1n | 1 0 p 0

a21 a22 p a2n | 0 1 p 0

o o ∞ o | o o ∞ o
an1 an2 p ann | 0 0 p 1

T

ad � bc

  A�1A � c
3
2 �5

2

�1 2
d  c

4 5

2 3
d � c

3
2 

#
 4 � 1�5

2 22
3
2 

#
 5 � 1�5

2 23

1�1 24 � 2 #  2 1�1 25 � 2 #  3
d � c

1 0

0 1
d

  AA�1 � c
4 5

2 3
d c

3
2 �5

2

�1 2
d � c

4 #  32 � 51�1 2 41�5
2 2 � 5 #  2

2 #  32 � 31�1 2 21�5
2 2 � 3 #  2

d � c
1 0

0 1
d

A�1 �
1

4 #  3 � 5 #  2
 c

3 �5

�2 4
d �

1

2
 c

3 �5

�2 4
d � c

3
2 �5

2

�1 2
d

A � c
4 5

2 3
d

INVERSE OF A 2 � 2 MATRIX

If ad � bc � 0, then A has no inverse.

A�1 �
1

ad �  bc
 c

d �b

�c a
d

If A � c
a b

c d
d , then

A R T H U R  C AY L E Y (1821–1895) was an
English mathematician who was instru-
mental in developing the theory of ma-
trices. He was the first to use a single
symbol such as A to represent a matrix,
thereby introducing the idea that a
matrix is a single entity rather than just
a collection of numbers. Cayley prac-
ticed law until the age of 42, but his
primary interest from adolescence was
mathematics, and he published almost
200 articles on the subject in his spare
time. In 1863 he accepted a professor-
ship in mathematics at Cambridge,
where he taught until his death. Cay-
ley’s work on matrices was of purely
theoretical interest in his day, but in the
20th century many of his results found
application in physics, the social sci-
ences, business, and other fields. One of
the most common uses of matrices to-
day is in computers, where matrices are
employed for data storage, error cor-
rection, image manipulation, and many
other purposes. These applications
have made matrix algebra more useful
than ever.

Th
e 

Gr
an

ge
r C

ol
le

ct
io

n,
 N

ew
 Y

or
k
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E X A M P L E  4 Finding the Inverse of a 3 � 3 Matrix

Let A be the matrix

(a) Find .

(b) Verify that .

S O L U T I O N

(a) We begin with the 3 � 6 matrix whose left half is A and whose right half is the iden-
tity matrix.

We then transform the left half of this new matrix into the identity matrix by per-
forming the following sequence of elementary row operations on the entire new
matrix.

We have now transformed the left half of this matrix into an identity matrix. (This
means that we have put the entire matrix in reduced row-echelon form.) Note that to
do this in as systematic a fashion as possible, we first changed the elements below the
main diagonal to zeros, just as we would if we were using Gaussian elimination. We
then changed each main diagonal element to a 1 by multiplying by the appropriate
constant(s). Finally, we completed the process by changing the remaining entries on
the left side to zeros. 

The right half is now A�1:

A�1 � C
�3 2 0

�4 1 �2
3

1 0 1
3

S

C
1 0 0 ƒ �3 2 0

0 1 0 ƒ �4 1 �2
3

0 0 1 ƒ 1 0 1
3

SR2 � 2R3 � R2

SSSSSSSO

C
1 0 0 ƒ �3 2 0

0 1 2 ƒ �2 1 0

0 0 1 ƒ 1 0 1
3

SR1 � 2R2 � R1

SSSSSSSO

C
1 �2 �4 ƒ �1 0 0

0 1 2 ƒ �2 1 0

0 0 1 ƒ 1 0 1
3

S�
1
3� R3

SSSO

C
1 �2 �4 ƒ 1 0 0

0 1 2 ƒ �2 1 0

0 0 3 ƒ 3 0 1

SR2 � 2R1 � R2

SSSSSSSO
R3 � 3R1 � R3

C
1 �2 �4 | 1 0 0

2 �3 �6 | 0 1 0

�3 6 15 | 0 0 1

S

AA�1 � A�1A � I3

A�1

A � C
1 �2 �4

2 �3 �6

�3 6 15

S

S E C T I O N  6 . 3 | Inverses of Matrices and Matrix Equations 493
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(b) We calculate AA�1 and A�1A and verify that both products give the identity matrix I3:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 9 AND 19 ■

Graphing calculators are also able to calculate matrix inverses. On the TI-83 and TI-84
calculators, matrices are stored in memory using names such as [A], [B], [C], . . . . To
find the inverse of [A], we key in

[A]

For the matrix of Example 4 this results in the output shown in Figure 1 (where we have
also used the �Frac command to display the output in fraction form rather than in deci-
mal form).

The next example shows that not every square matrix has an inverse.

E X A M P L E  5 A Matrix That Does Not Have an Inverse

Find the inverse of the matrix.

S O L U T I O N We proceed as follows.

At this point we would like to change the 0 in the 13, 32 position of this matrix to a 1 without
changing the zeros in the 13, 12 and 13, 22 positions. But there is no way to accomplish this, be-
cause no matter what multiple of rows 1 and/or 2 we add to row 3, we can’t change the third
zero in row 3 without changing the first or second zero as well. Thus we cannot change the left
half to the identity matrix, so the original matrix doesn’t have an inverse.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 21 ■

C
1 0 1 ƒ 2

7
3
7 0

0 1 3 ƒ �1
7

2
7 0

0 0 0 ƒ �1
7 �5

7 1

SR3 � R2 � R3

SSSSSSSO
R1 � 2R2 � R1

C
1 2 7 ƒ 0 1 0

0 1 3 ƒ �1
7

2
7 0

0 �1 �3 ƒ 0 �1 1

S��
1
7� R2

SSSO

C
1 2 7 ƒ 0 1 0

0 �7 �21 ƒ 1 �2 0

0 �1 �3 ƒ 0 �1 1

SR2 � 2R1 � R2

SSSSSSSO
R3 � R1 � R3

C
1 2 7 ƒ 0 1 0

2 �3 �7 ƒ 1 0 0

1 1 4 ƒ 0 0 1

SR1 PRRO R2

SSSSSOC
2 �3 �7 ƒ 1 0 0

1 2 7 ƒ 0 1 0

1 1 4 ƒ 0 0 1

S

C
2 �3 �7

1 2 7

1 1 4

S

ENTERX�1

 A�1A � C
�3 2 0

�4 1 �2
3

1 0 1
3

S  C
1 �2 �4

2 �3 �6

� 3 6 15

S � C
1 0 0

0 1 0

0 0 1

S

 AA�1 � C
1 �2 �4

2 �3 �6

�3 6 15

S  C
�3 2 0

�4 1 �2
3

1 0 1
3

S � C
1 0 0

0 1 0

0 0 1

S

[A]-1 Frac
   [[-3 2 0   ]
    [-4 1 -2/3]
    [1  0 1/3 ]]

F I G U R E  1

See Appendix C, Using the TI-83/84
Graphing Calculator, for specific 
instructions on working with matrices.
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If we encounter a row of zeros on the left when trying to find an inverse, as in Exam-
ple 5, then the original matrix does not have an inverse. If we try to calculate the inverse
of the matrix from Example 5 on a TI-83 calculator, we get the error message shown in
Figure 2. (A matrix that has no inverse is called singular.)

▼ Matrix Equations
We saw in Example 6 in Section 6.2 that a system of linear equations can be written as a
single matrix equation. For example, the system

is equivalent to the matrix equation

If we let

then this matrix equation can be written as

AX � B

The matrix A is called the coefficient matrix.
We solve this matrix equation by multiplying each side by the inverse of A (provided

that this inverse exists).

AX � B

A�11AX2 � A�1B Multiply on left by A�1

1A�1A2X � A�1B Associative Property

I3 X � A�1B Property of inverses

X � A�1B Property of identity matrix

In Example 4 we showed that

So from X � A�1B we have

Thus x � �11, y � �23, z � 7 is the solution of the original system.

C
x

y

z
S �  C

�3 2 0

�4 1 �2
3

1 0 1
3

S  C
7

5

0

S � C
�11

�23

7

S

A�1 � C
�3 2 0

�4 1 �2
3

1 0 1
3

S

A � C
1 �2 �4

2 �3 �6

�3 6 15

S     X � C
x

y

z
S     B � C

7

5

0

S

C
1 �2 �4

2 �3 �6

�3 6 15

S  C
x

y

z
S  �  C

7

5

0

S

c
     x � 2y �   4z � 7

   2x � 3y �  6z � 5

�3x � 6y � 15z � 0
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ERR:SINGULAR MAT
1:Quit
2:Goto

F I G U R E  2

A X B

X � A�1 B

Solving the matrix equation AX � B
is very similar to solving the simple
real-number equation

3x � 12

which we do by multiplying each side
by the reciprocal (or inverse) of 3.

�
1
3� 13x2 � �

1
3� 1122

x � 4
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496 C H A P T E R  6 | Matrices and Determinants

We have proved that the matrix equation AX � B can be solved by the following
method.

E X A M P L E  6 Solving a System Using a Matrix Inverse

A system of equations is given.

(a) Write the system of equations as a matrix equation.

(b) Solve the system by solving the matrix equation.

S O L U T I O N

(a) We write the system as a matrix equation of the form AX � B:

(b) Using the rule for finding the inverse of a 2 � 2 matrix, we get

Multiplying each side of the matrix equation by this inverse matrix, we get

So x � 30 and y � 9.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

▼ Modeling with Matrix Equations
Suppose we need to solve several systems of equations with the same coefficient matrix.
Then converting the systems to matrix equations provides an efficient way to obtain the
solutions, because we need to find the inverse of the coefficient matrix only once. This

c
x

y
d �

1

3
c
�6 5

�3 2
d c

15

36
d � c

30

9
d

A�1 � c
2 �5

3 �6
d

�1

�
1

21�6 2 � 1�5 23
 c

�6 �1�5 2

�3 2
d �

1

3
c
�6 5

�3 2
d

B2 �5

3 �6
R B 

x

y
R � B15

36
R

b2x � 5y � 15
3x � 6y � 36

SOLVING A MATRIX EQUATION

If A is a square n � n matrix that has an inverse A�1 and if X is a variable matrix
and B a known matrix, both with n rows, then the solution of the matrix equation 

AX � B

is given by

X � A�1B

A X � B

X � A�1 B
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procedure is particularly convenient if we use a graphing calculator to perform the matrix
operations, as in the next example.

E X A M P L E  7 Modeling Nutritional Requirements 
Using Matrix Equations

A pet-store owner feeds his hamsters and gerbils different mixtures of three types 
of rodent food: KayDee Food, Pet Pellets, and Rodent Chow. He wishes to feed his
animals the correct amount of each brand to satisfy their daily requirements for pro-
tein, fat, and carbohydrates exactly. Suppose that hamsters require 340 mg of pro-
tein, 280 mg of fat, and 440 mg of carbohydrates, and gerbils need 480 mg of pro-
tein, 360 mg of fat, and 680 mg of carbohydrates each day. The amount of each
nutrient (in mg) in one gram of each brand is given in the following table. How
many grams of each food should the storekeeper feed his hamsters and gerbils daily
to satisfy their nutrient requirements?

S O L U T I O N We let x 1, x 2, and x 3 be the respective amounts (in grams) of KayDee
Food, Pet Pellets, and Rodent Chow that the hamsters should eat and y 1, y 2, and y 3 be
the corresponding amounts for the gerbils. Then we want to solve the matrix equations

Hamster equation

Gerbil equationC
10 0 20

10 20 10

5 10 30

S  C
y1

y2

y3

S � C
480

360

680

S

C
10 0 20

10 20 10

5 10 30

S  C
x1

x2

x3

S � C
340

280

440

S

KayDee Food Pet Pellets Rodent Chow

Protein (mg) 10 0 20
Fat (mg) 10 20 10
Carbohydrates (mg) 5 10 30
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Mathematical Ecology
In the 1970s humpback whales became a
center of controversy. Environmentalists
believed that whaling threatened the
whales with imminent extinction; whalers
saw their livelihood threatened by any
attempt to stop whaling. Are whales really
threatened to extinction by whaling? What
level of whaling is safe to guarantee survival

of the whales?These questions motivated mathematicians to study
population patterns of whales and other species more closely.

As early as the 1920s Lotka and Volterra had founded the field of
mathematical biology by creating predator-prey models.Their models,
which draw on a branch of mathematics called differential equations,
take into account the rates at which predator eats prey and the rates of
growth of each population. Note that as predator eats prey, the prey
population decreases; this means less food supply for the predators, so

their population begins to decrease; with fewer predators the prey
population begins to increase, and so on. Normally, a state of
equilibrium develops, and the two populations alternate between a
minimum and a maximum. Notice that if the predators eat the prey too
fast, they will be left without food and will thus ensure their own
extinction.

Since Lotka and Volterra’s time, more detailed mathematical
models of animal populations have been developed. For many
species the population is divided into several stages: immature,
juvenile, adult, and so on. The proportion of each stage that survives
or reproduces in a given time period is entered into a matrix (called a
transition matrix); matrix multiplication is then used to predict the
population in succeeding time periods. (See the Discovery Project
Will the Species Survive? at the book companion website:
www.stewartmath.com.) 

As you can see, the power of mathematics to model and predict is
an invaluable tool in the ongoing debate over the environment.
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Let

Then we can write these matrix equations as

AX � B Hamster equation

AY � C Gerbil equation

We want to solve for X and Y, so we multiply both sides of each equation by A�1, the
inverse of the coefficient matrix. We could find A�1 by hand, but it is more convenient
to use a graphing calculator as shown in Figure 3.

So

Thus each hamster should be fed 10 g of KayDee Food, 3 g of Pet Pellets, and 12 g of
Rodent Chow; and each gerbil should be fed 8 g of KayDee Food, 4 g of Pet Pellets,
and 20 g of Rodent Chow daily.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 61 ■

X � A�1B � C
10

3

12

S    Y � A�1C � C
8

4

20

S

[A]-1*[B]
             [[10]
              [3 ]
              [12]]

(a)

[A]-1*[C]
             [[8 ]
              [4 ]
              [20]]

(b)

Y � C
y1

y2

y3

SX � C
x1

x2

x3

SC � C
480

360

680

SB � C
340

280

440

SA � C
10 0 20

10 20 10

5 10 30

S
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C O N C E P T S

1. (a) The matrix is called an matrix.

(b) If A is a 2 � 2 matrix, then A � I � and 

I � A � .

(c) If A and B are 2 � 2 matrices with AB � I, then B is the 

of A.

2. (a) Write the following system as a matrix equation AX � B.

System Matrix equation

A X � B

B� �

� �
R B�

�
R � B�

�
R5x � 3y � 4

3x � 2y � 3

#

I � c
1 0
0 1

d

(b) The inverse of A is A�1 � .

(c) The solution of the matrix equation is .

X � A�1 B

(d) The solution of the system is x � , y � .

S K I L L S
3–6 ■ Calculate the products AB and BA to verify that B is the 
inverse of A.

3. B � c
2 �1

�7 4
dA � c

4 1

7 2
d

c
x
y d � B� �

� �
R B�

�
R � B�

�
R

X � A�1B

c
� �

� �
d

6 . 3  E X E R C I S E S

F I G U R E  3
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29. 30.

31. 32.

33. 34.

35–38 ■ The matrices A and B are defined as follows. 

Use a graphing calculator to carry out the indicated algebraic oper-
ations, or explain why they cannot be performed. State the answer
using fractions. (On a TI-83, use the �Frac command to obtain
the answer in fractions.)

35. 36. 37. 38.

39–46 ■ Solve the system of equations by converting to a matrix
equation and using the inverse of the coefficient matrix, as in Ex-
ample 6. Use the inverses from Exercises 11–14, 19, 20, 23, and 25.

39. 40.

41. 42.

43. 44.

45. 46.

47–52 ■ Solve the system of equations by converting to a matrix
equation. Use a graphing calculator to perform the necessary ma-
trix operations, as in Example 7.

47.

48.

49. c
12x � 1

 2 y � 7z � 21

11x � 2y � 3z � 43

13x �   y � 4z � 29

c
3x � 4y � 2z ��2

2x � 3y � 5z ��5

5x � 2y � 2z ��3

c
x � 1y � 2z � 03

2x � 1y � 5z � 11

2x � 3y � 1z � 12

d
x � 2y � z � 3„ � 0

11y � z � 1„ � 1

1y � z � 1„ � 2

x � 2y � z � 2„ � 3

c
1x�2y � 2z � 12

3x � 1y � 3z ��2

1x � 2y � 3z � 08

c
5x � 7y � 4z � 1

3x � 1y � 3z � 1

6x � 7y � 5z � 1

c
 2x � 4y � z �  7

�x �   y � z �  0

   x � 4y      ��2

b�7x � 4y �   0

    8x � 5y � 100
b    2x �    5y �  2

�5x � 13y � 20

b3x � 4y � 10

7x � 9y � 20
b�3x � 5y � 4

2x � 3y � 0

B�1ABBAB�1AB�1A�1B

B � C
2 �1 �2

0 3 1

�1 0 2

SA � C
�1 0 2

0 �2 �1

4 2 1

S

C
�1 0 0

0 2 0

0 0 �3

SD
1 0 0 0

0 2 0 0

0 0 4 0

0 0 0 7

T

D
1 0 0 0

2 5 0 0

4 2 3 0

5 1 2 1

TC
1 7 3

0 2 1

0 0 3

S

D
�3 0 �1 1

3 �1 1 �1

1 3 0 1

�2 �3 1 0

TD
�1 �4 0 1

1 0 �1 0

0 4 1 �2

2 2 �2 0

T
4.

5.

6.

7–8 ■ Find the inverse of the matrix and verify that 
A�1A � AA�1 � I2 and B�1B � BB�1 � I3.

7. 8.

9–10 ■ Use a graphing calculator to find the inverse of the matrix and
to verify that A�1A � AA�1 � I2 and B�1B � BB�1 � I3. (On a TI-83,
use the �Frac command to obtain the answer in fractions.)

9. 10.

11–26 ■ Find the inverse of the matrix if it exists.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27–34 ■ Use a graphing calculator to find the inverse of the ma-
trix, if it exists. (On a TI-83, use the �Frac command to obtain
the answer in fractions.)

27. 28. C
�5 2 1

5 1 0

0 �1 �2

SC
�3 2 3

0 �1 3

1 0 �2

S

D
1 0 1 0

0 1 0 1

1 1 1 0

1 1 1 1

TD
1 2 0 3

0 1 1 1

0 1 0 1

1 2 0 2

T

C
3 �2 0

5 1 1

2 �2 0

SC
0 �2 2

3 1 3

1 �2 3

S

C
2 1 0

1 1 4

2 1 2

SC
1 2 3

4 5 �1

1 �1 �10

S

C
5 7 4

3 �1 3

6 7 5

SC
2 4 1

�1 1 �1

1 4 0

S

C
4 2 3

3 3 2

1 0 1

Sc
0.4 �1.2

0.3 0.6
d

c
1
2

1
3

5 4
dc

6 �3

�8 4
d

c
�7 4

8 �5
dc

2 5

�5 �13
d

c
3 4

7 9
dc

�3 �5

2 3
d

B � C
5 �1 3

6 �1 3

7 1 �2

SA � c
1.2 0.3

�1.2 0.2
d

B � C
1 3 2

0 2 2

�2 �1 0

SA � c
7 4

3 2
d

B � C
9 �10 �8

�12 14 11

�1
2

1
2

1
2

SA � C
3 2 4

1 1 �6

2 1 12

S

B � C
8 �3 4

�2 1 �1

1 0 1

SA � C
1 3 �1

1 4 0

�1 �3 2

S

B � c
7
2 �3

2

2 �1
dA � c

2 �3

4 �7
d
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(a) Find the inverse of the matrix

and use it to solve the remaining parts of this problem.
(b) How many ounces of each food should the nutritionist feed

his laboratory rats if he wants their daily diet to contain
10 mg of folic acid, 14 mg of choline, and 13 mg of inositol?

(c) How much of each food is needed to supply 9 mg of folic
acid, 12 mg of choline, and 10 mg of inositol?

(d) Will any combination of these foods supply 2 mg of folic
acid, 4 mg of choline, and 11 mg of inositol?

62. Nutrition Refer to Exercise 61. Suppose food type C has
been improperly labeled, and it actually contains 4 mg of folic
acid, 6 mg of choline, and 5 mg of inositol per ounce. Would
it still be possible to use matrix inversion to solve parts (b),
(c), and (d) of Exercise 61? Why or why not?

63. Sales Commissions A saleswoman works at a kiosk that
offers three different models of cell phones: standard with 
16 GB capacity, deluxe with 32 GB capacity, and super-deluxe
with 64 GB capacity. For each phone that she sells, she earns a
commission based on the cell phone model. One week she
sells 9 standard, 11 deluxe, and 8 super-deluxe and makes
$740 in commission. The next week she sells 13 standard, 15
deluxe, and 16 super-deluxe for a $1204 commission. The
third week she sells 8 standard, 7 deluxe, and 14 super-deluxe,
earning $828 in commission.
(a) Let x, y, and z represent the commission she earns on

standard, deluxe, and super-deluxe, respectively. Translate
the given information into a system of equations in x, y,
and z.

(b) Express the system of equations you found in part (a) as a
matrix equation of the form AX � B.

(c) Find the inverse of the coefficient matrix A and use it to
solve the matrix equation in part (b). How much commis-
sion does the saleswoman earn on each model of cell
phone?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
64. No Zero-Product Property for Matrices We have used the

Zero-Product Property to solve algebraic equations. Matrices do
not have this property. Let O represent the 2 � 2 zero matrix

Find 2 � 2 matrices A � O and B � O such that AB � O. 
Can you find a matrix A � O such that A2 � O?

O � c
0 0

0 0
d

C
3 1 3

4 2 4

3 2 4

S
50.

51.

52.

53–54 ■ Solve the matrix equation by multiplying each side by
the appropriate inverse matrix.

53.

54.

55–56 ■ Find the inverse of the matrix.

55. 56.

57–60 ■ Find the inverse of the matrix. For what value(s) of x,
if any, does the matrix have no inverse?

57. 58.

59. 60.

A P P L I C A T I O N S
61. Nutrition A nutritionist is studying the effects of the

nutrients folic acid, choline, and inositol. He has three types
of food available, and each type contains the following
amounts of these nutrients per ounce.

Type A Type B Type C

Folic acid (mg) 3 1 3
Choline (mg) 4 2 4
Inositol (mg) 3 2 4

£

x 1

�x
1

x � 1

§C
1 ex 0

ex �e2x 0

0 0 2

S

c
 ex �e2x  

e2x   e3x d  c
2 x

x x 2 d

1abcd � 0 2
1a � 0 2

D
a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

Tc
a �a

a a
d

C
0 �2 2

3 1 3

1 �2 3

S  £

x u

y √
z „

§ � £

3 6

6 12

0 0

§

c
3 �2

�4 3
d  c

x y z
u √ „

d � c
1 0 �1

2 1 3
d

d
1x � 1y � 1z � 1„ � 15

1x � 1y � 1z � 1„ � 15

1x � 2y � 3z � 4„ � 26

1x � 2y � 3z � 4„ � 12

d
  x � 2y �         3„ � 10

  x �          2z         � 18

          2y � 2z � 2„ � 15

2x � 3y �          2„ � 13

c
x � 1

2 y � 1
3 z ��4

x � 1
4 y � 1

6 z ��7

x �  y �    z ��6
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If a matrix is square (that is, if it has the same number of rows as columns), then we can
assign to it a number called its determinant. Determinants can be used to solve systems
of linear equations, as we will see later in this section. They are also useful in determin-
ing whether a matrix has an inverse.

▼ Determinant of a 2 � 2 Matrix
We denote the determinant of a square matrix A by the symbol det1A2 or �A �. We first de-
fine det1A2 for the simplest cases. If A � ”a’ is a 1 � 1 matrix, then det1A2 � a. The fol-
lowing box gives the definition of a 2 � 2 determinant. 

E X A M P L E  1 Determinant of a 2 � 2 Matrix

Evaluate �A � for  

S O L U T I O N

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

▼ Determinant of an n � n Matrix
To define the concept of determinant for an arbitrary n � n matrix, we need the follow-
ing terminology.

`
6 �3

2    3
` � 6 # 3 � 1�3 22 � 18 � 1�6 2 � 24

A � c
6 �3

2 3
d .

6.4 DETERMINANTS AND CRAMER’S RULE

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the determinant of a 2 � 2 matrix � Find the determinant of an n � n

matrix � Use the Invertibility Criterion � Use row and column transformations
in finding the determinant of a matrix � Use Cramer’s Rule to solve a linear 
system � Use determinants to find the area of a triangle in the coordinate plane

DETERMINANT OF A 2 � 2 MATRIX

The determinant of the 2 � 2 matrix is

det1A 2 � ƒ A ƒ � `
a b

c d
` � ad � bc

A � c
a b

c d
d

←⎯⎯→

We will use both notations, det1A2 and
�A �, for the determinant of A. Although
the symbol �A � looks like the absolute
value symbol, it will be clear from the
context which meaning is intended.

To evaluate a 2 � 2 determinant, we
take the product of the diagonal from
top left to bottom right and subtract the
product from top right to bottom left,
as indicated by the arrows.

MINORS AND COFACTORS

Let A be an n � n matrix.

1. The minor Mij of the element aij is the determinant of the matrix obtained by
deleting the ith row and jth column of A.

2. The cofactor Aij of the element aij is

Aij � 1�12i�jMij
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For example, if A is the matrix

then the minor M12 is the determinant of the matrix obtained by deleting the first row and
second column from A. Thus

So the cofactor A12 . Similarly,

Note that the cofactor of aij is simply the minor of aij multiplied by either 1 or �1,
depending on whether is even or odd. Thus in a 3 � 3 matrix we obtain the cofac-
tor of any element by prefixing its minor with the sign obtained from the following
checkerboard pattern.

We are now ready to define the determinant of any square matrix.

E X A M P L E  2 Determinant of a 3 � 3 Matrix

Evaluate the determinant of the matrix.

A � C
2 3 �1

0 2 4

�2 5 6

S

£

� � �

� � �

� � �

§

i � j

So A33 � 1�1 2 3�3M33 � 4.

M33 � 3
2 3 �1

0 2 4

�2 5 6

3 � `
2 3

0 2
` � 2 # 2 � 3 # 0 � 4

� 1�1 2 1�2M12 � �8

M12 � 3
2 3 �1

0 2 4

�2 5 6

3 � `
0 4

�2 6
` � 016 2 � 41�2 2 � 8

£

2    3   �1

0 2 4

�2 5 6

§

502 C H A P T E R  6 | Matrices and Determinants

D A V I D  H I L B E R T (1862–1943) was born
in Königsberg, Germany, and became a
professor at Göttingen University. He is
considered by many to be the greatest
mathematician of the 20th century. At
the International Congress of Mathe-
maticians held in Paris in 1900, Hilbert
set the direction of mathematics for the
about-to-dawn 20th century by posing
23 problems that he believed to be of
crucial importance. He said that “these
are problems whose solutions we ex-
pect from the future.” Most of Hilbert’s
problems have now been solved (see
Julia Robinson, page 481, and Alan Tur-
ing, page 105), and their solutions have
led to important new areas of mathe-
matical research.Yet as we proceed into
the new millennium, some of his prob-
lems remain unsolved. In his work,
Hilbert emphasized structure, logic, and
the foundations of mathematics. Part of
his genius lay in his ability to see the
most general possible statement of a
problem. For instance, Euler proved that
every whole number is the sum of four
squares; Hilbert proved a similar state-
ment for all powers of positive integers.
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THE DETERMINANT OF A SQUARE MATRIX

If A is an n � n matrix, then the determinant of A is obtained by multiplying
each element of the first row by its cofactor and then adding the results. In 
symbols,

det1A 2 � 0 A 0 � 4  
a11 a12 p a1n

a21 a22 p a2n

o o ∞ o
an1 an2

p ann

4 � a11 A11 � a12   
A12 � . . . � a1n   

A1n
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S O L U T I O N

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 21 AND 29 ■

In our definition of the determinant we used the cofactors of elements in the first row
only. This is called expanding the determinant by the first row. In fact, we can expand
the determinant by any row or column in the same way and obtain the same result in each
case (although we won’t prove this). The next example illustrates this principle.

E X A M P L E  3 Expanding a Determinant 
About a Row and a Column

Let A be the matrix of Example 2. Evaluate the determinant of A by expanding

(a) by the second row

(b) by the third column

Verify that each expansion gives the same value.

S O L U T I O N

(a) Expanding by the second row, we get

(b) Expanding by the third column gives

In both cases we obtain the same value for the determinant as when we expanded by the
first row in Example 2.

We can also use a graphing calculator to compute determinants as shown in Figure 1.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

 � �4 � 64 � 24 � �44

 � � 30 # 5 � 21�2 2 4 � 4 32 # 5 � 31�2 2 4 � 612 # 2 � 3 # 0 2

 � �1 2 0 2

�2 5
2 � 4 2 2 3

�2 5
2 � 6 2 2 3

0 2
2

 det1A 2 � 3
2 3 �1

0 2 4

�2 5 6

3

 � 0 � 20 � 64 � �44

 � 0 � 2 32 # 6 � 1�1 2 1�2 2 4 � 4 32 # 5 � 31�2 2 4

 det1A 2 � 3
2 3 �1

0 2 4

�2 5 6

3 � �0 2 3 �1

5 6
2 � 2 2 2 �1

�2 6
2 � 4 2 2 3

�2 5
2

� �44

� �16 � 24 � 4

� 212 # 6 � 4 # 5 2 � 3 30 # 6 � 41�2 2 4 � 30 # 5 � 21�2 2 4

det1A 2 � 3
2 3 �1

0 2 4

�2 5 6

3 � 2 2 2 4

5 6
2 � 3 2 0 4

�2 6
2 � 1�1 2 2 0 2

�2 5
2

See Appendix C, Using the TI-83/84
Graphing Calculator, for specific in-
structions on calculating determinants.

[A]
        [[2  3 -1]
         [0  2 4 ]
         [-2 5 6 ]]
det([A])
                       -44

F I G U R E  1 Finding the determinant
on the TI-83 calculator
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The following criterion allows us to determine whether a square matrix has an inverse
without actually calculating the inverse. This is one of the most important uses of the
determinant in matrix algebra, and it is the reason for the name determinant.

We will not prove this fact, but from the formula for the inverse of a 2 � 2 matrix 
(page 492) you can see why it is true in the 2 � 2 case.

E X A M P L E  4 Using the Determinant to Show
That a Matrix Is Not Invertible

Show that the matrix A has no inverse.

S O L U T I O N We begin by calculating the determinant of A. Since all but one of the 
elements of the second row is zero, we expand the determinant by the second row. If we
do this, we see from the following equation that only the cofactor A24 will have to be 
calculated.

Expand this by column 3

Since the determinant of A is zero, A cannot have an inverse, by the Invertibility Criterion.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

▼ Row and Column Transformations
The preceding example shows that if we expand a determinant about a row or column 
that contains many zeros, our work is reduced considerably because we don’t have to eval-
uate the cofactors of the elements that are zero. The following principle often simplifies
the process of finding a determinant by introducing zeros into the matrix without chang-
ing the value of the determinant.

� 31�2 2 11 # 4 � 2 # 2 2 � 0

� 31�2 2 2 1 2

2 4
2

� 3 3
1 2 0

5 6 2

2 4 0

3

� �0 # A21 � 0 # A22 � 0 # A23 � 3 # A24 � 3A24

det1A 2 � 4
1 2 0 4

0 0 0 3

5 6 2 6

2 4 0 9

4

A � D
1 2 0 4

0 0 0 3

5 6 2 6

2 4 0 9

T
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INVERTIBILIT Y CRITERION

If A is a square matrix, then A has an inverse if and only if det1A2 � 0.
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E X A M P L E  5 Using Row and Column Transformations 
to Calculate a Determinant

Find the determinant of the matrix A. Does it have an inverse?

S O L U T I O N If we add �3 times row 1 to row 3, we change all but one element of
row 3 to zeros:

This new matrix has the same determinant as A, and if we expand its determinant by the
third row, we get

Now, adding 2 times column 3 to column 1 in this determinant gives us

Expand this by column 1

Since the determinant of A is not zero, A does have an inverse.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

▼ Cramer’s Rule
The solutions of linear equations can sometimes be expressed by using determinants. To il-
lustrate, let’s solve the following pair of linear equations for the variable x.

e
ax � by � r

cx � dy � s

� 41�25 2 321�1 2 � 1�4 22 4 � �600

� 41�25 2 2 2 �4

2 �1
2

det1A 2 � 4 3
0 2 �4

25 5 11

0 2 �1

3

det1A 2 � 4 3
8 2 �4

3 5 11

2 2 �1

3

D
8 2 �1 �4

3 5 �3 11

0 0 4 0

2 2 7 �1

T

A � D
8 2 �1 �4

3 5 �3 11

24 6 1 �12

2 2 7 �1

T

ROW AND COLUMN TRANSFORMATIONS OF A DETERMINANT

If A is a square matrix and if the matrix B is obtained from A by adding a 
multiple of one row to another or a multiple of one column to another, then 
det1A2 � detÓBÔ.

E M M Y  N O E T H E R (1882–1935) was one
of the foremost mathematicians of the
early 20th century. Her groundbreaking
work in abstract algebra provided
much of the foundation for this field,
and her work in invariant theory was
essential in the development of 
Einstein’s theory of general relativity.
Although women weren’t allowed to
study at German universities at that
time, she audited courses unofficially
and went on to receive a doctorate at
Erlangen summa cum laude, despite
the opposition of the academic senate,
which declared that women students
would “overthrow all academic order.”
She subsequently taught mathematics
at Göttingen, Moscow, and Frankfurt. In
1933 she left Germany to escape Nazi
persecution, accepting a position at
Bryn Mawr College in suburban
Philadelphia. She lectured there and at
the Institute for Advanced Study in
Princeton, New Jersey, until her un-
timely death in 1935.
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To eliminate the variable y, we multiply the first equation by d and the second by b and
subtract:

Factoring the left-hand side, we get Assuming that 
we can now solve this equation for x:

Similarly, we find

The numerator and denominator of the fractions for x and y are determinants of 2 � 2 
matrices. So we can express the solution of the system using determinants as follows.

Using the notation

we can write the solution of the system as

D � c
a b

c d
d      Dx � c

r b

s d
d     Dy � c

a r

c s
d

y �
as � cr

ad � bc

x �
rd � bs

ad � bc

ad � bc Z 0,1ad � bc 2x � rd � bs.

adx � bdy � rd

bcx � bdy � bs          

adx � bcx � rd � bs

506 C H A P T E R  6 | Matrices and Determinants

CRAMER ’S RULE FOR SYSTEMS IN T WO VARIABLES

The linear system

has the solution

provided that 2 a b

c d
2 � 0.

x �

2 r b

s d
2

2 a b

c d
2
   y �

2 a r

c s
2

2 a b

c d
2

e
ax � by � r

cx � dy � s

Coefficient
matrix

Replace first 
column of D by 
r and s

Replace second
column of D by
r and s

x �
0 Dx 0

0 D 0
  and  y �

0 Dy 0

0 D 0
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E X A M P L E  6 Using Cramer’s Rule to Solve 
a System with Two Variables

Use Cramer’s Rule to solve the system.

S O L U T I O N For this system we have

The solution is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

Cramer’s Rule can be extended to apply to any system of n linear equations in 
n variables in which the determinant of the coefficient matrix is not zero. As we saw in
the preceding section, any such system can be written in matrix form as

By analogy with our derivation of Cramer’s Rule in the case of two equations in two un-
knowns, we let D be the coefficient matrix in this system and let Dxi

be the matrix obtained
by replacing the ith column of D by the numbers b1, b2, . . . , bn that appear to the right of
the equal sign. The solution of the system is then given by the following rule.

≥  

a11 a12 p a1n

a21 a22 p a2n

o o ∞ o
an1 an2

p ann

¥  ≥

x1

x2

o
xn

¥  � ≥

b1

b2

o
bn

¥

 y �
0 Dy 0

0 D 0
�

5

10
�

1

2

 x �
0 Dx 0

0 D 0
�

�20

10
� �2

0 Dy 0 � 2 2 �1

1 2
2 � 2 # 2 � 1�1 21 � 5

0 Dx 0 � 2 �1 6

2 8
2 � 1�1 28 � 6 # 2 � �20

0 D 0 � 2 2 6

1 8
2 � 2 # 8 � 6 # 1 � 10

e
2x � 6y � �1

  x � 8y �    2

CRAMER ’S RULE

If a system of n linear equations in the n variables x 1, x 2, . . . , x n is equivalent to
the matrix equation DX � B, and if �D � � 0, then its solutions are

where Dxi
is the matrix obtained by replacing the ith column of D by the n � 1

matrix B.

x1 �
0 Dx1
0

0 D 0
   x2 �

0 Dx2
0

0 D 0
   p   xn �

0 Dxn
0

0 D 0
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E X A M P L E  7 Using Cramer’s Rule to Solve a System 
with Three Variables

Use Cramer’s Rule to solve the system.

S O L U T I O N First, we evaluate the determinants that appear in Cramer’s Rule. Note
that D is the coefficient matrix and that Dx, Dy, and Dz are obtained by replacing the
first, second, and third columns of D by the constant terms.

Now we use Cramer’s Rule to get the solution:

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 47 ■

Solving the system in Example 7 using Gaussian elimination would involve matrices
whose elements are fractions with fairly large denominators. Thus, in cases like Exam-
ples 6 and 7, Cramer’s Rule gives us an efficient way to solve systems of linear equations.
But in systems with more than three equations, evaluating the various determinants that
are involved is usually a long and tedious task (unless you are using a graphing calcula-
tor). Moreover, the rule doesn’t apply if �D � � 0 or if D is not a square matrix. So
Cramer’s Rule is a useful alternative to Gaussian elimination, but only in some situations.

▼ Areas of Triangles Using Determinants
Determinants provide a simple way to calculate the area of a triangle in the coordinate plane.

You are asked to prove this formula in Exercise 71.

z �
0 Dz 0

0 D 0
 �  

13

�38
� �

13

38

y �
0 Dy 0

0 D 0
 �  

�22

�38
�

11

19
x �

0 Dx 0

0 D 0
 �  

�78

�38
�

39

19

0 Dy 0 � 3
2 1 4

1 0 6

3 5 0

3 � �22        0 Dz 0 � 3
2 �3 1

1 0 0

3 �2 5

3 � 13

0 D 0 � 3
2 �3 4

1 0 6

3 �2 0

3 � �38        0 Dx 0 � 3
1 �3 4

0 0 6

5 �2 0

3 � �78

c
2x � 3y � 4z � 1

x          � 6z � 0

3x � 2y         � 5

AREA OF A TRIANGLE

If a triangle in the coordinate plane has vertices 1a1, b12, 1a2, b22, and 1a3, b32, then
its area is

where the sign is chosen to make the area positive.

� �1
2   3

a1 b1 1

a2 b2 1

a3 b3 1

3

y

x

(a⁄, b⁄)

0

(a‹, b‹)

(a¤, b¤)
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E X A M P L E  8 Area of a Triangle

Find the area of the triangle shown in Figure 2.

S O L U T I O N The vertices are 11, 22, 13, 62, and 1�1, 42. Using the formula in the pre-
ceding box, we get

To make the area positive, we choose the negative sign in the formula. Thus, the area of
the triangle is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 63 ■

� �1
2 1�12 2 � 6

� �1
2 3

�1 4 1

3 6 1

1 2 1

3 � �1
2 1�12 2

F I G U R E  2

y

x0 1

2

4

6

3

[A]
         [[-1 4 1]
          [3  6 1]

         
 [1  2 1]]

det([A])
                       -12

We can calculate the determinant by
hand or by using a graphing calculator.

C O N C E P T S
1. True or false?  det1A2 is defined only for a square matrix A.

2. True or false?  det1A2 is a number, not a matrix.

3. True or false?  If det1A2 � 0, then A is not invertible.

4. Fill in the blanks with appropriate numbers to calculate the 
determinant. Where there is “�”, choose the appropriate sign
1� or �2.

(a)

(b)

� �1�� � �� 2 �

3
1 0 2

3 2 1

0 �3 4

3 � ��1�� � �� 2 � �1�� � �� 2

2 2 1

�3 4
2 � �� � �� �

S K I L L S
5–14 ■ Find the determinant of the matrix, if it exists.

5. 6.

7. 8. 

9. 10.

11. 12.

13. 14.

15–20 ■ Evaluate the minor and cofactor using the matrix A.

15. 16. 17.

18. 19. 20. M32, A32M23, A23M13, A13

M12, A12M33, A33M11, A11

A � C
1 0 1

2

�3 5 2

0 0 4

S

c
2.2 �1.4

0.5 1.0
dc

1
2

1
8

1 1
2

d

c
3

0
d32 5 4

c
�2 1

3 �2
dc

4 5

0 �1
d

c
0.2 0.4

�0.4 �0.8
dc

3
2 1

�1 �2
3

d

c
0 �1

2 0
dc

2 0

0 3
d

6 . 4  E X E R C I S E S
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37. 38.

39. Let

(a) Evaluate det1B 2 by expanding by the second row.
(b) Evaluate det1B 2 by expanding by the third column.
(c) Do your results in parts (a) and (b) agree?

40. Consider the system

(a) Verify that x � �1, y � 0, z � 1 is a solution of the system.
(b) Find the determinant of the coefficient matrix.
(c) Without solving the system, determine whether there are

any other solutions.
(d) Can Cramer’s Rule be used to solve this system? Why or

why not?

41–56 ■ Use Cramer’s Rule to solve the system.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56. μ

x � y � 1

y � z � 2

z � „ � 3

„ � x � 4

μ

2x � y � 2z � „ � 0

2x � y � 2z � „ � 0

2x � y � 2z � „ � 0

2x � y � 2z � „ � 1

•

2x � 5y � 5z � 4

x � 5y � 0z � 8

3x � 5y � 5z � 0

•

2x � 3y � 5z � 04

2x � 7y � 5z � 10

4x � 7y � 5z � 00

•

2x � y        �   5

5x � 3z � 19

4y � 7z � 17

•

 
1
3 x � 1

5 y � 1
2 z � 7

10

�2
3 x � 2

5 y � 3
2 z � 11

10

x � 4
5 y � 1

2 z � 9
5

1

•

�2a � 2b � 2c � 02

a � 2b � 2c � 09

3a � 5b � 2c � 22

•

2x1 � 3x2 � 5x3 � 1

x1 � x2 � x3 � 2

2x2 � x3 � 8

•

5x � 03y �  z � 06

         04y � 6z � 22

7x � 10y         � �13

•

x � 2y � 2z � 10

3x � 2y � 2z � 11

�x � 2y � 2z � 10

e
10x � 17y � 21

20x � 31y � 39
e

0.4x � 1.2y � 0.4

1.2x � 1.6y � 3.2

e
1
2 x � 1

3 y � 1
1
4 x � 1

6 y � �3
2

e
x � 6y � 3

 3x � 2y � 1

e
6x � 12y � 33

 4x � 17y � 20
e

2x � y � �9

 x � 2y �       8

c
x � 2y � 6z � 5

�3x � 6y � 5z � 8

2x � 6y � 9z � 7

B � C
4 1 0

�2 �1 1

4 0 3

S

4
2 �1 6 4

7 2 �2 5

4 �2 10 8

6 1 1 4

45
1 2 3 4 5

0 2 4 6 8

0 0 3 6 9

0 0 0 4 8

0 0 0 0 5

5
21–28 ■ Find the determinant of the matrix. Determine whether
the matrix has an inverse, but don’t calculate the inverse.

21. 22.

23. 24.

25. 26.

27. 28.

29–34 ■ Use a graphing calculator to find the determinant of the
matrix.  Determine whether the matrix has an inverse, but don't
calculate the inverse.

29.

30.

31.

32.

33.

34.

35–38 ■ Evaluate the determinant, using row or column opera-
tions whenever possible to simplify your work.

35. 36. 4
�2 3 �1 7

4 6 �2 3

7 7 0 5

3 �12 4 0

44
0 0 4 6

2 1 1 3

2 1 2 3

3 0 1 7

4

D
2 3 �5 10

�2 �2 26 3

6 9 �16 45

�8 �12 20 �36

T

D
4 3 �2 10

�8 �6 24 �1

20 15 3 27

12 9 �6 �1

T

D
1 3 �2 5

�3 �9 11 5

2 6 0 31

5 15 �10 39

T

D
1 10 2 7

2 18 18 13

�3 �30 �4 �24

1 10 2 10

T

C
10 �20 31

10 �11 45

�20 40 �50

S

C
1 2 �1

2 2 1

1 2 2

S

D
1 2 0 2

3 �4 0 4

0 1 6 0

1 0 2 0

TD
1 3 3 0

0 2 0 1

�1 0 0 2

1 6 4 1

T

C
0 �1 0

2 6 4

1 0 3

SC
1 3 7

2 0 8

0 2 2

S

C
�2 �3

2
1
2

2 4 0
1
2 2 1

SC
30 0 20

0 �10 �20

40 0 10

S

C
1 2 5

�2 �3 2

3 5 3

SC
2 1 0

0 �2 4

0 1 �3

S
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70. A Triangular Plot of Land An outdoors club is purchasing
land to set up a conservation area. The last remaining piece they
need to buy is the triangular plot shown in the figure. Use the de-
terminant formula for the area of a triangle to find the area of the
plot.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
71. Determinant Formula for the Area of a Triangle The

figure shows a triangle in the plane with vertices 1a1, b12,
1a2, b22, and 1a3, b32.
(a) Find the coordinates of the vertices of the surrounding

rectangle, and find its area.
(b) Find the area of the red triangle by subtracting the 

areas of the three blue triangles from the area of the 
rectangle.

(c) Use your answer to part (b) to show that the area of the
red triangle is given by

72. Collinear Points and Determinants
(a) If three points lie on a line, what is the area of the 

“triangle” that they determine? Use the answer to this
question, together with the determinant formula for the
area of a triangle, to explain why the points 1a1, b12,
1a2, b22, and 1a3, b32 are collinear if and only if

(b) Use a determinant to check whether each set of points is
collinear. Graph them to verify your answer.
i(i)
(ii) 1�5, 10 2 , 12, 6 2 , 115, �2 2
1�6, 4 2 , 12, 10 2 , 16, 13 2

3
a1 b1 1

a2 b2 1

a3 b3 1

3 � 0

y

x

(a⁄, b⁄)

0

(a‹, b‹)

(a¤, b¤)

area � �1
2 3

a1 b1 1

a2 b2 1

a3 b3 1

3

2000

4000

6000

2000 4000 6000
E-W baseline (ft)

N
-S

 b
as

el
in

e 
(f

t)

0

57–58 ■ Evaluate the determinants.

57. 58.

59–62 ■ Solve for x.

59. 60.

61. 62.

63–66 ■ Sketch the triangle with the given vertices, and use a de-
terminant to find its area.

63. 64.

65. 66.

67. Show that

A P P L I C A T I O N S
68. Buying Fruit A roadside fruit stand sells apples at 75¢ a

pound, peaches at 90¢ a pound, and pears at 60¢ a pound.
Muriel buys 18 pounds of fruit at a total cost of $13.80. Her
peaches and pears together cost $1.80 more than her apples.
(a) Set up a linear system for the number of pounds of apples,

peaches, and pears that she bought.
(b) Solve the system using Cramer’s Rule.

69. The Arch of a Bridge The opening of a railway bridge over
a roadway is in the shape of a parabola. A surveyor measures
the heights of three points on the bridge, as shown in the fig-
ure. He wishes to find an equation of the form

to model the shape of the arch.
(a) Use the surveyed points to set up a system of linear equa-

tions for the unknown coefficients a, b, and c.
(b) Solve the system using Cramer’s Rule.

10

25 ft
40 ft33   ft

4015

y (ft)

3
4

y � ax2 � bx � c

3
1 x x2

1 y y2

1 z z2

3 � 1x � y 2 1y � z 2 1z � x 2

1�2, 5 2 , 17, 2 2 , 13, �4 21�1, 3 2 , 12, 9 2 , 15, �6 2

11, 0 2 , 13, 5 2 , 1�2, 2 210, 0 2 , 16, 2 2 , 13, 8 2

3
a b x � a

x x � b x

0 1 1

3 � 03
1 0 x

x2 1 0

x 0 1

3 � 0

3
x 1 1

1 1 x

x 1 x

3 � 03
x 12 13

0 x � 1 23

0 0 x � 2

3 � 0

5
a a a a a

0 a a a a

0 0 a a a

0 0 0 a a

0 0 0 0 a

55
a 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 d 0

0 0 0 0 e

5
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Matrices (p. 466)

A matrix A of dimension is a rectangular array of num-
bers with m rows and n columns:

Augmented Matrix of a System (p. 467)

The augmented matrix of a system of linear equations is the 
matrix consisting of the coefficients and the constant terms. 
For example, for the two-variable system

the augmented matrix is

Elementary Row Operations (p. 467)

To solve a system of linear equations using the augmented matrix
of the system, the following operations can be used to transform
the rows of the matrix:

1. Add a nonzero multiple of one row to another.

2. Multiply a row by a nonzero constant.

3. Interchange two rows.

Row-Echelon Form of a Matrix (p. 469)

A matrix is in row-echelon form if its entries satisfy the following
conditions:

1. The first nonzero entry in each row (the leading entry) is the
number 1.

2. The leading entry of each row is to the right of the leading en-
try in the row above it.

3. All rows consisting entirely of zeros are at the bottom of the 
matrix.

c
a11 a12 b1

a21 a22 b2
d

 a21x � a22 x � b2

 a11x � a12 x � b1

A � D
a11 a12

p a1n

a21 a22
p a2n

o o ∞ o
am1 am2 p amn

T

m � n

If the matrix also satisfies the following condition, it is in reduced
row-echelon form:

4. If a column contains a leading entry, then every other entry in
that column is a 0.

Number of Solutions of a Linear System (p. 472)

If the augmented matrix of a system of linear equations has been
reduced to row-echelon form using elementary row operations,
then the system has:

1. No solution if the row-echelon form contains a row that 
represents the equation . In this case the system is incon-
sistent.

2. One solution if each variable in the row-echelon form is a 
leading variable.

3. Infinitely many solutions if the system is not inconsistent but
not every variable is a leading variable. In this case the system
is dependent.

Operations on Matrices (p. 480)

If A and B are matrices and c is a scalar (real number), then:

1. The sum is the matrix that is obtained by adding
corresponding entries of A and B.

2. The difference is the matrix that is obtained by
subtracting corresponding entries of A and B.

3. The scalar product is the matrix that is obtained by
multiplying each entry of A by c.

Multiplication of Matrices (p. 482)

If A is an matrix and B is an matrix (so the number 
of columns of A is the same as the number of rows of B), then the 
matrix product AB is the matrix whose ij-entry is the inner
product of the ith row of A and the jth column of B.

Properties of Matrix Operations (pp. 481, 484)

If A, B, and C are matrices of compatible dimensions then the 
following properties hold:

1. Commutativity of addition:

A � B � B � A

m � k

n � km � n

m � ncA

m � nA � B

m � nA � B

m � n

0 � 1

C H A P T E R  6 | R E V I E W
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73. Determinant Form for the Equation of a Line
(a) Use the result of Exercise 72(a) to show that the equation

of the line containing the points 1x1, y12 and 1x2, y22 is

(b) Use the result of part (a) to find an equation for the line
containing the points 120, 502 and 1�10, 252.

74. Matrices with Determinant Zero Use the definition of
determinant and the elementary row and column operations 
to explain why matrices of the following types have 
determinant 0.

3
x y 1

x1 y1 1

x2 y2 1

3 � 0

(a) A matrix with a row or column consisting entirely 
of zeros

(b) A matrix with two rows the same or two columns 
the same

(c) A matrix in which one row is a multiple of another row,
or one column is a multiple of another column

75. Solving Linear Systems Suppose you have to solve a 
linear system with five equations and five variables without 
the assistance of a calculator or computer. Which method
would you prefer: Cramer’s Rule or Gaussian elimination?
Write a short paragraph explaining the reasons for your 
answer.
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Determinant of a 2 � 2 Matrix (p. 501)

The determinant of the matrix

is the number

Minors and Cofactors (p. 501)

If is an matrix, then the minor of the entry 
is the determinant of the matrix obtained by deleting the ith row
and the jth column of A.

The cofactor of the entry is

(Thus, the minor and the cofactor of each entry either are the same
or are negatives of each other.)

Determinant of an n A n Matrix (p. 502)

To find the determinant of the matrix

we choose a row or column to expand, and then we calculate the
number that is obtained by multiplying each element of that row or
column by its cofactor and then adding the resulting products. For
example, if we choose to expand about the first row, we get

Invertibility Criterion (p. 504)

A square matrix has an inverse if and only if its determinant is 
not 0.

Row and Column Transformations (p. 505)

If we add a nonzero multiple of one row to another row in a square
matrix or a nonzero multiple of one column to another column,
then the determinant of the matrix is unchanged.

Cramer’s Rule (pp. 506–507)

If a system of n linear equations in the n variables is
equivalent to the matrix equation and if , then
the solutions of the system are

where is the matrix that is obtained from D by replacing its ith
column by the constant matrix B.

Area of a Triangle Using Determinants (p. 508)

If a triangle in the coordinate plane has vertices 
and , then the area of the triangle is given by

where the sign is chosen to make the area positive.

area � �1
2 3

a1 b1 1

a2 b2 1

a3 b3 1

3
1a3, b3 2

1a1, b1 2 , 1a2, b2 2 , 

Dxi

x1 �
0 Dx1
0

0 D 0
  x2 �

0 Dx2
0

0 D 0
  p  xn �

0 Dxn
0

0 D 0

0 D 0 � 0DX � B
x1, x2, p , xn

det1A 2 � 0 A 0 � a11A11 � a12 
A12 � p � a1n 

A1n

A � D
a11 a12

p a1n

a21 a22
p a2n

o o ∞ o
an1 an2 p ann

T

n � n

Aij � 1�1 2 i� jMij

aijAij

aijMijn � nA � 0 aij 0

det1A 2 � ƒ A ƒ � ad � bc

A � Ba b

c d
R

2. Associativity:

3. Distributivity:

(Note that matrix multiplication is not commutative.)

Identity Matrix (p. 490)

The identity matrix is the matrix whose main diagonal
entries are all 1 and whose other entries are all 0:

If A is an matrix, then

Inverse of a Matrix (p. 491)

If A is an matrix, then the inverse of A is the matrix
with the following properties:

and

To find the inverse of a matrix, we use a procedure involving 
elementary row operations (explained on page 467). (Note that
some square matrices do not have an inverse.)

Inverse of a 2 � 2 Matrix (p. 492)

For matrices the following special rule provides a shortcut
for finding the inverse:

Writing a Linear System as a Matrix Equation (p. 495)

A system of linear equations in variables can be written as a
single matrix equation

where is the matrix of coefficients, is the matrix
of the variables, and is the matrix of the constants. For 
example, the linear system of two equations in two variables

can be expressed as

Solving Matrix Equations (p. 496)

If A is an invertible matrix, X is an variable matrix,
and B is an constant matrix, then the matrix equation

has the unique solution

X � A�1B

AX � B

n � 1
n � 1n � n

Ba11 a12

a21 a22
R Bx

 y
R � Bb1

b2
R

 a21x � a22 
x � b2

 a11x � a12 
x � b1

n � 1B
n � 1Xn � nA

AX � B

nn

A � Ba b

c d
R 1  A�1 �

1

ad � bc
  B   d �b

�c    a
R

2 � 2

 AA�1 � In A�1A � In

A�1
n � nn � n

AIn � A  and  Im A � A

m � n

In � D
1 0 p 0

0 1 p 0

o o ∞ o
0 0 p 1

T

n � nIn

 1B � C 2A � BA � CA

 A1B � C 2 � AB � AC

 1AB 2C � A1BC 2

 1A � B 2 � C � A � 1B � C 2
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514 C H A P T E R  6 | Matrices and Determinants

1–6 ■ A matrix is given. (a) State the dimension of the matrix.
(b) Is the matrix in row-echelon form? (c) Is the matrix in reduced
row-echelon form? (d) Write the system of equations for which
the given matrix is the augmented matrix.

1. 2.

3. 4.

5. 6.

7–12 ■ Use Gaussian elimination to find the complete solution of
the system, or show that no solution exists.

7. 8. c
x � y � z � 2

x � y � 3z � 6

2y � 3z � 5

c
x � 2y � 2z � 6

 x � y � �1

2x � y � 3z � 7

�

D
1 8 6 �4

0 1 �3 5

0 0 2 �7

1 1 1 0

TC
0 1 �3 4

1 1 0 7

1 2 1 2

S

C
1 3 6 2

2 1 0 5

0 0 1 0

SC
1 0 8 0

0 1 5 �1

0 0 0 0

S

B1 0 6

0 1 0
RB1 2 �5

0 1 3
R

9. 10.

11. 12.

13–20 ■ Use Gauss-Jordan elimination to find the complete 
solution of the system, or show that no solution exists.

13. 14.

15. 16.

17. 18. c
x � 2y � 3z � 2

2x � y � 5z � 1

4x � 3y � z � 6

c
 x � y �  z � 0

3x � 2y �  z � 6

x � 4y � 3z � 3

c
x � y � 3

2x � y � 6

x � 2y � 9

b x � y � z � „ � 0

3x � y � z � „ � 2

c
x �   y    � 1

x �   y � 2z � 3

x � 3y � 2z � �1

c
x � y � 3z � 2

2x � y � z � 2

3x  � 4z � 4

d
 x �  y �  z �  „ �  0

 x �  y � 4z �  „ � �1

 x � 2y    � 4„ � �7

2x � 2y � 3z � 4„ � �3

c
 x � y �   z �   2

 x � y � 3z �   6

3x � y � 5z � 10

c
x � 2y �   3z � �2

2x �   y �     z � 2

2x � 7y � 11z � �9

■ E X E R C I S E S

■ L E A R N I N G  O B E J E C T I V E S  S U M M A R Y

Section After completing this chapter, you should be able to . . . Review Exercises

6.1 ■ Find the augmented matrix of a linear system 1–20
■ Solve a linear system using elementary row operations 7–20
■ Solve a linear system using the row-echelon form of its matrix 7–12
■ Solve a linear system using the reduced row-echelon form of its matrix 13–20
■ Determine the number of solutions of a linear system from the row-echelon form 7–20

of its matrix
■ Model using linear systems 63–64

6.2 ■ Determine whether two matrices are equal 21–22
■ Perform addition, subtraction, and scalar multiplication on matrices 23–26
■ Perform matrix multiplication 27–34, 35–38
■ Express a linear system in matrix form 61–64

6.3 ■ Determine whether two matrices are inverses of each other 45–46
■ Find the inverse of a matrix 53–55
■ Find the inverse of an matrix 56–60
■ Solve a matrix equation 47–52
■ Solve a linear system by expressing it as a matrix equation 61–64
■ Model using matrix equations 65–66

6.4 ■ Find the determinant of a matrix 53–55
■ Find the determinant of an matrix 39–44, 56–60
■ Use the Invertibility Criterion 53–60
■ Use row and column transformations in finding the determinant of a matrix 57–58, 60
■ Use Cramer's Rule to solve a linear system 67–70
■ Use determinants to find the area of a triangle in the coordinate plane 71–72

n � n

2 � 2

n � n

2 � 2

d
 x  � 3z � �1

  y � 4„ � 5

2y � z � „ � 0

2x � y � 5z � 4„ � 4
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47–52 ■ Solve the matrix equation for the unknown matrix, X, or
show that no solution exists, where

47. 48.

49. 50.

51. 52.

53–60 ■ Find the determinant and, if possible, the inverse of the
matrix.

53. 54.

55. 56.

57. 58.

59. 60.

61–64 ■ Express the system of linear equations as a matrix 
equation. Then solve the matrix equation by multiplying each side
by the inverse of the coefficient matrix.

61. 62.

63. 64.

65. Magda and Ivan grow tomatoes, onions, and zucchini in their
backyard and sell them at a roadside stand on Saturdays and
Sundays. They price tomatoes at $1.50 per pound, onions at
$1.00 per pound, and zucchini at 50 cents per pound. The
following table shows the number of pounds of each type of
produce that they sold during the last weekend in July.

(a) Let

Compare these matrices to the data given in the problem,
and describe what their entries represent.

(b) Only one of the products AB or BA is defined. Calculate
the product that is defined, and describe what its entries
represent.

A � c
25 16 30

14 12 16
d  and  B � C

1.50

1.00

0.50

S

Tomatoes Onions Zucchini

Saturday 25 16 30
Sunday 14 12 16

c
2x � y � 3z � 5

x � y � 6z � 0

3x � y � 6z � 5

c
2x � 2y � 5z � 1

3

x � 2y � 2z � 1
4

x � 2y � 3z � 1
6

b6x � 5y � 1

8x � 7y � �1
b12x � 5y � 10

5x � 2y � 17

D
1 0 1 0

0 1 0 1

1 1 1 2

1 2 1 2

TD
1 0 0 1

0 2 0 2

0 0 3 3

0 0 0 4

T

C
1 2 3

2 4 5

2 5 6

SC
3 0 1

2 �3 0

4 �2 1

S

C
2 4 0

�1 1 2

0 3 2

SB 4 �12

�2 6
R

B2 2

1 �3
RB1 4

2 9
R

AX � BAX � C

2X � C � 5A21X � A 2 � 3B

1
2 1X � 2B 2 � AA � 3X � B

C � c
0 1 3

�2 4 0
dB � B 1 �2

�2 4
RA � B2 1

3 2
R

19. 20.

21–22 ■ Determine whether the matrices A and B are equal.

21.

22.

23–34 ■ The matrices A, B, C, D, E, F, and G are defined as follows

Carry out the indicated operation, or explain why it cannot be 
performed.

23. 24. 25.

26. 27. 28.

29. 30. 31.

32. 33. 34.

35–44 ■ The matrices A and B are defined as follows. 

Use a graphing calculator to carry out the indicated algebraic oper-
ation. State your answer using fractions.

35. 36. 37.

38. 39. 40.

41. 42. 43.

44.

45–46 ■ Verify that the matrices A and B are inverses of each
other by calculating the products AB and BA.

45.

46. B � C
�3

2 2  5
2

�1 1 2

1 �1 �1

SA � C
2 �1 3

2 �2 1

0 1 1

S

B � B3 5
2

1 1
RA � B 2 �5

�2 6
R

0 A�1 0 0 B 0 0 A 0

0 A�1BA 0
1

0 A 0
0 A�1 0

0 BA 00 AB 0BAB�1

A�1BAA2BAB2

B � C
�1 4 �1

1 �1 0

�2 0 2

SA � C
3 0 �3

�2 1 2

1 6 0

S

F12C � D 21C � D 2EFC

BFCBBC

AGGA5B � 2C

2C � 3DC � DA � B

G � 35 4

F � C
4 0 2

�1 1 0

7 5 0

SE � B 2 �1

�1
2 1

R

D � C
1 4

0 �1

2 0

SC � C
1
2 3

2 3
2

�2 1

S

A � 32 0 �1 4    B � c
1 2 4

�2 1 0
d

A � c
225 1

0 2�1 d  B � c
5 e0

log1 1
2

d

A � C
1 2 3

0 4 6

0 0 0

S  B � c
1 2 3

0 4 6
d

d
x � y � z � „ � 2

x � y � z � „ � 0

2x � 2„ � 2

2x � 4y � 4z � 2„ � 6
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c
x � y � 2z � 3„ � 0

 y � z � „ � 1

3x � 2y � 7z � 10„ � 2
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72.

73–74 ■ Use any of the methods you have learned in this chapter
to solve the problem.

73. Clarisse invests $60,000 in money-market accounts at three
different banks. Bank A pays 2% interest per year, bank B
pays 2.5%, and bank C pays 3%. She decides to invest twice
as much in bank B as in the other two banks. After one year,
Clarisse has earned $1575 in interest. How much did she in-
vest in each bank?

74. A commercial fisherman fishes for haddock, sea bass, and red
snapper. He is paid $1.25 a pound for haddock, $0.75 a pound
for sea bass, and $2.00 a pound for red snapper. Yesterday he
caught 560 lb of fish worth $575. The haddock and red snap-
per together are worth $320. How many pounds of each fish
did he catch?

y

x
0

2

3

66. An ATM at a bank in Qualicum Beach, British Columbia,
dispenses $20 and $50 bills. Brodie withdraws $600 from this
machine and receives a total of 18 bills. Let x be the number
of $20 bills and y the number of $50 bills that he receives.
(a) Find a system of two linear equations in x and y that 

express the information given in the problem.
(b) Write your linear system as a matrix equation of the form

.
(c) Find , and use it to solve your matrix equation in 

part (b). How many bills of each type did Brodie receive?

67–70 ■ Solve the system using Cramer’s Rule.

67. 68.

69. 70.

71–72 ■ Use the determinant formula for the area of a triangle to
find the area of the triangle in the figure.

71.

0

y

x

1 1

c
3x � 4y � 5z � 10

x � 4z � 20

2x � y � 5z � 30

c
    2x �   y � 5z �    0

�x � 7y       �    9

    5x � 4y � 3z � �9

b12x � 11y � 140

  7x � 19y �   20
b2x �  7y � 13

6x � 16y � 30

A�1
AX � B
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1–4 ■ Determine whether the matrix is in reduced row-echelon form, row-echelon form, or 
neither.

1. 2.

3. 4.

5–6 ■ Use Gaussian elimination to find the complete solution of the system, or show that no 
solution exists.

5. 6.

7. Use Gauss-Jordan elimination to find the complete solution of the system.

8–15 ■ Let

Carry out the indicated operation, or explain why it cannot be performed.

8. 9. 10. 11.

12. 13. 14. 15.

16. (a) Write a matrix equation equivalent to the following system.

(b) Find the inverse of the coefficient matrix, and use it to solve the system.

17. Only one of the following matrices has an inverse. Find the determinant of each matrix, and
use the determinants to identify the one that has an inverse. Then find the inverse.

18. Solve using Cramer’s Rule:

19. A shopper buys a mixture of nuts; the almonds cost $4.75 a pound, and the walnuts cost
$3.45 a pound. Her total purchase weighs 3 lb and costs $11.91. Use Cramer’s Rule to deter-
mine how much of each nut she bought.

c
2x � 2y � 5z � 14

3x � 2y � 5z � �0

4x � 2y � 3z � �2

A � C
1 4 1

0 2 0

1 0 1

S  B � C
   1 4 0

   0 2 0

�3 0 1

S

b4x � 3y � 10

3x � 2y � 30

det1C 2det1B 2B�1A�1

CBABA � 3BABA � B

A � B2 3

2 4
R  B � C

   2 4

�1 1

   3 0

S  C � C
   1 0 4

�1 1 2

   0 1 3

S

c
  x � 3y �   z � 0

3x � 4y � 2z � �1

�x � 2y � 1

c
2x � 3y �  z � 3

x � 2y � 2z � �1

4x � y � 5z � 4

c
x � y � 2z � 0

2x � 4y � 5z � �5

 2y � 3z � 5

C
1 0 0 3

0 1 0 �2

0 0 1 3
2

Sc
1 0 0

0 0 1
d

D
0 0 0 4

0 0 2 5

0 1 �2 7

1 0 �3 0

TC
1 8 0   0

0 1 7 10

0 0 0   0

S
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Matrix algebra is the basic tool used in computer graphics to manipulate images on a 
computer screen. We will see how matrix multiplication can be used to “move” a point in
the plane to a prescribed location. Combining such moves enables us to stretch, compress,
rotate, and otherwise transform a figure, as we see in the images below.

▼ Moving Points in the Plane
Let’s represent the point in the plane by a 2 � 1 matrix:

For example, the point in the figure is represented by the matrix

Multiplying by a 2 � 2 matrix moves the point in the plane. For example, if

then multiplying P by T, we get

We see that the point has been moved to the point . In general, multiplica-
tion by this matrix T reflects points in the x-axis. If every point in an image is multiplied by
this matrix, then the entire image will be flipped upside down about the x-axis. Matrix
multiplication “transforms” a point to a new point in the plane. For this reason a matrix
used in this way is called a transformation.

Table 1 gives some standard transformations and their effects on the gray square in the
first quadrant.

13, �2 213, 2 2

(3, _2)

T1
10

y

x
TP � c

1 0

0 �1
d  c

3

2
d � c

3

�2
d

T � c
1 0

0 �1
d

1
10

y

x

(3, 2)

13, 2 2

1x, y 2   4  c
x

y
d

1x, y 2
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P � c
3

2
d
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▼ Moving Images in the Plane
Simple line drawings such as the house in Figure 1 consist of a collection of vertex points
and connecting line segments. The house in Figure 1 can be represented in a computer by
the 2 � 11 data matrix

The columns of D represent the vertex points of the image. To draw the house, we con-
nect successive points (columns) in D by line segments. Now we can transform the whole
house by multiplying D by an appropriate transformation matrix. For 

example, if we apply the shear transformation , we get the following 
matrix.

To draw the image represented by TD, we start with the point , connect it by a line 

segment to the point , then follow that by a line segment to , and so on. The 

resulting tilted house is shown in Figure 2.

c
1.5

3
dc

0

0
d

c
2

0
d

 � c
2 0 1.5 4.5 5.5 4 3 4 3 2 3

0 0 3 5 3 0 0 2 2 0 0
d

 TD � c
1 0.5

0 1
d  c

2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

T � c
1 0.5

0 1 
d

D � c
2 0 0 2 4 4 3 3 2 2 3

0 0 3 5 3 0 0 2 2 0 0
d

Computer Graphics 519

Transformation matrix Effect

Reflection in x-axis

Expansion (or contraction)
in the x-direction

x

y

x

1

10

y

x

1

10

y

x

1

10

y

x

1

10

y

1

c

1

10

y

xc c+1

T

T

T

T � c
c 0

0 1
d

T � c
1 0

0 �1
d

T A B L E  1

Shear in x-direction

T � c
1 c

0 1
d

1

10

y

x

F I G U R E  1

1

10

y

x

F I G U R E  2
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A convenient way to draw an image corresponding to a given data matrix is to use a
graphing calculator. The TI-83 program in the margin converts a data matrix stored in
[A] into the corresponding image, as shown in Figure 3. (To use this program for a data
matrix with m columns, store the matrix in [A] and change the “10” in the For command
to m � 1.)

P R O B L E M S
1. The gray square in Table 1 has the following vertices:

Apply each of the three transformations given in Table 1 to these vertices and
sketch the result to verify that each transformation has the indicated effect. Use 
c � 2 in the expansion matrix and c � 1 in the shear matrix.

2. Verify that multiplication by the given matrix has the indicated effect when applied
to the gray square in the table. Use c � 3 in the expansion matrix and c � 1 in the
shear matrix.

Reflection in y-axis Expansion (or contraction) Shear in y-direction
in y-direction

3. Let .

(a) What effect does T have on the gray square in the Table 1?
(b) Find T�1.

(c) What effect does T�1 have on the gray square?

(d) What happens to the square if we first apply T, then T�1?

4. (a) Let . What effect does T have on the gray square in Table 1?

(b) Let . What effect does S have on the gray square in Table 1?

(c) Apply S to the vertices of the square, and then apply T to the result. What is
the effect of the combined transformation?

(d) Find the product matrix W � TS.

(e) Apply the transformation W to the square. Compare to your final result in part
(c). What do you notice?

S � c
1 0

0 2
d

T � c
3 0

0 1
d

T � c
1 1.5

0 1
d

T1 � c
�1 0

0 1
d    T2 � c

1 0

0 c
d    T3 � c

1 0

c 1
d

c
0

0
d , c

1

0
d , c

1

1
d , c

0

1
d

6

_1
_1 7

(a)

6

_1
_1 7

(b)House with data
matrix D

Tilted house with data
matrix TD

520 Focus on Modeling

PROGRAM:IMAGE

:For(N,1,10)

:Line([A](1,N),

[A](2,N),[A](1,N+1),

[A](2,N+1))

:End
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5. The figure shows three outline versions of the letter F. The second one is obtained
from the first by shrinking horizontally by a factor of 0.75, and the third is obtained
from the first by shearing horizontally by a factor of 0.25.

(a) Find a data matrix D for the first letter F.

(b) Find the transformation matrix T that transforms the first F into the second. 
Calculate TD, and verify that this is a data matrix for the second F.

(c) Find the transformation matrix S that transforms the first F into the third. Cal-
culate SD, and verify that this is a data matrix for the third F.

6. Here is a data matrix for a line drawing:

(a) Draw the image represented by D.

(b) Let . Calculate the matrix product TD, and draw the image 

represented by this product. What is the effect of the transformation T?

(c) Express T as a product of a shear matrix and a reflection matrix. (See 
Problem 2.)

T � c
1 1

0 �1
d

D � c
0 1 2 1 0 0

0 0 2 4 4 0
d

1
10

8

4 6
1

10

8

82
1
0

8

31

y y y

x x x
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Equations for Geometric Curves Conic sections are the curves that are formed
when a plane cuts a cone, as shown in the figure. For example, if a cone is cut
horizontally, the cross section is a circle. So a circle is a conic section. Other
ways of cutting a cone by a plane produce parabolas, ellipses, and hyperbolas.

Some of the most common curves in the real world are conic sections. For
example, when a volleyball is hit, it travels through the air in a parabolic path.
The path of a planet around the sun is an ellipse. Hyperbolas occur when a
light from a lamp falls on a wall. These and many other uses of conics make
them important curves for modeling real-world phenomena.

In Section 1.2 we found the equation of a circle in a coordinate plane by 
using geometric properties of the circle. Similarly, to find equations for the
other conics, we begin by placing the conic in a coordinate plane. We then use
geometric properties of the conic to derive its equation. 

In Focus on Modeling at the end of the chapter we explore how these curves
are used in architecture.

Ellipse Parabola HyperbolaCircle

CONIC SECTIONS

7.1 Parabolas

7.2 Ellipses

7.3 Hyperbolas

7.4 Shifted Conics

FOCUS ON MODELING

Conics in Architecture

©
 C

or
bi

s
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▼ Geometric Definition of a Parabola
We saw in Section 3.1 that the graph of the equation

is a U-shaped curve called a parabola that opens either upward or downward, depending
on whether the sign of a is positive or negative.

In this section we study parabolas from a geometric, rather than an algebraic, point of
view. We begin with the geometric definition of a parabola and show how this leads to the
algebraic formula that we are already familiar with.

This definition is illustrated in Figure 1. The vertex V of the parabola lies halfway be-
tween the focus and the directrix, and the axis of symmetry is the line that runs through
the focus perpendicular to the directrix.

F I G U R E  1

In this section we restrict our attention to parabolas that are situated with the vertex 
at the origin and that have a vertical or horizontal axis of symmetry. (Parabolas in more
general positions will be considered in Section 7.4.) If the focus of such a parabola is the
point , then the axis of symmetry must be vertical, and the directrix has the equa-
tion y � �p. Figure 2 illustrates the case p � 0.

Deriving the Equation of a Parabola If is any point on the parabola, then the
distance from P to the focus F (using the Distance Formula) is

The distance from P to the directrix is

0 y � 1�p 2 0 � 0 y � p 0

2x 
2 � 1y � p 2 2

P1x, y 2

F10, p 2

Parabola

l

Axis

Focus

Vertex Directrix

F

V

y � ax 
2 � bx � c
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7.1 PARABOLAS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find geometric properties of a parabola from its equation � Find the equation
of a parabola from some of its geometric properties

GEOMETRIC DEFINITION OF A PARABOL A

A parabola is the set of points in the plane that are equidistant from a fixed point
F (called the focus) and a fixed line l (called the directrix).

y=_p

F(0, p)

P(x, y)

y

x

y

0 p

p

F I G U R E  2
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By the definition of a parabola these two distances must be equal:

Square both sides

Expand

Simplify

If , then the parabola opens upward; but if , it opens downward. When x is re-
placed by �x, the equation remains unchanged, so the graph is symmetric about the y-axis.

▼ Equations and Graphs of Parabolas
The following box summarizes what we have just proved about the equation and features
of a parabola with a vertical axis.

E X A M P L E  1 Finding the Equation of a Parabola

Find an equation for the parabola with vertex and focus , and sketch its graph.

S O L U T I O N Since the focus is , we conclude that p � 2 (so the directrix is
). Thus the equation of the parabola is

x2 = 4py with p = 2

Since p � 2 � 0, the parabola opens upward. See Figure 3.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 31 AND 47 ■

 x 
2 � 8y

 x 
2 � 412 2y

y � �2
F10, 2 2

F10, 2 2V10, 0 2

p � 0p � 0

 x 
2 � 4py

 x 
2 � 2py � 2py

 x 
2 � y 

2 � 2py � p 
2 � y 

2 � 2py � p 
2

 x 
2 � 1y � p 2 2 � 0 y � p 0 2 � 1y � p 2 2

 2x 
2 � 1y � p 2 2 � 0 y � p 0
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PARABOL A WITH VERTIC AL A XIS

The graph of the equation

is a parabola with the following properties.

vertex

focus

directrix

The parabola opens upward if p � 0 or downward if p � 0.

y=_p

F(0, p)

x

y

0

≈=4py with p>0 ≈=4py with p<0

y=_p

F(0, p)

x

y

0

y � �p

F10, p 2

V10, 0 2

x 
2 � 4py

y=_2

F(0, 2)

≈=8y

x

y

3_3

_3

3

0

F I G U R E  3
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E X A M P L E  2 Finding the Focus and Directrix of a Parabola 
from Its Equation

Find the focus and directrix of the parabola , and sketch the graph.

S O L U T I O N To find the focus and directrix, we put the given equation in the standard
form Comparing this to the general equation we see that 
so . Thus the focus is , and the directrix is . The graph of the
parabola, together with the focus and the directrix, is shown in Figure 4(a). We can also
draw the graph using a graphing calculator as shown in Figure 4(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 11 ■

Reflecting the graph in Figure 2 about the diagonal line y � x has the effect of inter-
changing the roles of x and y. This results in a parabola with horizontal axis. By the same
method as before, we can prove the following properties.

x

y

2_2

1

_2
y=_≈

F!0, _   @1
4

1
4y=

(a) (b)

1

2_2

_4

y � 1
4F A0, � 

1
4Bp � � 

1
4

4p � �1,x 
2 � 4py,x 

2 � �y.

y � �x 
2
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PARABOL A WITH HORIZONTAL A XIS

The graph of the equation

is a parabola with the following properties.

vertex

focus

directrix

The parabola opens to the right if p � 0 or to the left if p � 0.

x=_p

F( p, 0)
x

y

0

x=_p

F( p, 0)
x

y

0

¥=4px with p>0 ¥=4px with p<0

x � �p

F1p, 0 2

V10, 0 2

y 
2 � 4px

F I G U R E  4

Looking Inside Your Head
How would you like to look inside your
head? The idea isn’t particularly appeal-
ing to most of us, but doctors often
need to do just that. If they can look
without invasive surgery, all the better.
An X-ray doesn’t really give a look in-
side, it simply gives a “graph”of the den-
sity of tissue the X-rays must pass
through. So an X-ray is a “flattened”view
in one direction. Suppose you get an
X-ray view from many different direc-
tions. Can these “graphs”be used to
reconstruct the three-dimensional in-
side view? This is a purely mathematical
problem and was solved by mathemati-
cians a long time ago. However, recon-
structing the inside view requires
thousands of tedious computations.To-
day, mathematics and high-speed com-
puters make it possible to“look inside”
by a process called computer-aided to-
mography (or CAT scan). Mathemati-
cians continue to search for better ways
of using mathematics to reconstruct
images. One of the latest techniques,
called magnetic resonance imaging
(MRI), combines molecular biology and
mathematics for a clear “look inside.”

M AT H E M AT I C S  I N  
T H E  M O D E R N  W O R L D
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E X A M P L E  3 A Parabola with Horizontal Axis

A parabola has the equation 

(a) Find the focus and directrix of the parabola, and sketch the graph.

(b) Use a graphing calculator to draw the graph.

S O L U T I O N

(a) To find the focus and directrix, we put the given equation in the standard form
Comparing this to the general equation we see that 

so . Thus the focus is and the directrix is . Since p � 0, the
parabola opens to the left. The graph of the parabola, together with the focus and
the directrix, is shown in Figure 5(a) below.

(b) To draw the graph using a graphing calculator, we need to solve for y:

Subtract 6x

Take square roots

To obtain the graph of the parabola, we graph both functions

as shown in Figure 5(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 13 AND 25 ■

Graphing Calculator Note The equation does not define y as a function of x
(see page 190). So to use a graphing calculator to graph a parabola with a horizontal axis,
we must first solve for y. This leads to two functions: and . We
need to graph both functions to get the complete graph of the parabola. For example, in
Figure 5(b) we had to graph both and to graph the parabola

We can use the coordinates of the focus to estimate the “width” of a parabola when
sketching its graph. The line segment that runs through the focus perpendicular to the axis,
with endpoints on the parabola, is called the latus rectum, and its length is the focal
diameter of the parabola. From Figure 6 we can see that the distance from an endpoint Q
of the latus rectum to the directrix is . Thus the distance from Q to the focus must 
be as well (by the definition of a parabola), so the focal diameter is . In the 
next example we use the focal diameter to determine the “width” of a parabola when
graphing it.

0 4p 00 2p 0
0 2p 0

y 
2 � �6x.

y � �1�6xy � 1�6x

y � �14pxy � 14px

y 
2 � 4px,

(a)

3
2x=

3
2_F !      , 0@ 1

1
6x+¥=0

x

y

0 2_6

_6

6

y = – –6x

(b)

y = –6x

y � 1�6x  and  y � �1�6x

 y � ;1�6x

 y 
2 � �6x

 6x � y 
2 � 0

x � 3
2F A� 

3
2, 0Bp � �3

2

4p � �6,y 
2 � 4px,y 

2 � �6x.

6x � y 
2 � 0.
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Latus
rectum

x=_p

F( p, 0)

2p

pp
Q

x

y

0

F I G U R E  6

F I G U R E  5
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E X A M P L E  4 The Focal Diameter of a Parabola

Find the focus, directrix, and focal diameter of the parabola , and sketch its graph.

S O L U T I O N We first put the equation in the form x2 � 4py:

Multiply by 2, switch sides

From this equation we see that 4p � 2, so the focal diameter is 2. Solving for p gives 
, so the focus is and the directrix is . Since the focal diameter is 2,

the latus rectum extends 1 unit to the left and 1 unit to the right of the focus. The graph
is sketched in Figure 7.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

In the next example we graph a family of parabolas to show how changing the distance
between the focus and the vertex affects the “width” of a parabola.

E X A M P L E  5 A Family of Parabolas

(a) Find equations for the parabolas with vertex at the origin and foci
, and .

(b) Draw the graphs of the parabolas in part (a). What do you conclude?

S O L U T I O N

(a) Since the foci are on the positive y-axis, the parabolas open upward and have equa-
tions of the form x2 � 4py. This leads to the following equations.

(b) The graphs are drawn in Figure 8. We see that the closer the focus is to the vertex,
the narrower the parabola.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 57 ■

F410, 4 2F1A0, 18B, F2A0, 12B, F3A0, 1B

y � � 
1
2A0, 12Bp � 1

2

 x 2 � 2y

 y � 1
2 x 2

y � 1
2 x 2
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x

y

2

1 1

1
2y=_

1
2y= x™

1
2F !0,   @

1
2!_1,   @ 1

2!1,   @

F I G U R E  7

5

_0.5
_5 5

5

_0.5
_5 5

5

_0.5
_5 5

5

_0.5
_5 5

y=2≈ y=0.5≈ y=0.25≈ y=0.0625≈

F I G U R E  8 A family of parabolas

Equation Form of the equation 
Focus p x2 � 4py for graphing calculator

y � 2x2

x2 � 2y y � 0.5x2

x2 � 4y y � 0.25x2

x2 � 16y y � 0.0625x2p � 4F410, 4 2

p � 1F310, 1 2

p � 1
2F2A0, 12B

x2 � 1
2 yp � 1

8F1A0, 18B
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▼ Applications
Parabolas have an important property that makes them useful as reflectors for lamps and
telescopes. Light from a source placed at the focus of a surface with parabolic cross sec-
tion will be reflected in such a way that it travels parallel to the axis of the parabola (see
Figure 9). Thus a parabolic mirror reflects the light into a beam of parallel rays. Con-
versely, light approaching the reflector in rays parallel to its axis of symmetry is concen-
trated to the focus. This reflection property, which can be proved by using calculus, is
used in the construction of reflecting telescopes.

E X A M P L E  6 Finding the Focal Point of a Searchlight Reflector

A searchlight has a parabolic reflector that forms a “bowl,” which is 12 in. wide from
rim to rim and 8 in. deep, as shown in Figure 10. If the filament of the light bulb is lo-
cated at the focus, how far from the vertex of the reflector is it?

8 in.

12 in.

F
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A R C H I M E D E S  
(287–212 B.C.) was the greatest
mathematician of the ancient
world. He was born in Syra-
cuse, a Greek colony on Sicily, a
generation after Euclid (see
page 57). One of his many dis-
coveries is the Law of the Lever
(see page 120). He famously
said,“Give me a place to stand
and a fulcrum for my lever, and
I can lift the earth.”

Renowned as a mechani-
cal genius for his many engineering inventions, he designed pulleys for
lifting heavy ships and the spiral screw for transporting water to higher
levels. He is said to have used parabolic mirrors to concentrate the rays
of the sun to set fire to Roman ships attacking Syracuse.

King Hieron II of Syracuse once suspected a goldsmith of keeping
part of the gold intended for the king’s crown and replacing it with
an equal amount of silver. The king asked Archimedes for advice.
While in deep thought at a public bath, Archimedes discovered the
solution to the king’s problem when he noticed that his body’s vol-
ume was the same as the volume of water it displaced from the tub.
Using this insight he was able to measure the volume of each crown,
and so determine which was the denser, all-gold crown. As the story
is told, he ran home naked, shouting “Eureka, eureka!” (“I have found
it, I have found it!”) This incident attests to his enormous powers of
concentration.

In spite of his engineering prowess, Archimedes was most proud of
his mathematical discoveries. These include the formulas for the vol-
ume of a sphere, and the surface area of a sphere

and a careful analysis of the properties of parabolas and
other conics.
AS � 4pr2B

AV � 4
3  pr3B

F I G U R E  9 Parabolic reflector

F I G U R E  1 0 A parabolic reflector
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S O L U T I O N We introduce a coordinate system and place a parabolic cross section of
the reflector so that its vertex is at the origin and its axis is vertical (see Figure 11).
Then the equation of this parabola has the form x2 � 4py. From Figure 11 we see that
the point lies on the parabola. We use this to find p.

The point (6, 8) satisfies the equation x2 = 4py

The focus is , so the distance between the vertex and the focus is . Be-
cause the filament is positioned at the focus, it is located . from the vertex of the
reflector.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 59 ■

1 
1
8 in

9
8 � 1 

1
8 inF A0, 98B

 p � 9
8

 36 � 32p

 62 � 4p18 2

16, 8 2
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(6, 8)

8

12

1 1
8

x

y

0_6 6
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C O N C E P T S
1. A parabola is the set of all points in the plane that are 

equidistant from a fixed point called the and a fixed

line called the of the parabola.

2. The graph of the equation is a parabola with focus 

F1 , 2 and directrix y � . So the graph of 

is a parabola with focus F1 , 2 and directrix 

y � .

3. The graph of the equation is a parabola with focus 

F1 , 2 and directrix x � . So the graph of 

is a parabola with focus F1 , 2 and directrix 

x � .

4. Label the focus, directrix, and vertex on the graphs given for
the parabolas in Exercises 2 and 3.
(a) (b)

S K I L L S
5–10 ■ Match the equation with the graphs labeled I–VI. Give
reasons for your answers.

5. y2 � 2x 6.

7. x2 � �6y 8. 2x2 � y

9. y2 � 8x � 0 10. 12y � x2 � 0

y2 � � 
1
4 x

y

x0 1

3

y

x0 1

1

y2 � 12xx2 � 12y

y2 � 12x

y2 � 4px

x2 � 12y

x2 � 4py

11–24 ■ An equation of a parabola is given. (a) Find the focus,
directrix, and focal diameter of the parabola. (b) Sketch a graph of
the parabola and its directrix.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 5x � 3y2 � 0 24. 8x2 � 12y � 0

x � 1
5  
y2 � 0x 2 � 12y � 0

9x � y25y � x 2

y � 1
4  
x 2x � �2y2

x � 2y2y � �1
8  
x 2

y2 � 16xy2 � �24x

x 2 � �4yx 2 � 8y

I II

x10
1

y

III IV

x
11

y

x10
1

y

x
2

2

y

V VI

x10
1

y

x1
1

y

0

7 . 1  E X E R C I S E S
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55. 56.

57. (a) Find equations for the family of parabolas with vertex at
the origin and with directrixes , y � 1, y � 4, and
y � 8.

(b) Draw the graphs. What do you conclude?

58. (a) Find equations for the family of parabolas with vertex at
the origin, focus on the positive y-axis, and with focal
diameters 1, 2, 4, and 8.

(b) Draw the graphs. What do you conclude?

A P P L I C A T I O N S
59. Parabolic Reflector A lamp with a parabolic reflector is

shown in the figure. The bulb is placed at the focus, and the
focal diameter is 12 cm.
(a) Find an equation of the parabola.
(b) Find the diameter of the opening, 20 cm from the

vertex.

60. Satellite Dish A reflector for a satellite dish is parabolic 
in cross section, with the receiver at the focus F. The reflector
is 1 ft deep and 20 ft wide from rim to rim (see the figure).
How far is the receiver from the vertex of the parabolic 
reflector?

F

1 ft
20 ft

?

A

B

6 cm

6 cm

20 cmO

D

C

F

d1C, D 2

y � 1
2

Focus

y

0 x2

1
2Slope=

Focus Shaded
region
has area 8

0

y

x

25–30 ■ Use a graphing device to graph the parabola.

25. x2 � 16y 26. x2 � �8y

27. 28. 8y2 � x

29. 4x � y2 � 0 30. x � 2y2 � 0

31–46 ■ Find an equation for the parabola that has its vertex at
the origin and satisfies the given condition(s).

31. Focus: 32. Focus:

33. Focus: 34. Focus:

35. Focus: 36. Focus:

37. Directrix: x � 2 38. Directrix: y � 6

39. Directrix: y � �10 40. Directrix:

41. Directrix: 42. Directrix:

43. Focus on the positive x-axis, 2 units away from the directrix

44. Directrix has y-intercept 6

45. Opens upward with focus 5 units from the vertex

46. Focal diameter 8 and focus on the negative y-axis

47–56 ■ Find an equation of the parabola whose graph is shown.

47. 48.

49. 50.

51. 52.

53. 54.

Directrix

Square has
area 16

y

0 x

(4, _2)

0

y

x

Focus

y

0 x5

3
2
3
2

0

y

x
Focus

0

y

x
_3

Focus

x=4

0

y

x

Directrix

x=_2

0

y

x

Directrix

0

y

x

2
Focus

y � �5x � 1
20

x � � 
1
8

FA� 1
12, 0BFA0, �3

4B

F15, 0 2F1�8, 0 2

F A0, � 
1
2BF10, 2 2

y2 � � 
1
3 x

S E C T I O N  7 . 1 | Parabolas 531

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_Ch07_523-568.qxd  11/23/11  4:07 PM  Page 531



D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
63. Parabolas in the Real World Several examples of the uses

of parabolas are given in the text. Find other situations in real
life in which parabolas occur. Consult a scientific encyclope-
dia in the reference section of your library, or search the 
Internet.

64. Light Cone from a Flashlight A flashlight is held to form
a lighted area on the ground, as shown in the figure. Is it pos-
sible to angle the flashlight in such a way that the boundary of
the lighted area is a parabola? Explain your answer.

61. Suspension Bridge In a suspension bridge the shape of the
suspension cables is parabolic. The bridge shown in the figure
has towers that are 600 m apart, and the lowest point of the
suspension cables is 150 m below the top of the towers. Find
the equation of the parabolic part of the cables, placing the
origin of the coordinate system at the vertex. [Note: This
equation is used to find the length of cable needed in the con-
struction of the bridge.]

62. Reflecting Telescope The Hale telescope at the Mount
Palomar Observatory has a 200-in. mirror, as shown in the fig-
ure. The mirror is constructed in a parabolic shape that collects
light from the stars and focuses it at the prime focus, that is,
the focus of the parabola. The mirror is 3.79 in. deep at its
center. Find the focal length of this parabolic mirror, that is,
the distance from the vertex to the focus.

Prime
focus

200 in.

3.79 in.

600 m

150 m
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Rolling Down a Ramp

In this project we investigate the process of modeling the 
motion of falling objects using a calculator-based motion 
detector. You can find the project at the book companion 
website: www.stewartmath.com

❍ DISCOVERY
PROJECT

7.2 ELLIPSES

LEARNING OBJECTIVES After completing this section, you will be able to:

Find geometric properties of an ellipse from its equation � Find the equation
of an ellipse from some of its geometric properties

▼ Geometric Definition of an Ellipse
An ellipse is an oval curve that looks like an elongated circle. More precisely, we have the
following definition.

GEOMETRIC DEFINITION OF AN ELLIPSE

An ellipse is the set of all points in the plane the sum of whose distances from
two fixed points F1 and F2 is a constant. (See Figure 1.) These two fixed points
are the foci (plural of focus) of the ellipse.

F⁄

P

F¤

F I G U R E  1
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The geometric definition suggests a simple method for drawing an ellipse. Place a sheet of
paper on a drawing board, and insert thumbtacks at the two points that are to be the foci of the
ellipse. Attach the ends of a string to the tacks, as shown in Figure 2(a). With the point of a
pencil, hold the string taut. Then carefully move the pencil around the foci, keeping the string
taut at all times. The pencil will trace out an ellipse, because the sum of the distances from the
point of the pencil to the foci will always equal the length of the string, which is constant.

If the string is only slightly longer than the distance between the foci, then the ellipse that
is traced out will be elongated in shape, as in Figure 2(a), but if the foci are close together
relative to the length of the string, the ellipse will be almost circular, as shown in Figure 2(b).

F I G U R E  2

Deriving the Equation of an Ellipse To obtain the simplest equation for an ellipse, we
place the foci on the x-axis at and so that the origin is halfway between
them (see Figure 3).

For later convenience we let the sum of the distances from a point on the ellipse to the
foci be 2a. Then if is any point on the ellipse, we have

So from the Distance Formula we have

or

Squaring each side and expanding, we get

which simplifies to

Dividing each side by 4 and squaring again, we get

Since the sum of the distances from P to the foci must be larger than the distance between
the foci, we have that 2a � 2c, or a � c. Thus , and we can divide each side
of the preceding equation by to get

For convenience let 1with b � 02. Since it follows that b � a. The
preceding equation then becomes

x 
2

a 
2 �

y 
2

b 
2 � 1  with a � b

b 
2 � a 

2,b 
2 � a 

2 � c 
2

x 
2

a 
2 �

y 
2

a 
2 � c 

2 � 1

a 
21a 

2 � c 
2 2

a 
2 � c 

2 � 0

 1a 
2 � c 

2 2x 
2 � a 

2y 
2 � a 

21a 
2 � c 

2 2

 a 
2x 

2 � 2a 
2cx � a 

2c 
2 � a 

2y 
2 � a 

4 � 2a 
2cx � c 

2x 
2

 a 
2 3 1x � c 2 2 � y 

2 4 � 1a 
2 � cx 2 2

4a21x � c 2 2 � y 
2 � 4a 

2 � 4cx

x 
2 � 2cx � c 

2 � y 
2 � 4a 

2 � 4a21x � c 2 2 � y 
2 � 1x 

2 � 2cx � c 
2 � y 

2 2

21x � c 2 2 � y 
2 � 2a � 21x � c 2 2 � y 

2

21x � c 2 2 � y 
2 � 21x � c 2 2 � y 

2 � 2a

d1P, F1 2 � d1P, F2 2 � 2a

P1x, y 2

F21c, 0 2F11�c, 0 2

(b)(a)
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P(x, y)

F¤(c, 0)F⁄(_c, 0) 0

y

x

F I G U R E  3
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This is the equation of the ellipse. To graph it, we need to know the x- and y-intercepts.
Setting y � 0, we get

so , or x � �a. Thus, the ellipse crosses the x-axis at and , as in
Figure 4. These points are called the vertices of the ellipse, and the segment that joins
them is called the major axis. Its length is 2a.

Similarly, if we set x � 0, we get y � �b, so the ellipse crosses the y-axis at and
. The segment that joins these points is called the minor axis, and it has length 2b.

Note that 2a � 2b, so the major axis is longer than the minor axis. The origin is the center
of the ellipse.

If the foci of the ellipse are placed on the y-axis at rather than on the x-axis,
then the roles of x and y are reversed in the preceding discussion, and we get a vertical 
ellipse.

▼ Equations and Graphs of Ellipses
The following box summarizes what we have just proved about the equation and features
of an ellipse centered at the origin.

10, �c 2

10, �b 2
10, b 2

1�a, 0 21a, 0 2x 
2 � a 

2

x 
2

a 
2 � 1
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(0, b)

(a, 0)
(_a, 0)

(0, _b)

(_c, 0) (c, 0)

b

c

a

0

y

x
F I G U R E  4

x2

a2 �
y2

b2 � 1 with a � b

ELLIPSE WITH CENTER AT THE ORIGIN

The graph of each of the following equations is an ellipse with center at the ori-
gin and having the given properties.

equation

a � b � 0 a � b � 0

vertices

major axis Horizontal, length 2a Vertical, length 2a

minor axis Vertical, length 2b Horizontal, length 2b

foci , ,

graph

b

a

_a

_b

F⁄(0, _c)

F¤(0, c)
y

x0

b

a_a

_b

F⁄(_c, 0) F¤(c, 0)

y

x0

c 
2 � a 

2 � b 
210, �c 2c 

2 � a 
2 � b 

21�c, 0 2

10, �a 21�a, 0 2

x 
2

b 
2 �

y 
2

a 
2 � 1

x 
2

a 
2 �

y 
2

b 
2 � 1

In the standard equation for an ellipse,
a2 is the larger denominator and b2 is
the smaller. To find c2, we subtract:
larger denominator minus smaller 
denominator.
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E X A M P L E  1 Sketching an Ellipse

An ellipse has the equation

(a) Find the foci, the vertices, and the lengths of the major and minor axes, and sketch
the graph.

(b) Draw the graph using a graphing calculator.

S O L U T I O N

(a) Since the denominator of x2 is larger, the ellipse has a horizontal major axis. This
gives and , so Thus a � 3, b � 2, and

.

foci

vertices

length of major axis 6

length of minor axis 4

The graph is shown in Figure 5(a).

(b) To draw the graph using a graphing calculator, we need to solve for y:

Subtract 

Multiply by 4

Take square roots

To obtain the graph of the ellipse, we graph both functions

as shown in Figure 5(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 9 AND 35 ■

(b)(a)

3

40 x

y

F⁄!_ 5, 0@

F ! 5, 0@

4.7_4.7

_3.1

3.1

y = –2 1 – x2/9

y = 2 1 – x2/9

y � 221 � x 
2/9  and  y � �221 � x 

2/9

 y � �2 B1 �
x 

2

9

 y 
2 � 4 a1 �

x 
2

9
b

x 2

9
 
y 

2

4
� 1 �

x 
2

9

 
x 

2

9
�

y 
2

4
� 1

1�3, 0 2

1�15, 0 2

c � 15
c 

2 � a 
2 � b 

2 � 9 � 4 � 5.b 
2 � 4a 

2 � 9

x 
2

9
�

y 
2

4
� 1
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The orbits of the planets are ellipses,
with the sun at one focus.

Note that the equation of an ellipse
does not define y as a function of x
(see page 190). That’s why we need to
graph two functions to graph an ellipse.

F I G U R E  5

x 
2

9
�

y 
2

4
� 1
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E X A M P L E  2 Finding the Foci of an Ellipse

Find the foci of the ellipse and sketch its graph.

S O L U T I O N First we put the equation in standard form. Dividing by 144, we get

Since 16 � 9, this is an ellipse with its foci on the y-axis and with a � 4 and b � 3. 
We have

Thus the foci are . The graph is shown in Figure 6(a).
We can also draw the graph using a graphing calculator as shown in Figure 6(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

E X A M P L E  3 Finding the Equation of an Ellipse

The vertices of an ellipse are , and the foci are . Find its equation, and
sketch the graph.

S O L U T I O N Since the vertices are , we have a � 4 and the major axis is hori-
zontal. The foci are , so c � 2. To write the equation, we need to find b. Since

we have

Thus the equation of the ellipse is

The graph is shown in Figure 7.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 31 AND 39 ■

▼ Eccentricity of an Ellipse
We saw earlier in this section (Figure 2) that if 2a is only slightly greater than 2c, the el-
lipse is long and thin, whereas if 2a is much greater than 2c, the ellipse is almost circu-
lar. We measure the deviation of an ellipse from being circular by the ratio of a and c.

x 
2

16
�

y 
2

12
� 1

 b 
2 � 16 � 4 � 12

 22 � 42 � b 
2

c 
2 � a 

2 � b 
2,

1�2, 0 2
1�4, 0 2

1�2, 0 21�4, 0 2

0 x

y

4

F¤!0, 7@5

F⁄!0, _ 7@

9_9

_5

5

5

y = 4 1 – x2/9

y = �4 1 – x2/9

(a) (b)

10, �17 2

 c � 17

 c 
2 � a 

2 � b 
2 � 16 � 9 � 7

x 
2

9
�

y 
2

16
� 1

16x 
2 � 9y 

2 � 144,
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F I G U R E  6

16x 
2 � 9y 

2 � 144

4

0 x

y

5

F⁄(_2, 0)

F¤(2, 0)

F I G U R E  7

x2

16
�

y2

12
� 1
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Thus if e is close to 1, then c is almost equal to a, and the ellipse is elongated in shape,
but if e is close to 0, then the ellipse is close to a circle in shape. The eccentricity is a mea-
sure of how “stretched” the ellipse is.

In Figure 8 we show a number of ellipses to demonstrate the effect of varying the ec-
centricity e.

F I G U R E  8 Ellipses with various eccentricities

E X A M P L E  4 Finding the Equation of an Ellipse from Its 
Eccentricity and Foci

Find the equation of the ellipse with foci and eccentricity , and sketch its
graph.

S O L U T I O N We are given and c � 8. Thus

Eccentricity

Cross-multiply

To find b, we use the fact that c2 � a2 � b2:

Thus the equation of the ellipse is

Because the foci are on the y-axis, the ellipse is oriented vertically. To sketch the ellipse,
we find the intercepts: The x-intercepts are �6, and the y-intercepts are �10. The graph
is sketched in Figure 9.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

x 
2

36
�

y 
2

100
� 1

 b � 6

 b 
2 � 102 � 82 � 36

 82 � 102 � b 
2

 a � 10

 4a � 40

e �
c

a
 
4

5
�

8
a

e � 4
5

e � 4
510, �8 2

e=0.86e=0.1 e=0.5 e=0.68
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DEFINITION OF ECCENTRICIT Y

For the ellipse or 1with a � b � 02, the eccentricity e

is the number

where . The eccentricity of every ellipse satisfies 0 � e � 1.c � 2a 
2 � b 

2

e �
c
a

x2

b2 �
y2

a2 � 1
x 

2

a 
2 �

y 
2

b 
2 � 1

0 x

y

6

10

_6

_10

F⁄(0, 8)

F¤(0, _8)

F I G U R E  9

x2

36
�

y2

100
� 1
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Gravitational attraction causes the planets to move in elliptical orbits around the sun
with the sun at one focus. This remarkable property was first observed by Johannes 
Kepler and was later deduced by Isaac Newton from his inverse square Law of Gravity,
using calculus. The orbits of the planets have different eccentricities, but most are nearly
circular (see the margin).

Ellipses, like parabolas, have an interesting reflection property that leads to a number
of practical applications. If a light source is placed at one focus of a reflecting surface with
elliptical cross sections, then all the light will be reflected off the surface to the other
focus, as shown in Figure 10. This principle, which works for sound waves as well as for
light, is used in lithotripsy, a treatment for kidney stones. The patient is placed in a tub of
water with elliptical cross sections in such a way that the kidney stone is accurately lo-
cated at one focus. High-intensity sound waves generated at the other focus are reflected
to the stone and destroy it with minimal damage to surrounding tissue. The patient is
spared the trauma of surgery and recovers within days instead of weeks.

The reflection property of ellipses is also used in the construction of whispering gal-
leries. Sound coming from one focus bounces off the walls and ceiling of an elliptical
room and passes through the other focus. In these rooms even quiet whispers spoken at
one focus can be heard clearly at the other. Famous whispering galleries include the Na-
tional Statuary Hall of the U.S. Capitol in Washington, D.C. (see page 563), and the Mor-
mon Tabernacle in Salt Lake City, Utah.
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Eccentricities of the Orbits 
of the Planets
The orbits of the planets are ellipses
with the sun at one focus. For most
planets these ellipses have very small
eccentricity, so they are nearly circular.
However, Mercury and Pluto, the inner-
most and outermost known planets,
have visibly elliptical orbits.

Planet Eccentricity

Mercury 0.206

Venus 0.007

Earth 0.017

Mars 0.093

Jupiter 0.048

Saturn 0.056

Uranus 0.046

Neptune 0.010

Pluto 0.248

F⁄ F¤

F I G U R E  1 0

C O N C E P T S
1. An ellipse is the set of all points in the plane for which the 

of the distances from two fixed points and is 

constant. The points and are called the of the
ellipse.

2. The graph of the equation with is an 

ellipse with vertices 1 , 2 and 1 , 2 and foci ,

where c � . So the graph of is an 

ellipse with vertices 1 , 2 and 1 , 2 and foci 

1 , 2 and 1 , 2.

3. The graph of the equation with 

is an ellipse with vertices 1 , 2 and 1 , 2 and foci 

where c � . So the graph of 

is an ellipse with vertices 1 , 2 and 1 , 2 and foci 

1 , 2 and 1 , 2.

x2

42 �
y2

52 � 110, �c 2 ,

a � b � 0
x2

b2 �
y2

a2 � 1

x2

52 �
y2

42 � 1

1�c, 0 2

a � b � 0
x2

a2 �
y2

b2 � 1

F2F1

F2F1

4. Label the vertices and foci on the graphs given for the ellipses 
in Exercises 2 and 3.

(a) (b)

S K I L L S
5–8 ■ Match the equation with the graphs labeled I–IV. Give rea-
sons for your answers.

5. 6. x 
2 �

y 
2

9
� 1

x 
2

16
�

y 
2

4
� 1

y

x0 1
1

y

x0 1
1

x2

42 �
y2

52 � 1
x2

52 �
y2

42 � 1
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31. 32.

33. 34.

35–38 ■ Use a graphing device to graph the ellipse.

35. 36.

37. 38.

39–56 ■ Find an equation for the ellipse that satisfies the given
conditions.

39. Foci: , vertices:

40. Foci: , vertices:

41. Foci: , vertices 

42. Foci: , vertices 

43. Foci: , vertices 

44. Foci: , vertices 

45. Length of major axis: 4, length of minor axis: 2, foci on y-axis

46. Length of major axis: 6, length of minor axis: 4, foci on x-axis

47. Foci: , length of minor axis: 6

48. Foci: , length of major axis: 12

49. Endpoints of major axis: , distance between foci: 6

50. Endpoints of minor axis: , distance between foci: 8

51. Length of major axis: 10, foci on x-axis, ellipse passes through
the point 

52. Length of minor axis: 10, foci on y-axis, ellipse passes
through the point 

53. Eccentricity: , foci:

54. Eccentricity: 0.75, foci:

55. Eccentricity: , foci on y-axis, length of major axis: 4

56. Eccentricity: , foci on x-axis, length of major axis: 12

57–60 ■ Find the intersection points of the pair of ellipses. Sketch
the graphs of each pair of equations on the same coordinate axes,
and label the points of intersection.

57. 58. μ

x 
2

16
�

y 
2

9
� 1

x 
2

9
�

y 
2

16
� 1

e
4x 

2 � y 
2 � 4

4x 
2 � 9y 

2 � 36

25/3

13/2

1�1.5, 0 2

10, �2 21
3

125, 240 2

115, 2 2

10, �3 2

1�10, 0 2

1�5, 0 2

10, �2 2

1�6, 0 2F1�215, 0 2

10, �7 2F10, �210 2

10, �3 2F10, �2 2

1�2, 0 2F1�1, 0 2

10, �5 210, �3 2

1�5, 0 21�4, 0 2

x2 � 2y2 � 86x2 � y2 � 36

x 
2 �

y 
2

12
� 1

x 
2

25
�

y 
2

20
� 1

(_1, 2)

y

x200

y

x16

(8, 6)

0

4 F(0, 3)
y

x

F(0, 2)

0

y

x2

7. 8.

9–28 ■ An equation of an ellipse is given. (a) Find the vertices,
foci, and eccentricity of the ellipse. (b) Determine the lengths of
the major and minor axes. (c) Sketch a graph of the ellipse.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29–34 ■ Find an equation for the ellipse whose graph is shown.

29. 30.

0

5
y

x2

y

x0

4

5

y2 � 1 � 2x2x2 � 4 � 2y2

9x2 � 4y2 � 1x2 � 4y2 � 1

3x 2 � 4y2 � 122x 2 � y2 � 4

x 2 � 3y2 � 93x 2 � y2 � 9

2x 2 � 49y2 � 9816x 2 � 25y2 � 1600

4x2 � y2 � 16x2 � 4y2 � 16

4x2 � 25y2 � 1009x2 � 4y2 � 36

x 2

9
�

y2

64
� 1

x 2

49
�

y2

25
� 1

x 2

4
� y2 � 1

x 2

36
�

y2

81
� 1

x 
2

16
�

y 
2

25
� 1

x 
2

25
�

y 
2

9
� 1

III IV

x0
1

2

yy

x0
1

1

I II y

x0
1

1

y

x0

1

1

16x2 � 25y2 � 4004x2 � y2 � 4
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65. The Orbit of Pluto With an eccentricity of 0.25,
Pluto’s orbit is the most eccentric in the solar system. 
The length of the minor axis of its orbit is approximately
10,000,000,000 km. Find the distance between Pluto and 
the sun at perihelion and at aphelion. (See Exercise 64.)

66. Lunar Orbit For an object in an elliptical orbit around the
moon, the points in the orbit that are closest to and farthest
from the center of the moon are called perilune and apolune,
respectively. These are the vertices of the orbit. The center of
the moon is at one focus of the orbit. The Apollo 11 spacecraft
was placed in a lunar orbit with perilune at 68 mi and apolune
at 195 mi above the surface of the moon. Assuming that the
moon is a sphere of radius 1075 mi, find an equation for the
orbit of Apollo 11. (Place the coordinate axes so that the origin
is at the center of the orbit and the foci are located on the 
x-axis.)

67. Plywood Ellipse A carpenter wishes to construct an ellipti-
cal table top from a sheet of plywood, 4 ft by 8 ft. He will trace
out the ellipse using the “thumbtack and string” method illus-
trated in Figures 2 and 3. What length of string should he use,
and how far apart should the tacks be located, if the ellipse is to
be the largest possible that can be cut out of the plywood sheet?

68. Sunburst Window A “sunburst” window above a doorway
is constructed in the shape of the top half of an ellipse, as
shown in the figure. The window is 20 in. tall at its highest
point and 80 in. wide at the bottom. Find the height of the
window 25 in. from the center of the base.

80 in.

25 in.

20 in.
h

68 mi

195 mi
PeriluneApolune

59. 60.

61. The ancillary circle of an ellipse is the circle with radius
equal to half the length of the minor axis and center the same
as the ellipse (see the figure). The ancillary circle is thus the
largest circle that can fit within an ellipse.
(a) Find an equation for the ancillary circle of the ellipse 

.
(b) For the ellipse and ancillary circle of part (a), show that if

is a point on the ancillary circle, then is a
point on the ellipse.

62. (a) Use a graphing device to sketch the top half (the portion
in the first and second quadrants) of the family of ellipses

for k � 4, 10, 25, and 50.
(b) What do the members of this family of ellipses have in

common? How do they differ?

63. If k � 0, the following equation represents an ellipse:

Show that all the ellipses represented by this equation have the
same foci, no matter what the value of k.

A P P L I C A T I O N S
64. Perihelion and Aphelion The planets move around the

sun in elliptical orbits with the sun at one focus. The point 
in the orbit at which the planet is closest to the sun is called
perihelion, and the point at which it is farthest is called 
aphelion. These points are the vertices of the orbit. The earth’s
distance from the sun is 147,000,000 km at perihelion and
153,000,000 km at aphelion. Find an equation for the earth’s
orbit. (Place the origin at the center of the orbit with the sun
on the x-axis.)

Aphelion Perihelion

x 
2

k
�

y 
2

4 � k
� 1

x2 � ky2 � 100

Ancillary
circle

Ellipse

12s, t 21s, t 2

x2 � 4y2 � 16

b 25x 2 � 144y2 � 3600

144x 2 � 25y2 � 3600
c100x 

2 � 25y 
2 � 100

x 
2 �

y 
2

9
� 1
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72. Is It an Ellipse? A piece of paper is wrapped around a
cylindrical bottle, and then a compass is used to draw a circle
on the paper, as shown in the figure. When the paper is laid
flat, is the shape drawn on the paper an ellipse? (You don’t
need to prove your answer, but you might want to do the ex-
periment and see what you get.)

b

a

_b

_a

Foci

Latus rectum

y

x

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
69. Drawing an Ellipse on a Blackboard Try drawing an

ellipse as accurately as possible on a blackboard. How would a
piece of string and two friends help this process?

70. Light Cone from a Flashlight A flashlight shines on 
a wall, as shown in the figure. What is the shape of the bound-
ary of the lighted area? Explain your answer.

71. How Wide Is an Ellipse at Its Foci? A latus rectum for an
ellipse is a line segment perpendicular to the major axis at a
focus, with endpoints on the ellipse, as shown in the figure at
the top of the next column. Show that the length of a latus rec-
tum is 2b2/a for the ellipse

x2

a2 �
y2

b2 � 1  with a � b
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7.3 HYPERBOLAS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find geometric properties of a hyperbola from its equation � Find the 
equation of a hyperbola from some of its geometric properties

▼ Geometric Definition of a Hyperbola
Although ellipses and hyperbolas have completely different shapes, their definitions and
equations are similar. Instead of using the sum of distances from two fixed foci, as in the
case of an ellipse, we use the difference to define a hyperbola.

Deriving the Equation of a Hyperbola   As in the case of the ellipse, we get the simplest
equation for the hyperbola by placing the foci on the x-axis at , as shown in Fig-
ure 1. By definition, if lies on the hyperbola, then either or

must equal some positive constant, which we call 2a. Thus we have

or  21x � c 2 2 � y 
2 � 21x � c 2 2 � y 

2 � �2a

 d1P, F1 2 � d1P, F2 2 � �2a

d1P, F2 2 � d1P, F1 2
d1P, F1 2 � d1P, F2 2P1x, y 2

1�c, 0 2

GEOMETRIC DEFINITION OF A HYPERBOL A

A hyperbola is the set of all points in the plane, the difference of whose dis-
tances from two fixed points F1 and F2 is a constant. (See Figure 1.) These two
fixed points are the foci of the hyperbola.

x

y

0 F¤(c, 0)

P(x, y)

F⁄(_c, 0)

F I G U R E  1 P is on the hyperbola if
.0 d1P, F1 2 � d1P, F2 2 0 � 2a
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Proceeding as we did in the case of the ellipse (Section 7.2), we simplify this to

From triangle PF1F2 in Figure 1 we see that . It follows that
2a � 2c, or a � c. Thus so we can set We then simplify the
last displayed equation to get

This is the equation of the hyperbola. If we replace x by �x or y by �y in this equation,
it remains unchanged, so the hyperbola is symmetric about both the x- and y-axes and
about the origin. The x-intercepts are �a, and the points and are the ver-
tices of the hyperbola. There is no y-intercept, because setting x � 0 in the equation of
the hyperbola leads to which has no real solution. Furthermore, the equation
of the hyperbola implies that

so thus and hence x � a or x 	 �a. This means that the hyperbola
consists of two parts, called its branches. The segment joining the two vertices on the
separate branches is the transverse axis of the hyperbola, and the origin is called its
center.

If we place the foci of the hyperbola on the y-axis rather than on the x-axis, this has the
effect of reversing the roles of x and y in the derivation of the equation of the hyperbola.
This leads to a hyperbola with a vertical transverse axis.

▼ Equations and Graphs of Hyperbolas
The main properties of hyperbolas are listed in the following box.

x 
2 � a 

2,x 
2/a 

2 � 1;

x 
2

a 
2 �

y 
2

b 
2 � 1 � 1

�y 
2 � b 

2,

1�a, 0 21a, 0 2

x 
2

a 
2 �

y 
2

b 
2 � 1

b 
2 � c 

2 � a 
2.c 

2 � a 
2 � 0,

0 d1P, F1 2 � d1P, F2 2 0 � 2c

1c 
2 � a 

2 2x 
2 � a 

2y 
2 � a 

21c 
2 � a 

2 2
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HYPERBOL A WITH CENTER AT THE ORIGIN

The graph of each of the following equations is a hyperbola with center at the origin and having the given properties.

equation

VERTICES

TRANSVERSE AXIS Horizontal, length 2a Vertical, length 2a

ASYMPTOTES

FOCI , c2 � a2 � b2 , c2 � a2 � b2

GRAPH

x

y
y=_    xb

a y=   xb
a

F¤(c, 0)

b

F⁄(_c, 0)

_b

a_a x

y

b

F⁄(0, c)

_b

F¤(0, _c)

a

_a

y=_    xa
b y=   xa

b

10, �c 21�c, 0 2

y � �
a

b
 xy � �

b
a

 x

10, �a 21�a, 0 2

y 
2

a 
2 �

x 
2

b 
2 � 1  1a � 0, b � 0 2

x 
2

a 
2 �

y 
2

b 
2 � 1  1a � 0, b � 0 2
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The asymptotes mentioned in this box are lines that the hyperbola approaches for large
values of x and y. To find the asymptotes in the first case in the box, we solve the equa-
tion for y to get

As x gets large, a2/x2 gets closer to zero. In other words, as x � q, we have a2/x2 � 0. So
for large x the value of y can be approximated as . This shows that these lines
are asymptotes of the hyperbola.

Asymptotes are an essential aid for graphing a hyperbola; they help us to determine its
shape. A convenient way to find the asymptotes, for a hyperbola with horizontal trans-
verse axis, is to first plot the points , , , and . Then sketch hor-
izontal and vertical segments through these points to construct a rectangle, as shown in
Figure 2(a). We call this rectangle the central box of the hyperbola. The slopes of the di-
agonals of the central box are �b/a, so by extending them, we obtain the asymptotes

, as sketched in Figure 2(b). Finally, we plot the vertices and use the as-
ymptotes as a guide in sketching the hyperbola shown in Figure 2(c). (A similar proce-
dure applies to graphing a hyperbola that has a vertical transverse axis.)

E X A M P L E  1 A Hyperbola with Horizontal Transverse Axis

A hyperbola has the equation

(a) Find the vertices, foci, length of the transverse axis, and asymptotes, and sketch the
graph.

(b) Draw the graph using a graphing calculator.

9x 
2 � 16y 

2 � 144

y � �1b/a 2x

10, �b 210, b 21�a, 0 21a, 0 2

y � �1b/a 2x

 � �
b
a

 x B1 �
a 

2

x 
2

 y � �
b
a

 2x 
2 � a 

2
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Asymptotes of rational functions are
discussed in Section 3.7.

(a) Central box (b) Asymptotes (c) Hyperbola

x

y

b

_b

a_a x

y

b

_b

a_a0 x

y

b

_b

a_a

F I G U R E  2 Steps in graphing the hyperbola 
x 

2

a 
2 �

y 
2

b 
2 � 1

HOW TO SKETCH A HYPERBOL A

1. Sketch the Central Box. This is the rectangle centered at the origin, with
sides parallel to the axes, that crosses one axis at �a, the other at �b.

2. Sketch the Asymptotes. These are the lines obtained by extending the diag-
onals of the central box.

3. Plot the Vertices. These are the two x-intercepts or the two y-intercepts.

4. Sketch the Hyperbola. Start at a vertex, and sketch a branch of the hyper-
bola, approaching the asymptotes. Sketch the other branch in the same way.
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S O L U T I O N

(a) First we divide both sides of the equation by 144 to put it into standard form:

Because the x2-term is positive, the hyperbola has a horizontal transverse axis; its
vertices and foci are on the x-axis. Since a2 � 16 and b2 � 9, we get a � 4, b � 3,
and . Thus we have

VERTICES 1�4, 02

FOCI 1�5, 02

asymptotes

The length of the transverse axis is 2a � 8. After sketching the central box and as-
ymptotes, we complete the sketch of the hyperbola as in Figure 3(a).

(b) To draw the graph using a graphing calculator, we need to solve for y:

Subtract 9x 2

Divide by �16 and factor 9

Take square roots

To obtain the graph of the hyperbola, we graph the functions

as shown in Figure 3(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 9 AND 33 ■

E X A M P L E  2 A Hyperbola with Vertical Transverse Axis

Find the vertices, foci, length of the transverse axis, and asymptotes of the hyperbola, and
sketch its graph.

x 
2 � 9y 

2 � 9 � 0

x

yy = – 3
4

(5, 0)

3

(_5, 0)

_3

4_4

(a) (b)

10_10

x y = 3
4

x

_

6

_6
y = –3 (x2/16) – 1

(x2/16) – 1y = 3

y � 321x 
2/16 2 � 1  and  y � �321x 

2/16 2 � 1

 y � �3 B x 
2

16
� 1

 y 
2 � 9 a

x 
2

16
� 1 b

 �16y 
2 � �9x 

2 � 144

 9x 
2 � 16y 

2 � 144

y � � 
3
4 x

c � 116 � 9 � 5

x 
2

16
�

y 
2

9
� 1
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Note that the equation of a hyperbola
does not define y as a function of x (see
page 190). That’s why we need to graph
two functions to graph a hyperbola.

F I G U R E  3

9x2 � 16y2 � 144
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S O L U T I O N We begin by writing the equation in the standard form for a hyperbola:

Divide by �9

Because the y2-term is positive, the hyperbola has a vertical transverse axis; its foci 
and vertices are on the y-axis. Since a2 � 1 and b2 � 9, we get a � 1, b � 3, and

. Thus we have

VERTICES 10, �12

FOCI 10, � 2

asymptotes

The length of the transverse axis is 2a � 2. We sketch the central box and asymptotes,
then complete the graph, as shown in Figure 4(a). We can also draw the graph using a
graphing calculator, as shown in Figure 4(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 21 AND 35 ■

E X A M P L E  3 Finding the Equation of a Hyperbola from Its 
Vertices and Foci

Find the equation of the hyperbola with vertices and foci . Sketch the
graph.

S O L U T I O N Since the vertices are on the x-axis, the hyperbola has a horizontal trans-
verse axis. Its equation is of the form

We have a � 3 and c � 4. To find b, we use the relation :

Thus the equation of the hyperbola is

x 
2

9
�

y 
2

7
� 1

 b � 17

 b 
2 � 42 � 32 � 7

 32 � b 
2 � 42

a 
2 � b 

2 � c 
2

x 
2

32 �
y 

2

b 
2 � 1

1�4, 0 21�3, 0 2

(a) (b)

5_5x

y

3

1

F⁄Ó0,    10Ô

F¤Ó0, _   10Ô

2

_2
y = – 1 + x2/9

y = 1 + x2/9

y � � 
1
3 x

110

c � 11 � 9 � 110

 y 
2 �

x 
2

9
� 1

 x 
2 � 9y 

2 � �9
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F I G U R E  4

x2 � 9y2 � 9 � 0

Paths of Comets
The path of a comet is an ellipse, a
parabola, or a hyperbola with the sun
at a focus. This fact can be proved by
using calculus and Newton’s laws of
motion.* If the path is a parabola or a
hyperbola, the comet will never return.
If the path is an ellipse, it can be deter-
mined precisely when and where the
comet can be seen again. Halley’s
comet has an elliptical path and re-
turns every 75 years; it was last seen in
1987. The brightest comet of the 20th
century was comet Hale-Bopp, seen in
1997. Its orbit is a very eccentric ellipse;
it is expected to return to the inner so-
lar system around the year 4377.

*James Stewart, Calculus, 7th ed. (Belmont,
CA: Brooks/Cole, 2012), pages 892 and 896.
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The graph is shown in Figure 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 27 AND 37 ■

E X A M P L E  4 Finding the Equation of a Hyperbola from Its 
Vertices and Asymptotes

Find the equation and the foci of the hyperbola with vertices and asymptotes 
y � �2x. Sketch the graph.

S O L U T I O N Since the vertices are on the y-axis, the hyperbola has a vertical trans-
verse axis with a � 2. From the asymptote equation we see that a/b � 2. Since a � 2,
we get 2/b � 2, so b � 1. Thus the equation of the hyperbola is

To find the foci, we calculate so . Thus the foci
are . The graph is shown in Figure 6.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 31 AND 41 ■

Like parabolas and ellipses, hyperbolas have an interesting reflection property. Light
aimed at one focus of a hyperbolic mirror is reflected toward the other focus, as shown in
Figure 7. This property is used in the construction of Cassegrain-type telescopes. A hy-
perbolic mirror is placed in the telescope tube so that light reflected from the primary par-
abolic reflector is aimed at one focus of the hyperbolic mirror. The light is then refocused
at a more accessible point below the primary reflector (Figure 8).

F⁄

F¤

Hyperbolic
reflector

Parabolic reflector

F⁄F¤

10, �15 2
c � 15c 

2 � a 
2 � b 

2 � 2 
2 � 12 � 5,

y 
2

4
� x 

2 � 1

10, �2 2
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0 x

y

3

_3

_3 3

7

_ 7
F I G U R E  5

x 
2

9
�

y 
2

7
� 1

F I G U R E  7 Reflection property of 
hyperbolas

F I G U R E  8 Cassegrain-type telescope

x

y

1

F⁄

F¤

F I G U R E  6

y2

4
� x2 � 1
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The LORAN (LOng RAnge Navigation) system was used until the early 1990s; it has
now been superseded by the GPS system (see page 442). In the LORAN system, hyper-
bolas are used onboard a ship to determine its location. In Figure 9, radio stations at A and
B transmit signals simultaneously for reception by the ship at P. The onboard computer
converts the time difference in reception of these signals into a distance difference

. From the definition of a hyperbola this locates the ship on one branch
of a hyperbola with foci at A and B (sketched in black in the figure). The same procedure
is carried out with two other radio stations at C and D, and this locates the ship on a sec-
ond hyperbola (shown in red in the figure). (In practice, only three stations are needed be-
cause one station can be used as a focus for both hyperbolas.) The coordinates of the in-
tersection point of these two hyperbolas, which can be calculated precisely by the
computer, give the location of P.

d1P, A 2 � d1P, B 2
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B

A
D

C

P

F I G U R E  9 LORAN system for finding the
location of a ship

C O N C E P T S
1. A hyperbola is the set of all points in the plane for which the 

of the distances from two fixed points and is 

constant. The points and are called the of the
hyperbola.

2. The graph of the equation with 

is a hyperbola with (horizontal/vertical) transverse

axis, vertices 1 , 2 and 1 , 2 and foci , where 

. So the graph of is a hyperbola 

with vertices 1 , 2 and  1 , 2 and foci 1 , 2 and

1 , 2.

3. The graph of the equation with 

is a hyperbola with  (horizontal/vertical) transverse 

axis, vertices 1 , 2 and 1 , 2 and foci ,10, �c 2

a � 0, b � 0
y2

a2 �
x2

b2 � 1

x2

42 �
y2

32 � 1c �

1�c, 0 2

a � 0, b � 0
x2

a2 �
y2

b2 � 1

F2F1

F2F1

where . So the graph of 

is a hyperbola with vertices 1 , 2 and 1 , 2 and 

foci 1 , 2 and 1 , 2.

4. Label the vertices, foci, and asymptotes on the graphs given
for the hyperbolas in Exercises 2 and 3.

(a) (b)

y

x0 1
1

y

x0 1
1

y2

42 �
x2

32 � 1
x2

42 �
y2

32 � 1

y2

42 �
x2

32 � 1c �

7 . 3  E X E R C I S E S
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29. 30.

31. 32.

33–36 ■ Use a graphing device to graph the hyperbola.

33. 34.

35. 36.

37–48 ■ Find an equation for the hyperbola that satisfies the given
conditions.

37. Foci: , vertices:

38. Foci: , vertices:

39. Foci: , vertices:

40. Foci: , vertices:

41. Vertices: , asymptotes:

42. Vertices: , asymptotes:

43. Vertices: , hyperbola passes through 

44. Vertices: , hyperbola passes through 

45. Asymptotes: , hyperbola passes through 

46. Asymptotes: , hyperbola passes through 

47. Foci: , length of transverse axis: 6

48. Foci: , length of transverse axis: 1

49. (a) Show that the asymptotes of the hyperbola 
are perpendicular to each other.

(b) Find an equation for the hyperbola with foci and
with asymptotes perpendicular to each other.

50. The hyperbolas

are said to be conjugate to each other.
(a) Show that the hyperbolas

are conjugate to each other, and sketch their graphs on the
same coordinate axes.

(b) What do the hyperbolas of part (a) have in common?
(c) Show that any pair of conjugate hyperbolas have the 

relationship you discovered in part (b).

x 
2 � 4y 

2 � 16 � 0  and  4y 
2 � x 

2 � 16 � 0

x 
2

a 
2 �

y 
2

b 
2 � 1  and  

x 
2

a 
2 �

y 
2

b 
2 � �1

1�c, 0 2

x2 � y2 � 5

10, �1 2

1�5, 0 2

11, 2 2y � �x

15, 3 2y � �x

13, 230 21�2, 0 2

1�5, 9 210, �6 2

y � � 
1
3 x10, �6 2

y � �5x1�1, 0 2

1�2, 0 21�6, 0 2

10, �1 210, �2 2

10, �8 210, �10 2

1�3, 0 21�5, 0 2

x 
2

100
�

y 
2

64
� 1

y 
2

2
�

x 
2

6
� 1

3y2 � 4x2 � 24x2 � 2y2 � 8

y=_   x1
2 y=   x1

2

x

y

_5 5

y=3x

y=_3x

0 x

y

3

1

(4, 4)

2 3

2
x

y

0 x

y

_4

4

(3, _5)
2

S K I L L S
5–8 ■ Match the equation with the graphs labeled I–IV. Give rea-
sons for your answers.

5. 6.

7. 8.

9–26 ■ An equation of a hyperbola is given. (a) Find the vertices,
foci, and asymptotes of the hyperbola. (b) Determine the length of
the transverse axis. (c) Sketch a graph of the hyperbola.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27–32 ■ Find the equation for the hyperbola whose graph is shown.

27. 28.

0 x

y

_12

12 F⁄(0, 13)

F¤(0, _13)

0 x

y

1

F¤(4, 0)F⁄(_4, 0)
1

9x2 � 16y2 � 14y2 � x2 � 1

x 2 � 3y2 � 12 � 0x2 � y2 � 4 � 0

3y2 � x 2 � 9 � 0x2 � 4y2 � 8 � 0

y2 � 25x 2 � 1004y2 � 9x 2 � 144

25y2 � 9x2 � 2259x2 � 4y2 � 36

x 2

16
�

y2

12
� 1x2 � y2 � 1

x 
2

2
� y 

2 � 1y 
2 �

x 
2

25
� 1

x 2

9
�

y2

64
� 1

y2

36
�

x 2

4
� 1

y 
2

9
�

x 
2

16
� 1

x 
2

4
�

y 
2

16
� 1

I II

III IV

x

y

2
1

4
1

x

y

x

y

1

1

y

x2

2

9x2 � 25y2 � 22516y2 � x2 � 144

y 
2 �

x 
2

9
� 1

x 
2

4
� y 

2 � 1
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it neared the solar system is at a right angle to the path it 
continues on after leaving the solar system.

56. Ripples in Pool Two stones are dropped simultaneously
into a calm pool of water. The crests of the resulting waves
form equally spaced concentric circles, as shown in the
figures. The waves interact with each other to create certain
interference patterns.
(a) Explain why the red dots lie on an ellipse.
(b) Explain why the blue dots lie on a hyperbola.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
57. Hyperbolas in the Real World Several examples of the

uses of hyperbolas are given in the text. Find other situations in
real life in which hyperbolas occur. Consult a scientific ency-
clopedia in the reference section of your library, or search the
Internet.

58. Light from a Lamp The light from a lamp forms a lighted
area on a wall, as shown in the figure. Why is the boundary of
this lighted area a hyperbola? How can one hold a flashlight so
that its beam forms a hyperbola on the ground?

x

y

2 � 10ª mi  

51. In the derivation of the equation of the hyperbola at the 
beginning of this section we said that the equation

simplifies to

Supply the steps needed to show this.

52. (a) For the hyperbola

determine the values of a, b, and c, and find the coordi-
nates of the foci F1 and F2.

(b) Show that the point lies on this hyperbola.
(c) Find and .
(d) Verify that the difference between and 

is 2a.

53. Hyperbolas are called confocal if they have the same foci.
(a) Show that the hyperbolas

are confocal.
(b) Use a graphing device to draw the top branches of the

family of hyperbolas in part (a) for k � 1, 4, 8, and 12.
How does the shape of the graph change as k increases?

A P P L I C A T I O N S
54. Navigation In the figure, the LORAN stations at A and B are

500 mi apart, and the ship at P receives station A’s signal 2640
microseconds (ms) before it receives the signal from station B.
(a) Assuming that radio signals travel at 980 ft/ms, find

(b) Find an equation for the branch of the hyperbola indicated
in red in the figure. (Use miles as the unit of distance.)

(c) If A is due north of B and if P is due east of A, how far is
P from A?

55. Comet Trajectories Some comets, such as Halley’s comet,
are a permanent part of the solar system, traveling 
in elliptical orbits around the sun. Other comets pass through
the solar system only once, following a hyperbolic path with
the sun at a focus. The figure at the top of the next column
shows the path of such a comet. Find an equation for the 
path, assuming that the closest the comet comes to the sun 
is 2 
 109 mi and that the path the comet was taking before 

x (mi)

y (mi)

P
A

B

0

250

_250

d1P, A 2 � d1P, B 2 .

y 
2

k
�

x 
2

16 � k
� 1 with 0 � k � 16

d1P, F2 2d1P, F1 2
d1P, F2 2d1P, F1 2

P15, 16
3 2

x 
2

9
�

y 
2

16
� 1

1c 
2 � a 

2 2x 
2 � a 

2y 
2 � a 

21c 
2 � a 

2 2

21x � c 2 2 � y 
2 � 21x � c 2 2 � y 

2 � �2a
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In the preceding sections we studied parabolas with vertices at the origin and ellipses and
hyperbolas with centers at the origin. We restricted ourselves to these cases because these
equations have the simplest form. In this section we consider conics whose vertices and cen-
ters are not necessarily at the origin, and we determine how this affects their equations.

▼ Shifting Graphs of Equations
In Section 2.5 we studied transformations of functions that have the effect of shifting their
graphs. In general, for any equation in x and y, if we replace x by x � h or by x � h, the
graph of the new equation is simply the old graph shifted horizontally; if y is replaced by
y � k or by y � k, the graph is shifted vertically. The following box gives the details.

▼ Shifted Ellipses
Let’s apply horizontal and vertical shifting to the ellipse with equation

whose graph is shown in Figure 1. If we shift it so that its center is at the point in-
stead of at the origin, then its equation becomes

1x � h 2 2

a 
2 �

1y � k 2 2

b 
2 � 1

1h, k 2

x 
2

a 
2 �

y 
2

b 
2 � 1
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7.4 SHIFTED CONICS

LEARNING OBJECTIVES After completing this section, you will be able to:

Find geometric properties of a shifted conic from its equation � Find the 
equation of a shifted conic from some of its geometric properties

SHIFTING GRAPHS OF EQUATIONS

If h and k are positive real numbers, then replacing x by x � h or by x � h and 
replacing y by y � k or by y � k has the following effect(s) on the graph of any
equation in x and y.

Replacement How the graph is shifted

1. x replaced by x � h Right h units

2. x replaced by x � h Left h units

3. y replaced by y � k Upward k units

4. y replaced by y � k Downward k units

y

x

b

a(0, 0)

+     =1y™
b™

x™
™a™

b

a

(h, k)

h

k

(x-h, y-k)

(x, y)

=1(y-k)™
b™

(x-h)™
a™ +

F I G U R E  1 Shifted ellipse

J O H A N N E S  K E P L E R (1571–1630) was
the first to give a correct description of
the motion of the planets. The cosmol-
ogy of his time postulated complicated
systems of circles moving on circles to
describe these motions. Kepler sought
a simpler and more harmonious de-
scription. As the official astronomer at
the imperial court in Prague, he studied
the astronomical observations of the
Danish astronomer Tycho Brahe, whose
data were the most accurate available
at the time. After numerous attempts
to find a theory, Kepler made the mo-
mentous discovery that the orbits of
the planets are elliptical. His three great
laws of planetary motion are

1. The orbit of each planet is an ellipse
with the sun at one focus.

2. The line segment that joins the sun
to a planet sweeps out equal areas
in equal time (see the figure).

3. The square of the period of revolu-
tion of a planet is proportional to
the cube of the length of the major
axis of its orbit.

His formulation of these laws is perhaps
the most impressive deduction from
empirical data in the history of science.
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E X A M P L E  1 Sketching the Graph of a Shifted Ellipse

Sketch a graph of the ellipse

and determine the coordinates of the foci.

S O L U T I O N The ellipse

Shifted ellipse

is shifted so that its center is at . It is obtained from the ellipse

Ellipse with center at origin

by shifting it left 1 unit and upward 2 units. The endpoints of the minor and major axes
of the ellipse with center at the origin are , , , . We apply the
required shifts to these points to obtain the corresponding points on the shifted ellipse:

This helps us sketch the graph in Figure 2.
To find the foci of the shifted ellipse, we first find the foci of the ellipse with center

at the origin. Since and , we have so . So the
foci are . Shifting left 1 unit and upward 2 units, we get

Thus the foci of the shifted ellipse are

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

E X A M P L E  2 Finding the Equation of a Shifted Ellipse

The vertices of an ellipse are and , and the foci are and .
Find the equation for the ellipse, and sketch its graph.

S O L U T I O N The center of the ellipse is the midpoint of the line segment between the
vertices. By the Midpoint Formula the center is 

Center

Since the vertices lie on a horizontal line, the major axis is horizontal. The length of the
major axis is , so .  The distance between the foci is ,
so .  Since , we have

Solve for b2 b2 � 25 � 16 � 9

c � 4, a � 5 42 � 52 � b2

c2 � a2 � b2c � 4
2 � 1�6 2 � 8a � 53 � 1�7 2 � 10

a
�7 � 3

2
, 

3 � 3

2
b � 1�2, 3 2

12, 3 21�6, 3 213, 3 21�7, 3 2

A�1, 2 � 15B  and  A�1, 2 � 15B

A0, �15B �  A0 � 1, �15 � 2B � A�1, 2 � 15B

 A0, 15B �  A0 � 1, 15 � 2B � A�1, 2 � 15B

A0, �15B
c � 15c 

2 � 9 � 4 � 5,b 
2 � 4a 

2 � 9

 10, �3 2  �  10 � 1, �3 � 2 2 � 1�1, �1 2

 10, 3 2  �  10 � 1, 3 � 2 2 � 1�1, 5 2

 1�2, 0 2  �  1�2 � 1, 0 � 2 2 � 1�3, 2 2

 12, 0 2  �  12 � 1, 0 � 2 2 � 11, 2 2

10, �3 210, 3 21�2, 0 212, 0 2

x 
2

4
�

y 
2

9
� 1

1�1,  2 2

1x � 1 2 2

4
�
1y � 2 2 2

9
� 1

1x � 1 2 2

4
�
1y � 2 2 2

9
� 1
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0 x

y

(_1, 5)

(1, 2)(_3, 2)

(_1, _1)

3

2

(_1, 2)

F I G U R E  2

1x � 1 2 2

4
�
1y � 2 2 2

9
� 1

The Midpoint Formula is given on
page 76.
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Thus the equation of the ellipse is

Equation of shifted ellipse

The graph is shown in Figure 3.

F I G U R E  3 Graph of 

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

▼ Shifted Parabolas
Applying shifts to parabolas leads to the equations and graphs shown in Figure 4.

E X A M P L E  3 Graphing a Shifted Parabola

Determine the vertex, focus, and directrix, and sketch a graph of the parabola.

S O L U T I O N We complete the square in x to put this equation into one of the forms in
Figure 4.

Add 4 to complete the square

Perfect square

Shifted parabola

This parabola opens upward with vertex at . It is obtained from the parabola

Parabola with vertex at origin

by shifting right 2 units and upward 3 units. Since 4p � 8, we have p � 2, so the focus
is 2 units above the vertex and the directrix is 2 units below the vertex. Thus the focus is

, and the directrix is y � 1. The graph is shown in Figure 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 13 AND 19 ■

12, 5 2

x 
2 � 8y

12, 3 2

 1x � 2 2 2 � 81y � 3 2

 1x � 2 2 2 � 8y � 24

 x 2 � 4x � 4 � 8y � 28 � 4

x 
2 � 4x � 8y � 28

1x � 2 2 2

25
�
1y � 3 2 2

9
� 1

0 x

y
F¤(2, 3)F⁄(_6, 3)

(3, 3)(_7, 3)
4

1

1

(_2, 3)

1x � 2 2 2

25
�
1y � 3 2 2

9
� 1
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0 x

y

(2, 3)

F(2, 5)

y=1

F I G U R E  5

x2 � 4x � 8y � 28

(a) (x-h)™=4p(y-k)
p>0

(b) (x-h)™=4p(y-k)
p<0

(c) (y-k)™=4p(x-h)
p>0

(d) (y-k)™=4p(x-h)
p<0

x

y

0
(h, k) x

y

0

(h, k)

x

y

0

(h, k)

x

y

0

(h, k)

F I G U R E  4 Shifted parabolas
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▼ Shifted Hyperbolas
Applying shifts to hyperbolas leads to the equations and graphs shown in Figure 6.

E X A M P L E  4 Graphing a Shifted Hyperbola

A shifted conic has the equation

(a) Complete the square in x and y to show that the equation represents a hyperbola.

(b) Find the center, vertices, foci, and asymptotes of the hyperbola, and sketch its graph.

(c) Draw the graph using a graphing calculator.

S O L U T I O N

(a) We complete the squares in both x and y:

Comparing this to Figure 6(a), we see that this is the equation of a shifted hyperbola.

(b) The shifted hyperbola has center and a horizontal transverse axis.

center

Its graph will have the same shape as the unshifted hyperbola

Hyperbola with center at origin

Since a2 � 16 and b2 � 9, we have a � 4, b � 3, and 
. Thus the foci lie 5 units to the left and to the right of the center,

and the vertices lie 4 units to either side of the center.

foci

vertices

The asymptotes of the unshifted hyperbola are , so the asymptotes of the
shifted hyperbola are found as follows.

asymptotes

To help us sketch the hyperbola, we draw the central box; it extends 4 units left and
right from the center and 3 units upward and downward from the center. We then

y � 3
4 x � 4  and  y � � 

3
4 x � 2

 y � 1 � � 
3
4 x � 3

 y � 1 � � 
3
4 1x � 4 2

y � � 
3
4 x

10,  �1 2 and 18,  �1 2

1�1,  �1 2  and 19,  �1 2

116 � 9 � 5
c � 2a 

2 � b 
2 �

x 
2

16
�

y 
2

9
� 1

14, �1 2

14, �1 2

9x 
2 � 72x � 16y 

2 � 32y � 16
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x

y

0

(h, k)

x

y

0

(h, k)

=1(x-h)™
a™

(y-k)™
b™-(a) =1(x-h)™

b™
(y-k)™

a™+-(b)
F I G U R E  6 Shifted hyperbolas

Group terms and factor

Complete the squares

Divide this by 144

Shifted hyperbola 
1x � 4 2 2

16
�
1y � 1 2 2

9
� 1

 91x � 4 2 2 � 161y � 1 2 2 � 144

 91x 
2 � 8x � 16 2 � 161y 

2 � 2y � 1 2 � 16 � 9 # 16 � 16 # 1

 91x 
2 � 8x 2 � 161y 

2 � 2y 2 � 16
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draw the asymptotes and complete the graph of the shifted hyperbola as shown in
Figure 7(a).

(c) To draw the graph using a graphing calculator, we need to solve for y. The given
equation is a quadratic equation in y, so we use the Quadratic Formula to solve 
for y. Writing the equation in the form

we get

Quadratic Formula

Expand

Simplify

To obtain the graph of the hyperbola, we graph the functions

and

as shown in Figure 7(b).

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 21, 27 AND 59 ■

▼ The General Equation of a Shifted Conic
If we expand and simplify the equations of any of the shifted conics illustrated in Figures
1, 4, and 6, then we will always obtain an equation of the form

where A and C are not both 0. Conversely, if we begin with an equation of this form,
then we can complete the square in x and y to see which type of conic section the equa-
tion represents. In some cases the graph of the equation turns out to be just a pair of
lines or a single point, or there might be no graph at all. These cases are called de-
generate conics. If the equation is not degenerate, then we can tell whether it repre-
sents a parabola, an ellipse, or a hyperbola simply by examining the signs of A and C,
as described in the following box.

Ax 
2 � Cy 

2 � Dx � Ey � F � 0

y � �1 � 0.75 2x 
2 � 8x

y � �1 � 0.75 2x 
2 � 8x

 � �1 � 3
42x 

2 � 8x

Factor 576 from under
the radical �

�32 � 242x 
2 � 8x

32

 � 
�32 � 2576x 

2 � 4608x

32

 y �
�32 � 2322 � 4116 2 1�9x 

2 � 72x � 16 2

2116 2

16y 
2 � 32y � 9x 

2 � 72x � 16 � 0
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(a) (b)

13_5

_7

5

0

y

(4, 2)

(4, _4)

(4, _1)
F (9, _1)F⁄(_1, _1)

(0, _1) (8, _1)

y=_   x+23
4y=   x-43

4

y = –1 + 0.75 x2 – 8x

y = –1 – 0.75 x2 – 8x

x

F I G U R E  7 9x2 � 72x � 16y2 � 32y � 16

Note that the equation of a hyperbola
does not define y as a function of x (see
page 190). That’s why we need to graph
two functions to graph a hyperbola.
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E X A M P L E  5 An Equation That Leads to a Degenerate Conic

Sketch the graph of the equation

S O L U T I O N Because the coefficients of x2 and y2 are of opposite sign, this equation
looks as if it should represent a hyperbola (like the equation of Example 4). To see
whether this is in fact the case, we complete the squares:

Group terms and factor 9

Complete the squares

Factor

Divide by 9

For this to fit the form of the equation of a hyperbola, we would need a nonzero constant
to the right of the equal sign. In fact, further analysis shows that this is the equation of a
pair of intersecting lines:

Take square roots

These lines are graphed in Figure 8.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

Because the equation in Example 5 looked at first glance like the equation of a
hyperbola but, in fact, turned out to represent simply a pair of lines, we refer to its graph
as a degenerate hyperbola. Degenerate ellipses and parabolas can also arise when we
complete the square(s) in an equation that seems to represent a conic. For example, the
equation

looks as if it should represent an ellipse, because the coefficients of x2 and y2 have the
same sign. But completing the squares leads to

which has no solution at all (since the sum of two squares cannot be negative). This
equation is therefore degenerate.

1x � 1 2 2 �
1y � 1 2 2

4
� � 

1

4

4x 
2 � y 

2 � 8x � 2y � 6 � 0

 y � 3x � 6    y � �3x

 y � 31x � 1 2 � 3  or   y � �31x � 1 2 � 3

 y � 3 � � 31x � 1 2

 1y � 3 2 2 � 91x � 1 2 2

 1x � 1 2 2 �
1y � 3 2 2

9
� 0

 91x � 1 2 2 � 1y � 3 2 2 � 0

 91x 
2 � 2x � 1 2 � 1y 

2 � 6y � 9 2 � 0 � 9 # 1 � 9

 91x 
2 � 2x 2 � 1y 

2 � 6y 2 � 0

9x 
2 � y 

2 � 18x � 6y � 0
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GENERAL EQUATION OF A SHIFTED CONIC

The graph of the equation

where A and C are not both 0, is a conic or a degenerate conic. In the nondegen-
erate cases the graph is

1. a parabola if A or C is 0,

2. an ellipse if A and C have the same sign (or a circle if A � C),

3. a hyperbola if A and C have opposite signs.

Ax 
2 � Cy 

2 � Dx � Ey � F � 0

F I G U R E  8

9x 
2 � y 

2 � 18x � 6y � 0

0 x

y

6

_2
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C O N C E P T S
1. Suppose we want to graph an equation in x and y.

(a) If we replace x by x � 3, the graph of the equation is 

shifted to the by 3 units. If we replace x by 
x � 3, the graph of the equation is shifted to the 

by 3 units.
(b) If we replace y by y � 1, the graph of the equation is 

shifted by 1 unit. If we replace y by y � 1, the 

graph of the equation is shifted by 1 unit.

2. The graphs of and are given.
Label the focus, directrix, and vertex on each parabola.

3. The graphs of and 

are given. Label the vertices and foci on each ellipse.

y

x0 1
1

y

x0 1
1

1x � 3 2 2

52 �
1 y � 1 2 2

42 � 1
x2

52 �
y2

42 � 1

y

x0 1

1

y

x0 1
1

1x � 3 2 2 � 121 y � 1 2x2 � 12y

4. The graphs of and 

are given. Label the vertices, foci, and asymptotes on each 
hyperbola.

S K I L L S
5–12 ■ An equation of an ellipse is given. (a) Find the center, ver-
tices, and foci of the ellipse. (b) Determine the lengths of the ma-
jor and minor axes. (c) Sketch a graph of the ellipse.

5. 6.

7. 8.

9. 10.

11.

12.

13–20 ■ An equation of a parabola is given. (a) Find the vertex,
focus, and directrix of the parabola. (b) Sketch a graph showing
the parabola and its directrix.

13. 14.

15. 16.

17. 18.

19. 20.

21–28 ■ An equation of a hyperbola is given. (a) Find the center,
vertices, foci, and asymptotes of the hyperbola. (b) Sketch a graph
showing the hyperbola and its asymptotes.

21. 22. 1x � 8 2 2 � 1y � 6 2 2 � 1
1x � 1 2 2

9
�
1y � 3 2 2

16
� 1

x 2 � 2x � 20y � 41 � 0y2 � 6y � 12x � 33 � 0

�4Ax � 1
2B

2 � y21x � 1 2 2 � y

y2 � 16x � 81y � 5 2 2 � �6x � 12

1y � 1 2 2 � 161x � 3 21x � 3 2 2 � 81y � 1 2

9x 2 � 54x � y2 � 2y � 46 � 0

4x 2 � 25y2 � 50y � 75

1x � 1 2 2

36
�
1y � 1 2 2

64
� 1

1x � 5 2 2

16
�
1y � 1 2 2

4
� 1

x 2 �
1y � 2 2 2

4
� 1

x 
2

9
�
1y � 5 2 2

25
� 1

1x � 3 2 2

16
� 1y � 3 2 2 � 1

1x � 2 2 2

9
�
1y � 1 2 2

4
� 1

y

x0 1
1

y

x0 1
1

1x � 3 2 2

42 �
1y � 1 2 2

32 � 1
x2

42 �
y2

32 � 1

7 . 4  E X E R C I S E S

90169_Ch07_523-568.qxd  11/23/11  4:08 PM  Page 556



42. The ellipse with foci and that passes
through the point 

43. The ellipse with foci and , and x-intercepts
0 and 6

44. The parabola that passes through the point , with vertex
and horizontal axis of symmetry 

45–56 ■ Complete the square to determine whether the equation
represents an ellipse, a parabola, a hyperbola, or a degenerate
conic. If the graph is an ellipse, find the center, foci, vertices, and
lengths of the major and minor axes. If it is a parabola, find the
vertex, focus, and directrix. If it is a hyperbola, find the center,
foci, vertices, and asymptotes. Then sketch the graph of the equa-
tion. If the equation has no graph, explain why.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57–60 ■ Use a graphing device to graph the conic.

57.

58.

59.

60.

61. Determine what the value of F must be if the graph of the
equation

is (a) an ellipse, (b) a single point, or (c) the empty set.

62. Find an equation for the ellipse that shares a vertex and a fo-
cus with the parabola x2 � y � 100 and has its other focus at
the origin.

63. This exercise deals with confocal parabolas, that is, families
of parabolas that have the same focus.
(a) Draw graphs of the family of parabolas

for .

(b) Show that each parabola in this family has its focus at the
origin.

(c) Describe the effect on the graph of moving the vertex
closer to the origin.

p � �2, � 
3
2, �1, � 

1
2, 

1
2, 1, 32, 2

x 
2 � 4p1y � p 2

4x 
2 � y 

2 � 41x � 2y 2 � F � 0

x2 � 4y2 � 4x � 8y � 0

9x2 � 36 � y2 � 36x � 6y

4x2 � 9y2 � 36y � 0

2x2 � 4x � y � 5 � 0

x2 � 4y2 � 20x � 40y � 300 � 0

3x2 � 4y2 � 6x � 24y � 39 � 0

x 
2 � y 

2 � 101x � y 2 � 1

x 
2 � 16 � 41y 

2 � 2x 2

4x2 � 4x � 8y � 9 � 0

16x2 � 9y2 � 96x � 288 � 0

2x2 � y2 � 2y � 1

4x2 � 25y2 � 24x � 250y � 561 � 0

x2 � 6x � 12y � 9 � 0

x 2 � 5y2 � 2x � 20y � 44

9x2 � 36x � 4y2 � 0

y 
2 � 41x � 2y 2

V1�1, 2 2
16, 1 2

F213, 4 2F113, �4 2

13, 1 2
F215, �4 2F111, �4 2

23. 24.

25. 26.

27.

28.

29–34 ■ Find an equation for the conic whose graph is shown.

29. 30.

31. 32.

33. 34.

35–44 ■ Find an equation for the conic section with the given
properties.

35. The ellipse with center , vertices and
, and foci and 

36. The ellipse with vertices and and foci
and 

37. The hyperbola with center , vertices and
, and foci and 

38. The hyperbola with vertices and and
foci and 

39. The parabola with vertex and directrix 

40. The parabola with focus and directrix 

41. The hyperbola with foci and that passes
through the point 11, 4 2

F211, 5 2F111, �5 2

x � 3F11, 3 2

y � 2V1�3, 5 2

F218, �1 2F11�4, �1 2
V215, �1 2V11�1, �1 2

F21�1, 13 2F11�1, �5 2V21�1, 11 2
V11�1, �3 2C1�1, 4 2

F21�1, 5 2F11�1, �3 2
V21�1, 6 2V11�1,�4 2

F218, �3 2F11�4, �3 2V2112, �3 2
V11�8, �3 2C12, �3 2

0 x

y

4

2
_4

6
0 x

y

1

Asymptote
y=x+1

0 x

y

_3

2

F(8, 0)
4

0 x

y

10

0 x

y

_6

Directrix
y=_12

5

_2 20 x

y

4

25x 2 � 9y2 � 54y � 306

36x 2 � 72x � 4y2 � 32y � 116 � 0

1y � 2 2 2

36
�

x 2

64
� 1

1x � 1 2 2

9
�
1y � 1 2 2

4
� 1

1y � 1 2 2

25
� 1x � 3 2 2 � 1y2 �

1x � 1 2 2

4
� 1
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D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
66. A Family of Confocal Conics Conics that share a focus are

called confocal. Consider the family of conics that have a fo-
cus at and a vertex at the origin, as shown in the 
figure.
(a) Find equations of two different ellipses that have these

properties.
(b) Find equations of two different hyperbolas that have these

properties.
(c) Explain why only one parabola satisfies these properties.

Find its equation.
(d) Sketch the conics you found in parts (a), (b), and (c) on

the same coordinate axes (for the hyperbolas, sketch the
top branches only).

(e) How are the ellipses and hyperbolas related to the
parabola?

0 x

y

1

10, 1 2

A P P L I C A T I O N S
64. Path of a Cannonball A cannon fires a cannonball as

shown in the figure. The path of the cannonball is a parabola
with vertex at the highest point of the path. If the cannonball
lands 1600 ft from the cannon and the highest point it reaches
is 3200 ft above the ground, find an equation for the path of
the cannonball. Place the origin at the location of the cannon.

65. Orbit of a Satellite A satellite is in an elliptical orbit
around the earth with the center of the earth at one focus, as
shown in the figure. The height of the satellite above the earth
varies between 140 mi and 440 mi. Assume that the earth is a
sphere with radius 3960 mi. Find an equation for the path of
the satellite with the origin at the center of the earth.

440 mi 140 mi

y (ft)

3200

1600 x (ft)
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Geometric Definition of a Parabola (p. 524)

A parabola is the set of points in the plane that are equidistant
from a fixed point F (the focus) and a fixed line l (the directrix).

Graphs of Parabolas with Vertex at the Origin (pp. 525, 526)

A parabola with vertex at the origin has an equation of the form 
x2 � 4py if its axis is vertical and an equation of the form y2 � 4px
if its axis is horizontal.

x2 � 4py y2 � 4px

Focus 10, p2, directrix y � �p Focus 1p, 02, directrix x � �p

y

x

p>0p<0

p

y

x

p>0

p<0

p
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Graphs of Hyperbolas with Center at the Origin (p. 542)

A hyperbola with center at the origin has an equation of the form

if its axis is horizontal and an equation of the form

if its axis is vertical.

Foci 1�c, 02, c2 � a2 � b2 Foci 10, �c2, c2 � a2 � b2

Asymptotes: Asymptotes:

Shifted Conics (pp. 550–554)

If the vertex of a parabola or the center of an ellipse or a hyper-
bola does not lie at the origin but rather at the point (h, k), then we
refer to the curve as a shifted conic. To find the equation of the
shifted conic, we use the “unshifted” form for the appropriate
curve and replace x by x � h and y by y � k.

General Equation of a Shifted Conic (p. 555)

The graph of the equation

Ax2 � Cy2 � Dx � Ey � F � 0

(where A and C are not both 0) is either a conic or a degenerate
conic. In the nondegenerate cases the graph is:

1. A parabola if A � 0 or C � 0.

2. An ellipse if A and C have the same sign (or a circle if A � C).

3. A hyperbola if A and C have opposite sign.

To graph a conic whose equation is given in general form, com-
plete the square in x and y to put the equation in standard form
for a parabola, an ellipse, or a hyperbola.

y � ;
a

b
 xy � ;

b

a
 x

a

b
_a

_b

_c

c

x

y

a

b

_a

_b

_c c
x

y

�
x2

b2 �
y2

a2 � 1
x2

a2 �
y2

b2 � 1

�
x2

b2 �
y2

a2 � 1

x2

a2 �
y2

b2 � 1

Geometric Definition of an Ellipse (p. 532)

An ellipse is the set of all the points in the plane for which the
sum of the distances to each of two given points F1 and F2 (the
foci) is a fixed constant.

Graphs of Ellipses with Center at the Origin (p. 534)

An ellipse with center at the origin has an equation of the form 

if its axis is horizontal and an equation of the form 

if its axis is vertical (where in each case a � b � 0).

Foci 1�c, 02, c2 � a2 � b2 Foci 10, �c2, c2 � a2 � b2

Eccentricity of an Ellipse (p. 537)

The eccentricity of an ellipse with equation or 

(where a � b � 0) is the number

where . The eccentricity e of any ellipse is a 
number between 0 and 1. If e is close to 0, then the ellipse is 
nearly circular; the closer e gets to 1, the more elongated it 
becomes.

Geometric Definition of a Hyperbola (p. 541)

A hyperbola is the set of all those points in the plane for which 
the absolute value of the difference of the distances to each of two
given points F1 and F2 (the foci) is a fixed constant.

c � 2a2 � b2

e �
c

a

x2

b2 �
y2

a2 � 1

x2

a2 �
y2

b2 � 1

a>b

b

a

_b

_a

c

_c
x

y
a>b

a

b

_a

_b

c_c x

y

x2

b2 �
y2

a2 � 1
x2

a2 �
y2

b2 � 1

x2

b2 �
y2

a2 � 1

x2

a2 �
y2

b2 � 1
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■ L E A R N I N G  O B J E C T I V E S  S U M M A R Y

Section After completing this chapter, you should be able to . . . Review Exercises

7.1 ■ Find geometric properties of a parabola from its equation 1–6
■ Find the equation of a parabola from some of its geometric properties 37, 55–56

7.2 ■ Find geometric properties of an ellipse from its equation 13–18
■ Find the equation of an ellipse from some of its geometric properties 38, 57

7.3 ■ Find geometric properties of a hyperbola from its equation 25–30
■ Find the equation of a hyperbola from some of its geometric properties 39, 58

7.4 ■ Find geometric properties of a shifted conic from its equation 7–12, 19–24, 31–36, 43–54
■ Find the equation of a shifted conic from some of its geometric properties 40–42, 59–66
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1–12 ■ An equation of a parabola is given. (a) Find the vertex, focus,
and directrix of the parabola. (b) Sketch a graph of the parabola and its
directrix.

1. y2 � 4x 2.

3. 4.

5. x2 � 8y � 0 6. 2x � y2 � 0

7. 8.

9. 10.

11. 12.

13–24 ■ An equation of an ellipse is given. (a) Find the center, ver-
tices, and foci of the ellipse. (b) Determine the lengths of the major
and minor axes. (c) Sketch a graph of the ellipse.

13. 14.

15. 16.

17. x2 � 4y2 � 16 18. 9x2 � 4y2 � 1

19. 20.

21. 22.

23. 4x2 � 9y2 � 36y 24.

25–36 ■ An equation of a hyperbola is given. (a) Find the center, ver-
tices, foci, and asymptotes of the hyperbola. (b) Sketch a graph of the
hyperbola.

25. 26.

27. 28.

29. x2 � 2y2 � 16 30. x2 � 4y2 � 16 � 0

31. 32.

33. 34.

35. 9y2 � 18y � x2 � 6x � 18

36. y2 � x2 � 6y

37–42 ■ Find an equation for the conic whose graph is shown.

37. 38.

0 x

y

5

_12
_5

120 x

y

2 F(2, 0)

1y � 3 2 2

3
�

x 2

16
� 1

1y � 3 2 2

4
�
1x � 1 2 2

36
� 1

1x � 2 2 2

8
�
1y � 2 2 2

8
� 1

1x � 4 2 2

16
�

y2

16
� 1

y2

25
�

x 2

4
� 1

x 2

4
�

y2

49
� 1

x2

49
�

y2

32
� 1� 

x2

9
�

y2

16
� 1

2x2 � y2 � 2 � 41x � y 2

x2

3
�
1y � 5 2 2

25
� 1

1x � 2 2 2

9
�
1y � 3 2 2

36
� 1

1x � 2 2 2

25
�
1y � 3 2 2

16
� 1

1x � 3 2 2

9
�

y2

16
� 1

x 2

4
�

y2

36
� 1

x 2

49
�

y2

4
� 1

x2

49
�

y2

9
� 1

x2

9
�

y2

25
� 1

x2 � 31x � y 21
2 x2 � 2x � 2y � 4

21x � 1 2 2 � y1
2 1y � 3 2 2 � x � 0

1x � 3 2 2 � �201y � 2 21y � 2 2 2 � 41x � 2 2

x 2 � �8y1
8  
x 2 � y

x � 1
12 y2

39. 40.

41. 42.

43–54 ■ Determine whether the equation represents an ellipse, a
parabola, a hyperbola, or a degenerate conic. If the graph is an el-
lipse, find the center, foci, and vertices. If it is a parabola, find the
vertex, focus, and directrix. If it is a hyperbola, find the center, foci,
vertices, and asymptotes.  Then sketch the graph of the equation.  If
the equation has no graph, explain why.

43.

44.

45. x2 � y2 � 144 � 0

46. x2 � 6x � 9y2

47.

48.

49. x � y2 � 16y

50. 2x2 � 4 � 4x � y2

51. 2x2 � 12x � y2 � 6y � 26 � 0

52. 36x2 � 4y2 � 36x � 8y � 31

53. 9x2 � 8y2 � 15x � 8y � 27 � 0

54. x2 � 4y2 � 4x � 8

55–64 ■ Find an equation for the conic section with the given 
properties.

55. The parabola with focus and directrix y � �1

56. The parabola with vertex at the origin and focus 

57. The ellipse with center at the origin and with x-intercepts 
and y-intercepts 

58. The hyperbola with vertices and asymptotes y � � 
1
2 xV10, �2 2

�5
�2

F15, 0 2

F10, 1 2

3x2 � 61x � y 2 � 10

4x2 � y2 � 81x � y 2

x2

12
�

y2

144
�

y

12

x2

12
� y � 1

0 x

y

1

1 20 x

y

2

4

0 x

y

V(4, 4)

4

8

0 x

y

F(0, 5)4

_4

■ E X E R C I S E S
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80 mi closer to A than to B. Find the location of the ship.
(Place A and B on the y-axis with the x-axis halfway between
them. Find the x- and y-coordinates of the ship.)

67. (a) Draw graphs of the following family of ellipses for 
k � 1, 2, 4, and 8.

(b) Prove that all the ellipses in part (a) have the same foci.

68. (a) Draw graphs of the following family of parabolas for
, 1, 2, and 4.

(b) Find the foci of the parabolas in part (a).

(c) How does the location of the focus change as k increases?

y � kx2

k � 1
2

x2

16 � k2 �
y2

k2 � 1

40 mi

A

B

300 mi

59. The ellipse with center , foci and , and
major axis of length 10

60. The hyperbola with center , foci and ,
and vertices and 

61. The ellipse with foci and , and with one 
vertex on the x-axis

62. The parabola with vertex and directrix the y-axis

63. The ellipse with vertices and , and 
passing through the point 

64. The parabola with vertex and horizontal axis of
symmetry, and crossing the y-axis at y � 2

65. The path of the earth around the sun is an ellipse with the sun
at one focus. The ellipse has major axis 186,000,000 mi and
eccentricity 0.017. Find the distance between the earth and the
sun when the earth is (a) closest to the sun and (b) farthest
from the sun.

66. A ship is located 40 mi from a straight shoreline. LORAN sta-
tions A and B are located on the shoreline, 300 mi apart. From
the LORAN signals, the captain determines that his ship is 

186,000,000 mi

V1�1, 0 2

P11, 8 2
V217, �8 2V117, 12 2

V15, 5 2

F211, 3 2F111, 1 2

V212, 2 2V112, 6 2
F212, 7 2F112, 1 2C12, 4 2

F210, 8 2F110, 0 2C10, 4 2
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1. Find the focus and directrix of the parabola x2 � �12y, and sketch its graph.

2. Find the vertices, foci, and the lengths of the major and minor axes for the ellipse 

. Then sketch its graph.

3. Find the vertices, foci, and asymptotes of the hyperbola . Then sketch its graph.

4. Find an equation for the parabola with vertex and focus .

5. Find an equation for the ellipse with foci and vertices .

6. Find an equation for the hyperbola with foci and with asymptotes .

7–9 ■ Find an equation for the conic whose graph is shown.

7. 8.

9.

10–12 ■ Determine whether the equation represents an ellipse, a parabola, or a hyperbola.  If the
graph is an ellipse, find the center, foci, and vertices.  If it is a parabola, find the vertex, focus,
and directrix. If it is a hyperbola, find the center, foci, vertices, and asymptotes.  Then sketch the
graph of the equation.  

10. 16x2 � 36y2 � 96x � 36y � 9 � 0

11. 9x2 � 8y2 � 36x � 64y � 164

12. 2x � y2 � 8y � 8 � 0

13. Find an equation for the ellipse with center , foci and major axis of length 8.

14. Find an equation for the parabola with focus and directrix the x-axis.

15. A parabolic reflector for a car headlight forms a bowl shape that is 6 in. wide at its 
opening and 3 in. deep, as shown in the figure at the left. How far from the vertex should the
filament of the bulb be placed if it is to be located at the focus?

12, 4 2

12, �3 212, 0 2

0 x

y

1

1 F(4, 0)

2

2

(4, 3)

0 x

y
(_4, 2)

1

_1 0 x

y

y � �3
4  
x10, �5 2

1�4, 0 21�3, 0 2

14, 0 210, 0 2

y2

9
�

x2

16
� 1

x2

16
�

y2

4
� 1
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563

F O C U S  O N  M O D E L I N G

Conics  in Architec ture

Many buildings employ conic sections in their design. Architects have various reasons for
using these curves, ranging from structural stability to simple beauty. But how can a huge
parabola, ellipse, or hyperbola be accurately constructed in concrete and steel? In this
Focus on Modeling, we will see how the geometric properties of the conics can be used
to construct these shapes.

▼ Conics in Buildings
In ancient times architecture was part of mathematics, so architects had to be mathemati-
cians. Many of the structures they built—pyramids, temples, amphitheaters, and irrigation
projects—still stand. In modern times architects employ even more sophisticated mathe-
matical principles. The photographs below show some structures that employ conic sec-
tions in their design.

Architects have different reasons for using conics in their designs. For example, the
Spanish architect Antoni Gaudí used parabolas in the attic of La Pedrera (see photo
above). He reasoned that since a rope suspended between two points with an equally dis-
tributed load (as in a suspension bridge) has the shape of a parabola, an inverted parabola
would provide the best support for a flat roof.

▼ Constructing Conics
The equations of the conics are helpful in manufacturing small objects, because a
computer-controlled cutting tool can accurately trace a curve given by an equation. But in
a building project, how can we construct a portion of a parabola, ellipse, or hyperbola that
spans the ceiling or walls of a building? The geometric properties of the conics provide
practical ways of constructing them. For example, if you were building a circular tower,
you would choose a center point, then make sure that the walls of the tower were a fixed

Roman Amphitheater in
Alexandria, Egypt (circle)

Ceiling of Statuary Hall in the
U.S. Capitol (ellipse)

Roof of the Skydome in
Toronto, Canada (parabola)

© Nik Wheeler/CORBIS Architect of the Capitol Walter Schmid/Stone/Getty Images

Roof of Washington Dulles Airport
(hyperbola and parabola)

McDonnell Planetarium,
St. Louis, MO (hyperbola)

Attic in La Pedrera,
Barcelona, Spain (parabola)

© Richard T. Nowitz /CORBIS VisionsofAmerica/Joe Sohm /Jupiter Images © O. Alamany & E. Vincens/CORBIS
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distance from that point. Elliptical walls can be constructed using a string anchored at two
points, as shown in Figure 1.

To construct a parabola, we can use the apparatus shown in Figure 2. A piece of string
of length a is anchored at F and A. The T-square, also of length a, slides along the straight
bar L. A pencil at P holds the string taut against the T-square. As the T-square slides to the
right the pencil traces out a curve.

F I G U R E  2 Constructing a parabola

From the figure we see that

The string is of length a

The T-square is of length a

It follows that . Subtracting from each
side, we get

The last equation says that the distance from F to P is equal to the distance from P to the
line L. Thus the curve is a parabola with focus F and directrix L.

In building projects it is easier to construct a straight line than a curve. So in some
buildings, such as in the Kobe Tower (see Problem 4), a curved surface is produced by us-
ing many straight lines. We can also produce a curve using straight lines, such as the
parabola shown in Figure 3.

Each line is tangent to the parabola; that is, the line meets the parabola at exactly one 
point and does not cross the parabola. The line tangent to the parabola at the point

is

You are asked to show this in Problem 6. The parabola is called the envelope of all such
lines.

y � 2ax � a 
2

1a, a 
2 2

y � x 
2

d1F, P 2 � d1L, P 2

d1P, A 2d1F, P 2 � d1P, A 2 � d1L, P 2 � d1P, A 2

d1L, P 2 � d1P, A 2 � a

d1F, P 2 � d1P, A 2 � a

Parabola

L

F

a
P

A

564 Focus on Modeling

Circle

C

P

F1

P

F2

Ellipse

F I G U R E  1 Constructing a circle
and an ellipse

F I G U R E  3 Tangent lines to a parabola
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P R O B L E M S
1. Conics in Architecture The photographs on page 563 show six examples of buildings that

contain conic sections. Search the Internet to find other examples of structures that employ
parabolas, ellipses, or hyperbolas in their design. Find at least one example for each type of
conic.

2. Constructing a Hyperbola In this problem we construct a hyperbola. The wooden bar in
the figure can pivot at F1. A string that is shorter than the bar is anchored at F2 and at A, the
other end of the bar. A pencil at P holds the string taut against the bar as it moves counter-
clockwise around F1.

(a) Show that the curve traced out by the pencil is one branch of a hyperbola with foci at F1

and F2.

(b) How should the apparatus be reconfigured to draw the other branch of the hyperbola?

3. A Parabola in a Rectangle The following method can be used to construct a 
parabola that fits in a given rectangle. The parabola will be approximated by many short 
line segments.

First, draw a rectangle. Divide the rectangle in half by a vertical line segment, and label
the top endpoint V. Next, divide the length and width of each half rectangle into an equal
number of parts to form grid lines, as shown in the figure below. Draw lines from V to the
endpoints of horizontal grid line 1, and mark the points where these lines cross the vertical
grid lines labeled 1. Next, draw lines from V to the endpoints of horizontal grid line 2, and
mark the points where these lines cross the vertical grid lines labeled 2. Continue in this way
until you have used all the horizontal grid lines. Now use line segments to connect the points
you have marked to obtain an approximation to the desired parabola. Apply this procedure to
draw a parabola that fits into a 6 ft by 10 ft rectangle on a lawn.

4. Hyperbolas from Straight Lines In this problem we construct hyperbolic shapes using
straight lines. Punch equally spaced holes into the edges of two large plastic lids. Connect
corresponding holes with strings of equal lengths as shown in the figure on the next page.
Holding the strings taut, twist one lid against the other. An imaginary surface passing through
the strings has hyperbolic cross sections. (An architectural example of this is the Kobe Tower

3

2

1

2 1 1 2 33

V

3

2

1

2 1 1 2 33

V

3

2

1

2 1 1 2 33

V

Pivot
point

Hyperbola

F1 F2

P

A
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566 Focus on Modeling

in Japan, shown in the photograph.) What happens to the vertices of the hyperbolic cross sec-
tions as the lids are twisted more?

5. Tangent Lines to a Parabola In this problem we show that the line tangent to the
parabola y � x2 at the point has the equation .

(a) Let m be the slope of the tangent line at . Show that the equation of the tangent
line is .

(b) Use the fact that the tangent line intersects the parabola at only one point to show that
is the only solution of the system.

(c) Eliminate y from the system in part (b) to get a quadratic equation in x. Show that the
discriminant of this quadratic is . Since the system in part (b) has exactly one
solution, the discriminant must equal 0. Find m.

(d) Substitute the value for m you found in part (c) into the equation in part (a), and simpify
to get the equation of the tangent line.

6. A Cut Cylinder In this problem we prove that when a cylinder is cut by a plane, an ellipse
is formed. An architectural example of this is the Tycho Brahe Planetarium in Copenhagen
(see the photograph). In the figure, a cylinder is cut by a plane, resulting in the red curve.
Two spheres with the same radius as the cylinder slide inside the cylinder so that they just
touch the plane at F1 and F2. Choose an arbitrary point P on the curve, and let Q1 and Q2 be
the two points on the cylinder where a vertical line through P touches the “equator” of each
sphere.

(a) Show that PF1 � PQ1 and PF2 � PQ2. [Hint: Use the fact that all tangents to a sphere
from a given point outside the sphere are of the same length.]

(b) Explain why PQ1 � PQ2 is the same for all points P on the curve.

(c) Show that PF1 � PF2 is the same for all points P on the curve.

(d) Conclude that the curve is an ellipse with foci F1 and F2.

1m � 2a 2 2

e
y � a 

2 � m1x � a 2

y � x 
2

1a, a 
2 2

y � a 
2 � m1x � a 2

1a, a 
2 2

y � 2ax � a 
21a, a 

2 2

Q1

Q2

P

F2

F1

M
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C U M U L A T I V E  R E V I E W  T E S T C H A P T E R S  5 , 6 , a n d 7

1. Consider the following system of equations.

(a) Is the system linear or nonlinear? Explain.
(b) Find all solutions of the system.
(c) The graph of each equation is a conic section. Name the type of conic section in each

case.
(d) Graph both equations on the same set of axes.
(e) On your graph, shade the region that corresponds to the solution of the system of 

inequalities.

2. Find the complete solution of each linear system, or show that no solution exists.

(a) (b)

3. Xavier, Yolanda, and Zachary go fishing. Yolanda catches as many fish as Xavier and Zachary
put together. Zachary catches 2 more fish than Xavier. The total catch for all three people is
20 fish. How many did each person catch?

4. Let 

(a) Calculate each of the following, or explain why the calculation can’t be done.

A � B, C � D, AB, CB, BD, det(B), det(C), det(D)

(b) Based on the values you calculated for det(C) and det(D), which matrix, C or D, has an
inverse? Find the inverse of the invertible one.

5. Consider the following system of equations.

(a) Write a matrix equation of the form AX � B that is equivalent to this system.
(b) Find A�1, the inverse of the coefficient matrix.
(c) Solve the matrix equation by multiplying each side by A�1.
(d) Now solve the system using the Cramer’s Rule. Did you get the same solution as in 

part (b)?

6. Find the partial fraction decomposition of the rational function .

7. Find an equation for the parabola with vertex at the origin and focus 

8. Find the focus and directrix of each parabola, and sketch its graph.

(a) (b)

9. Determine whether the equation represents an ellipse or a hyperbola. If it is an ellipse, find
the coordinates of its vertices and foci, and sketch its graph. If it is a hyperbola, find the co-
ordinates of its vertices and foci, find the equations of its asymptotes, and sketch its graph.

(a) (b) (c) �
x 

2

9
� y 

2 � 1
x 

2

9
� y 

2 � 1
x 

2

9
� y 

2 � 1

x � 2y 
2 � 4y � 2x 

2 � 6y � 0

F10, 3 2 .

r1x 2 �
4x � 8

x 4 � 4x 2

e
5x � 3y � 5

6x � 4y � 0

A � c
1 5

2 0
d , B � c

�2 1 0

�1
2 0 1

d , C � £

1 0 1

0 2 1

�1 0 0

§ , and D � £

1 4 3

1 6 5

0 1 1

§ .

•

y � z � 2

x � 2y � 3z � 3

3x � 5y � 8z � 7

•

x � y � z � 2

2x � 3y � z � 5

3x � 5y � 2z � 11

e
x 2 � y2 	 4y

x 2 � 2y 	 0

e
x 2 � y2 � 4y

x 2 � 2y � 0
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10. Sketch the graph of each conic section, and find the coordinates of its foci. What type of
conic section does each equation represent?

(a) (b)

11. Find an equation for the conic whose graph is shown.

x

y

0
F¤(10, 0)

F⁄(0, 0)

2 5 8

1

4

x 2 � 6x � y2 � 8y � 169x 2 � 4y2 � 24y
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Functions on the Natural Numbers Throughout this book we have used
functions to model real-world situations. The functions we’ve used have always
had real numbers as inputs. For example, a function that models temperature in
terms of time has real numbers (representing time) as inputs. But many real-
world situations occur in stages: stage 1, 2, 3, . . . . To model such situations,
we need functions whose inputs are the natural numbers 1, 2, 3, . . .
(representing the stages). For example, the peaks of a bouncing ball are
represented by the natural numbers 1, 2, 3, . . . (representing peak 1, 2, 3, . . .).
A function f that models the height of the ball at each peak has natural numbers
1, 2, 3, . . . as inputs and gives the heights as , , , . . . . In general a
function whose inputs are the natural numbers is called a sequence. We can
think of a sequence as simply a list of numbers written in a specific order.

The amount in a bank account at the end of each month, mortgage payments,
and the amount of an annuity are sequences. The formulas that generate these
sequences drive our economy—they allow us to borrow money to buy our
dream home closer to graduation than to retirement. In this chapter we study
these and other applications of sequences.

In Focus on Modeling at the end of the chapter we investigate how
sequences are used in modeling real-world situations that occur in stages,
where each stage depends on what happened at the preceding stage(s).

1

1/2

1/4
1/8
1/16

f13 2f12 2f11 2
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8.6 The Binomial Theorem
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Roughly speaking, a sequence is an infinite list of numbers. The numbers in the sequence
are often written as a1, a2, a3, . . . . The dots mean that the list continues forever. A simple
example is the sequence

� � � � �

We can describe the pattern of the sequence displayed above by the following formula:

You may have already thought of a different way to describe the pattern—namely, “you
go from one number to the next by adding 5.” This natural way of describing the sequence
is expressed by the recursive formula:

starting with a1 � 5. Try substituting n � 1, 2, 3, . . . in each of these formulas to see how
they produce the numbers in the sequence. In this section we see how these different ways
are used to describe specific sequences.

▼ Sequences
Any ordered list of numbers can be viewed as a function whose input values are 1, 2,
3, . . . and whose output values are the numbers in the list. So we define a sequence as 
follows.

Here is a simple example of a sequence:

We can write a sequence in this way when it’s clear what the subsequent terms of the se-
quence are. This sequence consists of even numbers. To be more accurate, however, we
need to specify a procedure for finding all the terms of the sequence. This can be done by
giving a formula for the nth term an of the sequence. In this case,

an � 2n

2, 4, 6, 8, 10, . . .

an � an�1 � 5

an � 5n

a5 . . .a4a3a2a1

5,  10,  15,  20,  25, . . .
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8.1 SEQUENCES AND SUMMATION NOTATION

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the terms of a sequence � Find the terms of a recursive sequence
� Find the partial sums of a sequence � Use sigma notation

DEFINITION OF A SEQUENCE

A sequence is a function f whose domain is the set of natural numbers. The
terms of the sequence are the function values 

We usually write instead of the function notation . So the terms of the se-
quence are written as

The number is called the first term, is called the second term, and in gen-
eral, is called the nth term.an

a2a1

a1, a2, a3, . . . , an, . . . 

f 1n 2an

f 11 2 , f 12 2 , f 13 2 , . . . , f 1n 2 , . . .

Another way to write this sequence is
to use function notation:

so a11 2 � 2, a12 2 � 4, a13 2 � 6, . . .

a1n 2 � 2n
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and the sequence can be written as

Notice how the formula an � 2n gives all the terms of the sequence. For instance, substi-
tuting 1, 2, 3, and 4 for n gives the first four terms:

To find the 103rd term of this sequence, we use n � 103 to get

E X A M P L E  1 Finding the Terms of a Sequence

Find the first five terms and the 100th term of the sequence defined by each formula.

(a) (b)

(c) (d)

S O L U T I O N To find the first five terms, we substitute n � 1, 2, 3, 4, and 5 in the
formula for the nth term. To find the 100th term, we substitute n � 100. This gives the
following.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 3, 5, 7, AND 9 ■

In Example 1(d) the presence of in the sequence has the effect of making suc-
cessive terms alternately negative and positive.

It is often useful to picture a sequence by sketching its graph. Since a sequence is a
function whose domain is the natural numbers, we can draw its graph in the Cartesian plane.
For instance, the graph of the sequence

is shown in Figure 1.
Compare the graph of the sequence shown in Figure 1 to the graph of

shown in Figure 2. The graph of every sequence consists of isolated points that are not
connected.

1, � 

1

2
, 

1

3
, � 

1

4
, 

1

5
, � 

1

6
, . . . , 

1�1 2 n�1

n
, . . .

1, 
1

2
, 

1

3
, 

1

4
, 

1

5
, 

1

6
, . . . , 

1
n

, . . .

1�1 2 n

rn �
1�1 2 n

2ntn �
n

n � 1

cn � n 
2 � 1an � 2n � 1

a103 � 2 # 103 � 206

a3 � 2 # 3 � 6  a4 � 2 # 4 � 8

a1 � 2 # 1 � 2  a2 � 2 # 2 � 4

2,     4,     6,     8,  . . . ,  2n,  . . .
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1st
term

2nd
term

3rd
term

4th 
term

nth
term

nth term First five terms 100th term

(a) 2n � 1 1, 3, 5, 7, 9 199

(b) n2 � 1 0, 3, 8, 15, 24 9999

(c)

(d)
1

2100� 

1

2
, 

1

4
, � 

1

8
, 

1

16
, � 

1

32

1�1 2 n

2n

100

101

1

2
, 

2

3
, 

3

4
, 

4

5
, 

5

6

n

n � 1

an

n0

1

1 2 3 4 5 6

Terms are
decreasing

F I G U R E  1

F I G U R E  2

an

n0

1

1

_1

3 5

Terms alternate
in sign
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Graphing calculators are useful in analyzing sequences. To work with sequences on a
TI-83, we put the calculator in Seq mode (“sequence” mode) as in Figure 3(a). If we en-
ter the sequence of Example 1(c), we can display the terms using the

command as shown in Figure 3(b). We can also graph the sequence as shown in
Figure 3(c).

Finding patterns is an important part of mathematics. Consider a sequence that begins

Can you detect a pattern in these numbers? In other words, can you define a sequence
whose first four terms are these numbers? The answer to this question seems easy; these
numbers are the squares of the numbers 1, 2, 3, 4. Thus the sequence we are looking for
is defined by an � n2. However, this is not the only sequence whose first four terms are 
1, 4, 9, 16. In other words, the answer to our problem is not unique (see Exercise 86). In
the next example we are interested in finding an obvious sequence whose first few terms
agree with the given ones.

E X A M P L E  2 Finding the nth Term of a Sequence

Find the nth term of a sequence whose first several terms are given.

(a) (b) �2, 4, �8, 16, �32, . . .

S O L U T I O N

(a) We notice that the numerators of these fractions are the odd numbers and the de-
nominators are the even numbers. Even numbers are of the form 2n, and odd num-
bers are of the form 2n � 1 (an odd number differs from an even number by 1). So
a sequence that has these numbers for its first four terms is given by

(b) These numbers are powers of 2, and they alternate in sign, so a sequence that
agrees with these terms is given by

You should check that these formulas do indeed generate the given terms.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 29 AND 35 ■

an � 1�1 2 n2n

an �
2n � 1

2n

1
2, 

3
4, 

5
6, 

7
8, . . .

1, 4, 9, 16, . . .

TABLE

u1n 2 � n/ 1n � 1 2
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FIGURE 3

(b) (c)

1.5

0 15

   u( )
 1 .5
 2 .66667
 3 .75
 4 .8
 5 .83333
 6 .85714
 7 .875

 =1

(a)

 Plot1 Plot2 Plot3
 Min=1

 u( ) = /( +1)=

F I G U R E  3

u1n 2 � n/ 1n � 1 2

E R AT O S T H E N E S (circa 276–195 B.C.)
was a renowned Greek geographer,
mathematician, and astronomer. He ac-
curately calculated the circumference
of the earth by an ingenious method.
He is most famous, however, for his
method for finding primes, now called
the sieve of Eratosthenes. The method
consists of listing the integers, begin-
ning with 2 (the first prime), and then
crossing out all the multiples of 2,
which are not prime. The next number
remaining on the list is 3 (the second
prime), so we again cross out all multi-
ples of it. The next remaining number is
5 (the third prime number), and we
cross out all multiples of it, and so on.
In this way all numbers that are not
prime are crossed out, and the remain-
ing numbers are the primes.

Not all sequences can be defined by a
formula. For example, there is no
known formula for the sequence of
prime numbers:*

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

* A prime number is a whole number p whose only divisors are p and 1. (By convention the number 1 is not
considered prime.)

See Appendix C, Using the TI-83/84
Graphing Calculator, for additional 
instructions on working with 
sequences.
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Large Prime Numbers
The search for large primes fascinates
many people. As of this writing, the
largest known prime number is

It was discovered by Edson Smith of
the Department of Mathematics at
UCLA. In decimal notation this number
contains 12,978,189 digits. If it were
written in full, it would occupy more
than three times as many pages as this
book contains. Smith was working with
a large Internet group known as GIMPS
(the Great Internet Mersenne Prime
Search). Numbers of the form 2 p � 1,
where p is prime, are called Mersenne
numbers and are more easily checked
for primality than others. That is why
the largest known primes are of this
form.

243,112,609 � 1

See Appendix C, Using the TI-83/84
Graphing Calculator, for additional in-
structions on working with sequences.

▼ Recursively Defined Sequences
Some sequences do not have simple defining formulas like those of the preceding exam-
ple. The nth term of a sequence may depend on some or all of the terms preceding it. A
sequence defined in this way is called recursive. Here are two examples.

E X A M P L E  3 Finding the Terms of a Recursively 
Defined Sequence

A sequence is defined recursively by a1 � 1 and

(a) Find the first five terms of the sequence.

(b) Use a graphing calculator to find the 20th term of the sequence.

S O L U T I O N

(a) The defining formula for this sequence is recursive. It allows us to find the nth
term an if we know the preceding term an�1. Thus, we can find the second term
from the first term, the third term from the second term, the fourth term from the
third term, and so on. Since we are given the first term a1 � 1, we can proceed as
follows.

Thus the first five terms of this sequence are

(b) Note that to find the 20th term of the recursive sequence, we must first find all 19
preceding terms. This is most easily done by using a graphing calculator. Figure
4(a) shows how to enter this sequence on the TI-83 calculator. From Figure 4(b) we
see that the 20th term of the sequence is 

a20 � 4,649,045,865

F I G U R E  4

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 15 AND 25 ■

E X A M P L E  4 The Fibonacci Sequence

Find the first 11 terms of the sequence defined recursively by F1 � 1, F2 � 1 and

Fn � Fn�1 � Fn�2

u1n 2 � 31u1n � 1 2 � 2 2 , u11 2 � 1

(a) (b)

u(20)
4649045865

 Plot1 Plot2 Plot3
  Min=1
 u( )=3(u( -1)+2)
 u( Min)={1}

1, 9, 33, 105, 321, . . .

a5 � 31a4 � 2 2 � 31105 � 2 2 � 321

a4 � 31a3 � 2 2 � 3133 � 2 2 � 105

a3 � 31a2 � 2 2 � 319 � 2 2 � 33

a2 � 31a1 � 2 2 � 311 � 2 2 � 9

an � 31an�1 � 2 2
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S O L U T I O N To find Fn, we need to find the two preceding terms, Fn�1 and Fn�2. 
Since we are given F1 and F2, we proceed as follows.

It’s clear what is happening here. Each term is simply the sum of the two terms that pre-
cede it, so we can easily write down as many terms as we please. Here are the first 11
terms. (You can also find these using a graphing calculator.)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

The sequence in Example 4 is called the Fibonacci sequence, named after the 13th cen-
tury Italian mathematician who used it to solve a problem about the breeding of rabbits (see
Exercise 85). The sequence also occurs in numerous other applications in nature. (See Fig-
ures 5 and 6.) In fact, so many phenomena behave like the Fibonacci sequence that one
mathematical journal, the Fibonacci Quarterly, is devoted entirely to its properties.

1 1

2
3

5

8

13

21

34

Fibonacci spiral Nautilus shell

1

1

2

3

5

8

F I G U R E  5 The Fibonacci
sequence in the branching 
of a tree

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .

F5 � F4 � F3 � 3 � 2 � 5

F4 � F3 � F2 � 2 � 1 � 3

F3 � F2 � F1 � 1 � 1 � 2
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F I G U R E  6

F I B O N A C C I (1175–1250) was born in
Pisa, Italy, and was educated in North
Africa. He traveled widely in the
Mediterranean area and learned the
various methods then in use for writ-
ing numbers. On returning to Pisa in
1202, Fibonacci advocated the use of
the Hindu-Arabic decimal system, the
one we use today, over the Roman
numeral system that was used in Eu-
rope in his time. His most famous
book, Liber Abaci, expounds on the ad-
vantages of the Hindu-Arabic numer-
als. In fact, multiplication and division
were so complicated using Roman
numerals that a college degree was
necessary to master these skills. Inter-
estingly, in 1299 the city of Florence
outlawed the use of the decimal sys-
tem for merchants and businesses,
requiring numbers to be written 
in Roman numerals or words. One 
can only speculate about the reasons
for this law.
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▼ The Partial Sums of a Sequence
In calculus we are often interested in adding the terms of a sequence. This leads to the fol-
lowing definition.

E X A M P L E  5 Finding the Partial Sums of a Sequence

Find the first four partial sums and the nth partial sum of the sequence given by an � 1/2n.

S O L U T I O N The terms of the sequence are

The first four partial sums are

Notice that in the value of each partial sum, the denominator is a power of 2 and the 
numerator is one less than the denominator. In general, the nth partial sum is

The first five terms of an and Sn are graphed in Figure 7.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 43 ■

Sn �
2n � 1

2n � 1 �
1

2n

S4 �
1

2
�

1

4
�

1

8
�

1

16
 �

15

16

S3 �
1

2
�

1

4
�

1

8
 �

7

8

S2 �
1

2
�

1

4
 �

3

4

S1 �
1

2
 �

1

2

1

2
, 

1

4
, 

1

8
, . . .
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THE PARTIAL SUMS OF A SEQUENCE

For the sequence

the partial sums are

.

.

.

.

.

.

S1 is called the first partial sum, S2 is the second partial sum, and so on. Sn is
called the nth partial sum. The sequence S1, S2, S3, . . . , Sn, . . . is called the se-
quence of partial sums.

 Sn � a1 � a2 � a3 � . . . � an

 S4 � a1 � a2 � a3 � a4

 S3 � a1 � a2 � a3

 S2 � a1 � a2

 S1 � a1

a1, a2, a3, a4, . . . , an, . . .

a⁄

n0

1

1

1
2

S⁄

S¤

a¤

S‹

a‹

S›

a›

Sfi

afi

2 3 4 5

Partial sums of
the sequence

Terms of the
sequence

F I G U R E  7 Graph of the sequence an

and the sequence of partial sums Sn
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E X A M P L E  6 Finding the Partial Sums of a Sequence

Find the first four partial sums and the nth partial sum of the sequence given by

S O L U T I O N The first four partial sums are

Do you detect a pattern here? Of course. The nth partial sum is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

▼ Sigma Notation
Given a sequence

we can write the sum of the first n terms using summation notation, or sigma notation.
This notation derives its name from the Greek letter � (capital sigma, corresponding to
our S for “sum”). Sigma notation is used as follows:

The left side of this expression is read, “The sum of ak from k � 1 to k � n.” The letter k
is called the index of summation, or the summation variable, and the idea is to replace
k in the expression after the sigma by the integers 1, 2, 3, . . . , n, and add the resulting ex-
pressions, arriving at the right side of the equation.

E X A M P L E  7 Sigma Notation

Find each sum.

(a) (b) (c) (d)

S O L U T I O N

(a)

(b) a
5

j�3

1

j
�

1

3
�

1

4
�

1

5
�

47

60

a
5

k�1
k 

2 � 12 � 22 � 32 � 42 � 52 � 55

a
6

i�1
2a

10

i�5
ia

5

j�3

1

ja
5

k�1
k 2

a1, a2, a3, a4, . . .

Sn � 1 �
1

n � 1

 S4 � a1 �
1

2
b � a

1

2
�

1

3
b � a

1

3
�

1

4
b � a

1

4
�

1

5
b � 1 �

1

5

 S3 � a1 �
1

2
b � a

1

2
�

1

3
b � a

1

3
�

1

4
b       � 1 �

1

4

 S2 � a1 �
1

2
b � a

1

2
�

1

3
b             � 1 �

1

3

 S1 � a1 �
1

2
b                  � 1 �

1

2

an �
1
n

�
1

n � 1
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a
n

k�1
ak � a1 � a2 � a3 � a4 � . . . � ana

n

k�1
ak

This tells us to
end with k � n

This tells us to
start with k � 1

This tells
us to add
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(c)

(d)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 47 AND 49 ■

We can use a graphing calculator to evaluate sums. For instance, Figure 8 shows how
the TI-83 can be used to evaluate the sums in parts (a) and (b) of Example 7.

E X A M P L E  8 Writing Sums in Sigma Notation

Write each sum using sigma notation.

(a) 13 � 23 � 33 � 43 � 53 � 63 � 73

(b)

S O L U T I O N

(a) We can write

(b) A natural way to write this sum is

However, there is no unique way of writing a sum in sigma notation. We could also
write this sum as

or

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 67 AND 69 ■

13 � 14 � 15 � . . . � 177 � a
75

k�1
1k � 2

13 � 14 � 15 � . . . � 177 � a
74

k�0
1k � 3

13 � 14 � 15 � . . . � 177 � a
77

k�3
1k

13 � 23 � 33 � 43 � 53 � 63 � 73 � a
7

k�1
k 

3

13 � 14 � 15 � . . . � 177

a
6

i�1
2 � 2 � 2 � 2 � 2 � 2 � 2 � 12

a
10

i�5
i � 5 � 6 � 7 � 8 � 9 � 10 � 45
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The Golden Ratio
The ancient Greeks considered a line segment to be divided into the
golden ratio if the ratio of the shorter part to the longer part is the
same as the ratio of the longer part to the whole segment.

Thus the segment shown is divided into the golden ratio if

This leads to a quadratic equation whose positive solution is

This ratio occurs naturally in many places. For instance, psychological
experiments show that the most pleasing shape of rectangle is one
whose sides are in golden ratio.The ancient Greeks agreed with this and
built their temples in this ratio.

x �
1 � 15

2
� 1.618

1

x
�

x

1 � x

1 x

The golden ratio is related to the Fibonacci sequence. In fact, it can
be shown by using calculus* that the ratio of two successive Fibonacci
numbers

gets closer to the golden ratio the larger the value of n. Try finding this
ratio for n � 10.

*See Principles of Problem Solving 13 at the book companion website:

www.stewartmath.com

1

1.618

Fn�1

Fn

©
 C

la
rk

 D
un

ba
r/

Co
rb

is

sum(seq(K2 ,K,1,5,1))
55

sum(seq(1/J,J,3,5,
1)) Frac

47/60

F I G U R E  8
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The following properties of sums are natural consequences of properties of the real
numbers.

P R O O F To prove Property 1, we write out the left side of the equation to get

Because addition is commutative and associative, we can rearrange the terms on the
right side to read

Rewriting the right side using sigma notation gives Property 1. Property 2 is proved in 
a similar manner. To prove Property 3, we use the Distributive Property:

 a
n

k�1
cak � ca1 � ca2 � ca3 � . . . � can

a
n

k�1
1ak � bk 2 � 1a1 � a2 � a3 � . . . � an 2 � 1b1 � b2 � b3 � . . . � bn 2

a
n

k�1
1ak � bk 2 � 1a1 � b1 2 � 1a2 � b2 2 � 1a3 � b3 2 � . . . � 1an � bn 2

578 C H A P T E R  8 | Sequences and Series

PROPERTIES OF SUMS

Let a1, a2, a3, a4, . . . and b1, b2, b3, b4, . . . be sequences. Then for every positive
integer n and any real number c, the following properties hold.

1.

2.

3. a
n

k�1
cak � c a a

n

k�1
ak b

a
n

k�1
1ak � bk 2 � a

n

k�1
ak � a

n

k�1
bk

a
n

k�1
1ak � bk 2 � a

n

k�1
ak � a

n

k�1
bk

C O N C E P T S
1. A sequence is a function whose domain is .

2. The nth partial sum of a sequence is the sum of the first 

terms of the sequence. So for the sequence 

the fourth partial sum is � � �

� .

S K I L L S
3–14 ■ Find the first four terms and the 100th term of the 
sequence.

3. an � n � 1 4. an � 2n � 3

5. 6. an � n2 � 1

7. 8. an � a
�1

3
b

n

an � 5n

an �
1

n � 1

S4 �

an � n2

9. 10.

11. 12.

13. an � nn 14. an � 3

15–20 ■ Find the first five terms of the given recursively defined
sequence.

15.

16.

17. an � 2an�1 � 1 and a1 � 1

18.

19. an � an�1 � an�2 and a1 � 1, a2 � 2

20. an � an�1 � an�2 � an�3 and a1 � a2 � a3 � 1

an �
1

1 � an�1
 and a1 � 1

an �
an�1

2
 and a1 � �8

an � 21an�1 � 2 2 and a1 � 3

an � 1�1 2 n�1
 

n

n � 1
an � 1 � 1�1 2 n

an �
1

n 
2an �

1�1 2 n

n 
2

8 . 1  E X E R C I S E S

■
 � c1a1 � a2 � a3 � . . . � an 2 � c a a

n

k�1
ak b
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59. 60.

61–66 ■ Write the sum without using sigma notation.

61. 62.

63. 64.

65. 66.

67–74 ■ Write the sum using sigma notation.

67. 1 � 2 � 3 � 4 � . . . � 100

68. 2 � 4 � 6 � . . . � 20

69. 12 � 22 � 32 � . . . � 102

70.

71.

72.

73. 1 � x � x2 � x3 � . . . � x100

74. 1 � 2x � 3x2 � 4x3 � 5x4 � . . . � 100x99

75. Find a formula for the nth term of the sequence

[Hint: Write each term as a power of 2.]

76. Define the sequence

Use the command on a graphing calculator to find 
the first 10 terms of this sequence. Compare to the Fibonacci
sequence Fn.

A P P L I C A T I O N S
77. Compound Interest Julio deposits $2000 in a savings ac-

count that pays 2.4% interest per year compounded monthly. The
amount in the account after n months is given by the sequence

(a) Find the first six terms of the sequence.
(b) Find the amount in the account after 3 years.

78. Compound Interest Helen deposits $100 at the end of
each month into an account that pays 6% interest per year
compounded monthly. The amount of interest she has accumu-
lated after n months is given by the sequence

(a) Find the first six terms of the sequence.
(b) Find the interest she has accumulated after 5 years.

In � 100 a
1.005n � 1

0.005
� n b

An � 2000 a1 �
0.024

12
b

n

TABLE

Gn �
115
a
11 � 15 2 n � 11 � 15 2 n

2n b

12, 2212, 322212, 42322212, . . .

11

12 �
12

22 �
13

32 � . . . �
1n

n2

1

1 # 2
�

1

2 # 3
�

1

3 # 4
� . . . �

1

999 # 1000

1

2 ln 2
�

1

3 ln 3
�

1

4 ln 4
�

1

5 ln 5
� . . . �

1

100 ln 100

a
n

j�1
1�1 2  j�1x  

j
a
100

k�3
x 

k

a
9

k�6
k1k � 3 2a

6

k�0
1k � 4

a
4

i�0

2i � 1

2i � 1a
5

k�1
1k

a
100

n�1

1�1 2 n

na
22

n�0
1�1 2 n 2n

21–26 ■ Use a graphing calculator to do the following. (a) Find
the first 10 terms of the sequence. (b) Graph the first 10 terms of
the sequence.

21. an � 4n � 3 22. an � n2 � n

23. 24.

25.

26. an � an�1 � an�2 and a1 � 1, a2 � 3

27–38 ■ Find the nth term of a sequence whose first several terms
are given.

27. 2, 4, 6, 8, . . . 28. 1, 3, 5, 7, . . .

29. 2, 4, 8, 16, . . . 30.

31. 1, 4, 7, 10, . . . 32. 3, 7, 11, 15, . . .

33. 5, �25, 125, �625, . . . 34. 3, 0.3, 0.03, 0.003, . . .

35. 36.

37. 0, 2, 0, 2, 0, 2, . . . 38.

39–42 ■ Find the first six partial sums S1, S2, S3, S4, S5, S6 of the
sequence.

39. 1, 3, 5, 7, . . . 40. 12, 22, 32, 42, . . .

41. 42. �1, 1, �1, 1, . . .

43–46 ■ Find the first four partial sums and the nth partial sum of
the sequence an.

43. 44.

45.

46. [Hint: Use a property of logarithms to

write the nth term as a difference.]

47–54 ■ Find the sum.

47. 48.

49. 50.

51. 52.

53. 54.

55–60 ■ Use a graphing calculator to evaluate the sum.

55. 56.

57. 58. a
15

j�5

1

j 
2 � 1a

20

j�7
 
j 

211 � j 2

a
100

k�1
13k � 4 2a

10

k�1
k 

2

a
3

i�1
i 2i

a
5

k�1
2 

k�1

a
12

i�4
10a

8

i�1
31 � 1�1 2 i 4

a
100

j�1
1�1 2 ja

3

k�1

1

k

a
4

k�1
k 

2
a

4

k�1
k

an � log a
n

n � 1
b

an � 1n � 1n � 1

an �
1

n � 1
�

1

n � 2
an �

2

3n

1

3
, 

1

32, 
1

33, 
1

34, . . .

1, 12, 3, 14, 5, 16, . . .

3
4, 

4
5, 

5
6, 

6
7, . . .1, 34, 

5
9, 

7
16, 

9
25, . . .

� 
1
3, 

1
9, � 

1
27, 

1
81, . . .

an �
1

an�1
 and a1 � 2

an � 4 � 21�1 2 nan �
12
n

S E C T I O N  8 . 1 | Sequences and Summation Notation 579

90169_Ch08_569-624.qxd  11/23/11  3:58 PM  Page 579



85. Fibonacci’s Rabbits Fibonacci posed the following prob-
lem: Suppose that rabbits live forever and that every month
each pair produces a new pair that becomes productive at age
2 months. If we start with one newborn pair, how many pairs
of rabbits will we have in the nth month? Show that the an-
swer is Fn, where Fn is the nth term of the Fibonacci sequence.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
86. Different Sequences That Start the Same

(a) Show that the first four terms of the sequence an � n2 are

(b) Show that the first four terms of the sequence 
an � are also

(c) Find a sequence whose first six terms are the same as
those of an � n2 but whose succeeding terms differ from
this sequence.

(d) Find two different sequences that begin

87. A Recursively Defined Sequence Find the first 40 terms
of the sequence defined by

and a1 � 11. Do the same if a1 � 25. Make a conjecture about
this type of sequence. Try several other values for a1, to test
your conjecture.

88. A Different Type of Recursion Find the first 10 terms of
the sequence defined by

with

How is this recursive sequence different from the others in this
section?

a1 � 1    and    a2 � 1

an � an�an�1
� an�an�2

an�1 � c
an

2
if an is an even number

3an � 1 if an is an odd number

2, 4, 8, 16, . . .

1, 4, 9, 16, . . .

n 
2 � 1n � 1 2 1n � 2 2 1n � 3 2 1n � 4 2

1, 4, 9, 16, . . .

79. Population of a City A city was incorporated in 2004 with
a population of 35,000. It is expected that the population will
increase at a rate of 2% per year. The population n years after
2004 is given by the sequence

(a) Find the first five terms of the sequence.
(b) Find the population in 2014.

80. Paying off a Debt Margarita borrows $10,000 from her
uncle and agrees to repay it in monthly installments of $200.
Her uncle charges 0.5% interest per month on the balance.
(a) Show that her balance An in the nth month is given recur-

sively by A0 � 10,000 and

(b) Find her balance after six months.

81. Fish Farming A fish farmer has 5000 catfish in his pond.
The number of catfish increases by 8% per month, and the
farmer harvests 300 catfish per month.
(a) Show that the catfish population Pn after n months is given

recursively by P0 � 5000 and

(b) How many fish are in the pond after 12 months?

82. Price of a House The median price of a house in Orange
County increases by about 6% per year. In 2002 the median
price was $240,000. Let Pn be the median price n years after
2002.
(a) Find a formula for the sequence Pn.
(b) Find the expected median price in 2010.

83. Salary Increases A newly hired salesman is promised a be-
ginning salary of $30,000 a year with a $2000 raise every
year. Let Sn be his salary in his nth year of employment.
(a) Find a recursive definition of Sn.
(b) Find his salary in his fifth year of employment.

84. Concentration of a Solution A biologist is trying to find
the optimal salt concentration for the growth of a certain
species of mollusk. She begins with a brine solution that has 
4 g/L of salt and increases the concentration by 10% every
day. Let C0 denote the initial concentration, and let Cn be the
concentration after n days.
(a) Find a recursive definition of Cn.
(b) Find the salt concentration after 8 days.

Pn � 1.08Pn�1 � 300

An � 1.005An�1 � 200

Pn � 35,00011.02 2 n

580 C H A P T E R  8 | Sequences and Series

8.2 ARITHMETIC SEQUENCES

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the terms of an arithmatic sequence � Find the partial sums of an 
arithmetic sequence

In this section we study a special type of sequence, called an arithmetic sequence.

▼ Arithmetic Sequences
Perhaps the simplest way to generate a sequence is to start with a number a and add to it
a fixed constant d, over and over again.
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The number d is called the common difference because any two consecutive terms of
an arithmetic sequence differ by d.

E X A M P L E  1 Arithmetic Sequences

(a) If a � 2 and d � 3, then we have the arithmetic sequence

or

Any two consecutive terms of this sequence differ by d � 3. The nth term is
.

(b) Consider the arithmetic sequence

Here the common difference is d � �5. The terms of an arithmetic sequence de-
crease if the common difference is negative. The nth term is .

(c) The graph of the arithmetic sequence is shown in Figure 1.
Notice that the points in the graph lie on the straight line y � 2x � 1, which has
slope d � 2.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 5, 9, AND 13 ■

An arithmetic sequence is determined completely by the first term a and the common
difference d. Thus if we know the first two terms of an arithmetic sequence, then we can
find a formula for the nth term, as the next example shows.

E X A M P L E  2 Finding Terms of an Arithmetic Sequence

Find the first six terms and the 300th term of the arithmetic sequence

S O L U T I O N Since the first term is 13, we have a � 13. The common difference is 
d � 7 � 13 � �6. Thus the nth term of this sequence is

From this we find the first six terms:

The 300th term is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

The next example shows that an arithmetic sequence is determined completely by any
two of its terms.

a 300 � 13 � 61300 � 1 2 � �1781

13, 7, 1, �5, �11, �17, . . .

an � 13 � 61n � 1 2

13, 7, . . .

an � 1 � 21n � 1 2

an � 9 � 51n � 1 2

9, 4, �1, �6, �11, . . .

an � 2 � 31n � 1 2

2, 5, 8, 11, . . .

2, 2 � 3, 2 � 6, 2 � 9, . . .

S E C T I O N  8 . 2 | Arithmetic Sequences 581

Unless otherwise noted, all content on this page is © Cengage Learning.

DEFINITION OF AN ARITHMETIC SEQUENCE

An arithmetic sequence is a sequence of the form

The number a is the first term, and d is the common difference of the sequence.
The nth term of an arithmetic sequence is given by

an � a � 1n � 1 2d

a, a � d, a � 2d, a � 3d, a � 4d, . . .

20

0 10

F I G U R E  1

See Appendix C, Using the TI-83/84
Graphing Calculator, for instructions
on how to graph sequences.
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E X A M P L E  3 Finding Terms of an Arithmetic Sequence

The 11th term of an arithmetic sequence is 52, and the 19th term is 92. Find the 1000th
term.

S O L U T I O N To find the nth term of this sequence, we need to find a and d in the formula

From this formula we get

Since a11 � 52 and a19 � 92, we get the following two equations:

Solving this system for a and d, we get a � 2 and d � 5. (Verify this.) Thus the nth
term of this sequence is

The 1000th term is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

▼ Partial Sums of Arithmetic Sequences
Suppose we want to find the sum of the numbers 1, 2, 3, 4, . . . , 100, that is,

When the famous mathematician C. F. Gauss (see page 306) was a schoolboy, his teacher
posed this problem to the class and expected that it would keep the students busy for a long
time. But Gauss answered the question almost immediately. His idea was this: Since we
are adding numbers produced according to a fixed pattern, there must also be a pattern (or
formula) for finding the sum. He started by writing the numbers from 1 to 100 and then
below them wrote the same numbers in reverse order. Writing S for the sum and adding
corresponding terms give

It follows that and so S � 5050.
Of course, the sequence of natural numbers 1, 2, 3, . . . is an arithmetic sequence (with

a � 1 and d � 1), and the method for summing the first 100 terms of this sequence can
be used to find a formula for the nth partial sum of any arithmetic sequence. We want
to find the sum of the first n terms of the arithmetic sequence whose terms are

that is, we want to find

Using Gauss’s method, we write

Sn � a � Óa � dÔ � . . . � 3a � Ón � 2Ôd 4 � 3a � Ón � 1Ôd 4
Sn � 3a � Ón � 1Ôd 4 � 3a � Ón � 2Ôd 4 � . . . � Óa � d Ô � a

2Sn � 32a � Ón � 1Ôd 4 � 32a � Ón � 1Ôd 4 � . . . � 32a � Ón � 1Ôd 4 � 32a � Ón � 1Ôd 4

 � a � 1a � d 2 � 1a � 2d 2 � 1a � 3d 2 � . . . � 3a � 1n � 1 2d 4

 Sn � a
n

k�1
3a � 1k � 1 2d 4

ak � a � 1k � 1 2d;

2S � 1001101 2 � 10,100

S � 1 � 2 � 3 � . . . � 98 � 99 � 100

S � 100 � 99 � 98 � . . . � 3 � 2 � 1

2S � 101 � 101 � 101 � . . . � 101 � 101 � 101

a
100

k�1
k

a1000 � 2 � 511000 � 1 2 � 4997

an � 2 � 51n � 1 2

e
52 � a � 10d

92 � a � 18d

 a19 � a � 119 � 1 2d � a � 18d

 a11 � a � 111 � 1 2d � a � 10d

an � a � 1n � 1 2d
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Fair Division of Assets
Dividing an asset fairly among a num-
ber of people is of great interest to
mathematicians. Problems of this na-
ture include dividing the national bud-
get, disputed land, or assets in divorce
cases. In 1994 Brams and Taylor found a
mathematical way of dividing things
fairly. Their solution has been applied
to division problems in political sci-
ence, legal proceedings, and other ar-
eas. To understand the problem, con-
sider the following example. Suppose
persons A and B want to divide a prop-
erty fairly between them. To divide it
fairly means that both A and B must be
satisfied with the outcome of the divi-
sion. Solution: A gets to divide the
property into two pieces, then B gets to
choose the piece he or she wants. Since
both A and B had a part in the division
process, each should be satisfied.The
situation becomes much more compli-
cated if three or more people are in-
volved (and that’s where mathematics
comes in). Dividing things fairly in-
volves much more than simply cutting
things in half; it must take into account
the relative worth each person attaches
to the thing being divided. A story from
the Bible illustrates this clearly.Two
women appear before King Solomon,
each claiming to be the mother of the
same newborn baby.To discover which
of these two women is the real mother,
King Solomon ordered his swordsman
to cut the baby in half! The real mother,
who attaches far more worth to the
baby than anyone else does, immed-
iately gives up her claim to the baby to
save the baby’s life.

Mathematical solutions to fair-
division problems have recently been
applied in an international treaty, the
Convention on the Law of the Sea. If a
country wants to develop a portion of
the sea floor, it is required to divide the
portion into two parts, one part to be
used by itself and the other by a con-
sortium that will preserve it for later
use by a less developed country. The
consortium gets first pick.

M AT H E M AT I C S  I N  
T H E  M O D E R N  W O R L D
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There are n identical terms on the right side of this equation, so

Notice that is the nth term of this sequence. So we can write

This last formula says that the sum of the first n terms of an arithmetic sequence is the av-
erage of the first and nth terms multiplied by n, the number of terms in the sum. We now
summarize this result.

E X A M P L E  4 Finding a Partial Sum of an Arithmetic Sequence

Find the sum of the first 40 terms of the arithmetic sequence

S O L U T I O N For this arithmetic sequence, a � 3 and d � 4. Using Formula 1 for the
partial sum of an arithmetic sequence, we get

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 47 ■

E X A M P L E  5 Finding a Partial Sum of an Arithmetic Sequence

Find the sum of the first 50 odd numbers.

S O L U T I O N The odd numbers form an arithmetic sequence with a � 1 and 
d � 2. The nth term is , so the 50th odd number is

. Substituting in Formula 2 for the partial sum of an arithmetic
sequence, we get

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 53 ■

E X A M P L E  6 Finding the Seating Capacity of an Amphitheater

An amphitheater has 50 rows of seats with 30 seats in the first row, 32 in the second, 34
in the third, and so on. Find the total number of seats.

S50 � 50 a
a � a50

2
b � 50 a

1 � 99

2
b � 50 # 50 � 2500

a50 � 2150 2 � 1 � 99
an � 1 � 21n � 1 2 � 2n � 1

S40 � 40
2  
3213 2 � 140 � 1 24 4 � 2016 � 156 2 � 3240

3, 7, 11, 15, . . .

Sn �
n

2
 3a � a � 1n � 1 2d 4 � n a

a � an

2
b

an � a � 1n � 1 2d

 Sn �
n

2
 32a � 1n � 1 2d 4

 2Sn � n 32a � 1n � 1 2d 4
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PARTIAL SUMS OF AN ARITHMETIC SEQUENCE

For the arithmetic sequence the nth partial sum

is given by either of the following formulas.

1. 2. Sn � n a
a � an

2
bSn �

n

2
 32a � 1n � 1 2d 4

Sn � a � 1a � d 2 � 1a � 2d 2 � 1a � 3d 2 � . . . � 3a � 1n � 1 2d 4

an � a � 1n � 1 2d
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S O L U T I O N The numbers of seats in the rows form an arithmetic sequence with
a � 30 and d � 2. Since there are 50 rows, the total number of seats is the sum

Thus the amphitheater has 3950 seats.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 71 ■

E X A M P L E  7 Finding the Number of Terms in a Partial Sum

How many terms of the arithmetic sequence 5, 7, 9, . . . must be added to get 572?

S O L U T I O N We are asked to find n when Sn � 572. Substituting a � 5, d � 2, and 
Sn � 572 in Formula 1 for the partial sum of an arithmetic sequence, we get

Distributive Property

Expand

Factor

This gives n � 22 or n � �26. But since n is the number of terms in this partial sum,
we must have n � 22.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 65 ■

 0 � 1n � 22 2 1n � 26 2

 0 � n2 � 4n � 572

 572 � 5n � n1n � 1 2

Sn �
n

2
 32a � 1n � 1 2d 4 572 �

n

2
 32 # 5 � 1n � 1 22 4

 � 3950

Sn �
n

2
 32a � 1n � 1 2d 4 S50 � 50

2  
32130 2 � 4912 2 4
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Stage

C O N C E P T S
1. An arithmetic sequence is a sequence in which the 

between successive terms is constant.

2. The sequence is an arithmetic sequence in 

which a is the first term and d is the . So
for the arithmetic sequence the first term is 

, and the common difference is .

3. True or false? The nth partial sum of an arithmetic sequence is
the average of the first and last terms times n.

4. True or false? If we know the first and second terms of an
arithmetic sequence, then we can find any other term.

S K I L L S
5–8 ■ A sequence is given. (a) Find the first five terms of the se-
quence. (b) What is the common difference d? (c) Graph the terms
you found in (a).

5. 6.

7. 8. an � 1
2  
1n � 1 2an � 5

2 � 1n � 1 2

an � 3 � 41n � 1 2an � 5 � 21n � 1 2

an � 2 � 51n � 1 2

an � a � 1n � 1 2d

9–12 ■ Find the nth term of the arithmetic sequence with given
first term a and common difference d. What is the 10th term?

9. a � 3, d � 5 10. a � �6, d � 3

11. 12.

13–22 ■ Determine whether the sequence is arithmetic. If it is
arithmetic, find the common difference.

13. 5, 8, 11, 14, . . . 14. 3, 6, 9, 13, . . .

15. 56, 31, 6, �19, . . . 16. 115, 101, 87, 73, . . .

17. 2, 4, 8, 16, . . . 18. 2, 4, 6, 8, . . .

19. 20. ln 2, ln 4, ln 8, ln 16, . . .

21. 2.6, 4.3, 6.0, 7.7, . . . 22.

23–28 ■ Find the first five terms of the sequence, and determine 
whether it is arithmetic. If it is arithmetic, find the common differ-
ence, and express the nth term of the sequence in the standard
form .

23. an � 4 � 7n 24. an � 4 � 2n

25. 26.

27. an � 6n � 10 28. an � 3 � 1�1 2 nn

an � 1 �
n

2
an �

1

1 � 2n

an � a � 1n � 1 2d

1
2, 

1
3, 

1
4, 

1
5, . . .

3, 32, 0, � 
3
2, . . .

a � 13, d � 13a � 5
2, d � �1

2

8 . 2  E X E R C I S E S
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65. An arithmetic sequence has first term a � 5 and common dif-
ference d � 2. How many terms of this sequence must be
added to get 2700?

66. An arithmetic sequence has first term a1 � 1 and fourth term 
a4 � 16. How many terms of this sequence must be added to
get 2356?

A P P L I C A T I O N S
67. Depreciation The purchase value of an office computer is

$12,500. Its annual depreciation is $1875. Find the value of
the computer after 6 years.

68. Poles in a Pile Telephone poles are being stored in a pile
with 25 poles in the first layer, 24 in the second, and so on. If
there are 12 layers, how many telephone poles does the pile
contain?

69. Salary Increases A man gets a job with a salary of $30,000
a year. He is promised a $2300 raise each subsequent year.
Find his total earnings for a 10-year period.

70. Drive-In Theater A drive-in theater has spaces for 20 cars
in the first parking row, 22 in the second, 24 in the third, and
so on. If there are 21 rows in the theater, find the number of
cars that can be parked.

71. Theater Seating An architect designs a theater with 15
seats in the first row, 18 in the second, 21 in the third, and so
on. If the theater is to have a seating capacity of 870, how
many rows must the architect use in his design?

72. Falling Ball When an object is allowed to fall freely near
the surface of the earth, the gravitational pull is such that the
object falls 16 ft in the first second, 48 ft in the next second,
80 ft in the next second, and so on.
(a) Find the total distance a ball falls in 6 s.
(b) Find a formula for the total distance a ball falls in n seconds.

73. The Twelve Days of Christmas In the well-known song
“The Twelve Days of Christmas,” a person gives his sweetheart
k gifts on the kth day for each of the 12 days of Christmas. The
person also repeats each gift identically on each subsequent day.
Thus, on the 12th day the sweetheart receives a gift for the first
day, 2 gifts for the second, 3 gifts for the third, and so on. Show
that the number of gifts received on the 12th day is a partial
sum of an arithmetic sequence. Find this sum.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
74. Arithmetic Means The arithmetic mean (or average) of

two numbers a and b is

Note that m is the same distance from a as from b, so a, m, b

m �
a � b

2

29–40 ■ Determine the common difference, the fifth term, the nth
term, and the 100th term of the arithmetic sequence.

29. 2, 5, 8, 11, . . . 30. 1, 5, 9, 13, . . .

31. 21, 13, 5, �3, . . . 32. 90, 66, 42, 18, . . .

33. 4, 9, 14, 19, . . . 34. 11, 8, 5, 2, . . .

35. �12, �8, �4, 0, . . . 36.

37. 25, 26.5, 28, 29.5, . . . 38. 15, 12.3, 9.6, 6.9, . . .

39. 2, 2 � s, 2 � 2s, 2 � 3s, . . .

40. �t, �t � 3, �t � 6, �t � 9, . . .

41. The tenth term of an arithmetic sequence is , and the second
term is . Find the first term.

42. The 12th term of an arithmetic sequence is 32, and the fifth
term is 18. Find the 20th term.

43. The 100th term of an arithmetic sequence is 98, and the com-
mon difference is 2. Find the first three terms.

44. The 20th term of an arithmetic sequence is 101, and the com-
mon difference is 3. Find a formula for the nth term.

45. Which term of the arithmetic sequence 1, 4, 7, . . . is 88?

46. The first term of an arithmetic sequence is 1, and the common
difference is 4. Is 11,937 a term of this sequence? If so, which
term is it?

47–52 ■ Find the partial sum Sn of the arithmetic sequence that
satisfies the given conditions.

47. a � 1, d � 2, n � 10 48. a � 3, d � 2, n � 12

49. a � 5, d � �4, n � 20 50. a � 100, d � �5, n � 8

51. a1 � 55, d � 12, n � 10 52. a2 � 8, a5 � 9.5, n � 15

53–60 ■ A partial sum of an arithmetic sequence is given. Find 
the sum.

53. 1 � 5 � 9 � . . . � 401

54.

55. 250 � 233 � 216 � . . . � 97

56. 89 � 85 � 81 � . . . � 13

57. 0.7 � 2.7 � 4.7 � . . . � 56.7

58. �10 � 9.9 � 9.8 � . . . � 0.1

59. 60.

61. Show that a right triangle whose sides are in arithmetic pro-
gression is similar to a 3–4–5 triangle.

62. Find the product of the numbers

63. A sequence is harmonic if the reciprocals of the terms of the
sequence form an arithmetic sequence. Determine whether the
following sequence is harmonic:

64. The harmonic mean of two numbers is the reciprocal of the
average of the reciprocals of the two numbers. Find the har-
monic mean of 3 and 5.

1, 35, 
3
7, 

1
3, . . .

101/10, 102/10, 103/10, 104/10, . . . , 1019/10

a
20

n�0
11 � 2n 2a

10

k�0
13 � 0.25k 2

�3 � A� 
3
2B � 0 � 3

2 � 3 � . . . � 30

7
2

55
2

7
6, 

5
3, 

13
6 , 83, . . .
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(a) Insert two arithmetic means between 10 and 18.
(b) Insert three arithmetic means between 10 and 18.
(c) Suppose a doctor needs to increase a patient’s dosage of a

certain medicine from 100 mg to 300 mg per day in five
equal steps. How many arithmetic means must be inserted
between 100 and 300 to give the progression of daily
doses, and what are these means?

is an arithmetic sequence. In general, if m1, m2, . . . , mk are
equally spaced between a and b so that

is an arithmetic sequence, then m1, m2, . . . , mk are called k
arithmetic means between a and b.

a, m1, m2, . . . , mk, b

586 C H A P T E R  8 | Sequences and Series

8.3 GEOMETRIC SEQUENCES

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the terms of a geometric sequence � Find the partial sums of a geometric
sequence � Find the sum of an infinite geometric sequence

In this section we study geometric sequences. This type of sequence occurs frequently in
applications to finance, population growth, and other fields.

▼ Geometric Sequences
Recall that an arithmetic sequence is generated when we repeatedly add a number d to an
initial term a. A geometric sequence is generated when we start with a number a and re-
peatedly multiply by a fixed nonzero constant r.

The number r is called the common ratio because the ratio of any two consecutive
terms of the sequence is r.

E X A M P L E  1 Geometric Sequences

(a) If a � 3 and r � 2, then we have the geometric sequence

or

Notice that the ratio of any two consecutive terms is r � 2. The nth term is
.

(b) The sequence

is a geometric sequence with a � 2 and r � �5. When r is negative, the terms of
the sequence alternate in sign. The nth term is .

(c) The sequence

is a geometric sequence with a � 1 and . The nth term is .an � 1A13B
n�1

r � 1
3

1, 
1

3
, 

1

9
, 

1

27
, 

1

81
, . . .

an � 21�5 2 n�1

2, �10, 50, �250, 1250, . . .

an � 312 2 n�1

3, 6, 12, 24, 48, . . .

3,  3 # 2,  3 # 22,  3 # 23,  3 # 24,  . . .

DEFINITION OF A GEOMETRIC SEQUENCE

A geometric sequence is a sequence of the form

The number a is the first term, and r is the common ratio of the sequence. The
nth term of a geometric sequence is given by

an � ar n�1

a, ar, ar 
2, ar 

3, ar 
4, . . .
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(d) The graph of the geometric sequence is shown in Figure 1. Notice that
the points in the graph lie on the graph of the exponential function .

If 0 � r � 1, then the terms of the geometric sequence arn�1 decrease, but if r � 1, then
the terms increase. (What happens if r � 1?)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 5, 9, AND 13 ■

Geometric sequences occur naturally. Here is a simple example. Suppose a ball has
elasticity such that when it is dropped, it bounces up one-third of the distance it has fallen.
If this ball is dropped from a height of 2 m, then it bounces up to a height of .
On its second bounce, it returns to a height of , and so on (see Figure 2). 
Thus the height hn that the ball reaches on its nth bounce is given by the geometric 
sequence

We can find the nth term of a geometric sequence if we know any two terms, as the fol-
lowing examples show.

E X A M P L E  2 Finding Terms of a Geometric Sequence

Find the eighth term of the geometric sequence 5, 15, 45, . . . .

S O L U T I O N To find a formula for the nth term of this sequence, we need to find 
a and r. Clearly, a � 5. To find r, we find the ratio of any two consecutive terms. 
For instance, . Thus

The eighth term is .

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

E X A M P L E  3 Finding Terms of a Geometric Sequence

The third term of a geometric sequence is , and the sixth term is . Find the fifth term.

S O L U T I O N Since this sequence is geometric, its nth term is given by the formula
. Thus

From the values we are given for these two terms, we get the following system of
equations:

u

We solve this system by dividing:

Simplify

Take cube root of each side

Substituting for r in the first equation gives

Substitute 

Solve for a a � 7

r � 3
2 in 63

4 � ar 2 63
4 � aA32B

2

 r � 3
2

 r 3 � 27
8

 
ar 

5

ar 
2 �

1701
32
63
4

63
4 � ar 2

1701
32 � ar 5

 a6 �  ar6�1 � ar 
5

 a3 �  ar 
3�1 � ar 

2

an � ar n�1

1701
32

63
4

a8 � 513 2 8�1 � 513 2 7 � 10,935

an � 513 2 n�1

r � 45
15 � 3

hn � 2
3A

1
3B

n�1
� 2A13B

n

A23B A
1
3B � 2

9  m
2A13B � 2

3  m

y � 1
5
# 2x�1

an � 1
5
# 2n�1
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It follows that the nth term of this sequence is

Thus the fifth term is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

▼ Partial Sums of Geometric Sequences
For the geometric sequence a, ar, ar2, ar3, ar4, . . . , arn�1, . . . , the nth partial sum is

To find a formula for Sn, we multiply Sn by r and subtract from Sn:

So

We summarize this result.

E X A M P L E  4 Finding a Partial Sum of a Geometric Sequence

Find the sum of the first five terms of the geometric sequence

S O L U T I O N The required sum is the sum of the first five terms of a geometric
sequence with a � 1 and r � 0.7. Using the formula for Sn with n � 5, we get

Thus the sum of the first five terms of this sequence is 2.7731.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 49 AND 53 ■

E X A M P L E  5 Finding a Partial Sum of a Geometric Sequence

Find the sum .a
5

k�1
7A� 

2
3B

k

S5 � 1 # 1 � 10.7 2 5

1 � 0.7
� 2.7731

1, 0.7, 0.49, 0.343, . . .

 Sn �
a11 � r n 2

1 � r
  1r � 1 2

 Sn11 � r 2 � a11 � r n 2

Sn � rSn � a � ar n

rSn � ar � ar 
2 � ar 

3 � ar 
4 � . . . � ar 

n�1 � ar 
n

Sn � a � ar � ar 
2 � ar 

3 � ar 
4 � . . . � ar 

n�1

Sn � a
n

k�1
ar 

k�1 � a � ar � ar 
2 � ar 

3 � ar 
4 � . . . � ar 

n�1

a5 � 7A32B
5�1

� 7A32B
4

� 567
16

an � 7A32B
n�1
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S R I N I V A S A  R A M A N U J A N (1887–1920)
was born into a poor family in the
small town of Kumbakonam in India.
Self-taught in mathematics, he worked
in virtual isolation from other mathe-
maticians. At the age of 25 he wrote a
letter to G. H. Hardy, the leading British
mathematician at the time, listing some
of his discoveries. Hardy immediately
recognized Ramanujan’s genius, and for
the next six years the two worked to-
gether in London until Ramanujan fell
ill and returned to his hometown in 
India, where he died a year later.
Ramanujan was a genius with phe-
nomenal ability to see hidden patterns
in the properties of numbers. Most of
his discoveries were written as compli-
cated infinite series, the importance of
which was not recognized until many
years after his death. In the last year of
his life he wrote 130 pages of mysteri-
ous formulas, many of which still defy
proof. Hardy tells the story that when
he visited Ramanujan in a hospital and
arrived in a taxi, he remarked to 
Ramanujan that the cab’s number,
1729, was uninteresting. Ramanujan
replied “No, it is a very interesting num-
ber. It is the smallest number express-
ible as the sum of two cubes in two dif-
ferent ways.”

PARTIAL SUMS OF A GEOMETRIC SEQUENCE

For the geometric sequence an � arn�1, the nth partial sum

is given by

Sn � a 

1 � r 
n

1 � r

Sn � a � ar � ar 
2 � ar 

3 � ar 
4 � . . . � ar 

n�1  1r � 1 2

Th
e 

Gr
an

ge
r C

ol
le

ct
io

n,
 N

YC
—

Al
l r

ig
ht

s 
re

se
rv

ed
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S O L U T I O N The given sum is the fifth partial sum of a geometric sequence with first
term and common ratio . Thus by the formula for Sn we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 55 ■

▼ What Is an Infinite Series?
An expression of the form

is called an infinite series. The dots mean that we are to continue the addition indefinitely.
What meaning can we attach to the sum of infinitely many numbers? It seems at first that it
is not possible to add infinitely many numbers and arrive at a finite number. But consider
the following problem. You have a cake, and you want to eat it by first eating half the cake,
then eating half of what remains, then again eating half of what remains. This process can
continue indefinitely because at each stage, some of the cake remains. (See Figure 3.)

Does this mean that it’s impossible to eat all of the cake? Of course not. Let’s write
down what you have eaten from this cake:

This is an infinite series, and we note two things about it: First, from Figure 3 it’s clear
that no matter how many terms of this series we add, the total will never exceed 1. Sec-
ond, the more terms of this series we add, the closer the sum is to 1 (see Figure 3). This
suggests that the number 1 can be written as the sum of infinitely many smaller numbers:

To make this more precise, let’s look at the partial sums of this series:

and, in general (see Example 5 of Section 8.1),

Sn � 1 �
1

2n

 S4 �
1

2
�

1

4
�

1

8
�  

1

16
�

15

16

 S3 �
1

2
�

1

4
�

1

8
 � 

7

8

 S2 �
1

2
�

1

4
 � 

3

4

 S1 �
1

2
 � 

1

2

1 �
1

2
�

1

4
�

1

8
�

1

16
� . . . �

1

2n � . . .

a
q

k�1

1

2k �
1

2
�

1

4
�

1

8
�

1

16
� . . .

a
q

k�1
ak � a1 � a2 � a3 � a4 � . . .

S5 � � 

14

3
# 1 � A� 

2
3B

5

1 � A� 
2
3B

� � 

14

3
# 1 � 32

243
5
3

� � 

770

243

r � � 
2
3a � 7A� 

2
3B

1 � � 
14
3
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1
4

1
8

1
16

1
32

1
2

1
4

1
8

1
16

1
2

1
4

1
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1
2

1
4

1
2
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As n gets larger and larger, we are adding more and more of the terms of this series. In-
tuitively, as n gets larger, Sn gets closer to the sum of the series. Now notice that as n gets
large, 1/2n gets closer and closer to 0. Thus Sn gets close to 1 � 0 � 1. Using the notation
of Section 3.7, we can write

In general, if Sn gets close to a finite number S as n gets large, we say that the infinite se-
ries converges (or is convergent). The number S is called the sum of the infinite series.
If an infinite series does not converge, we say that the series diverges (or is divergent).

▼ Infinite Geometric Series
An infinite geometric series is a series of the form

We can apply the reasoning used earlier to find the sum of an infinite geometric series.
The nth partial sum of such a series is given by the formula

It can be shown that if , then rn gets close to 0 as n gets large (you can easily con-
vince yourself of this using a calculator). It follows that Sn gets close to as n
gets large, or

Thus the sum of this infinite geometric series is .a/ 11 � r 2

Sn �
a

1 � r
 as n � q

a/ 11 � r 2
0 r 0 � 1

Sn � a  

1 � r 
n

1 � r
  1r � 1 2

a � ar � ar 
2 � ar 

3 � ar 
4 � . . . � ar 

n�1 � . . .

Sn � 1 as n � q

590 C H A P T E R  8 | Sequences and Series

Here is another way to arrive at the 
formula for the sum of an infinite geo-
metric series:

Solve the equation S � a � rS for S
to get

S �
a

1 � r

 11 � r 2S � a

 S � rS � a

 � a � rS

 � a � r 1a � ar � ar 2 � . . . 2

 S � a � ar � ar 2 � ar 3 � . . .

SUM OF AN INFINITE GEOMETRIC SERIES

If , then the infinite geometric series 

converges and has the sum 

If , the series diverges.0 r 0 	 1

S �
a

1 � r

a
q

k�1
ar k�1 � a � ar � ar 2 � ar 3 � . . .

0 r 0 � 1

M AT H E M AT I C S  I N  T H E  M O D E R N  W O R L D

©
 B

ill
 R

os
s/

CO
RB

IS

Fractals
Many of the things we
model in this book have
regular predictable shapes.
But recent advances in
mathematics have made it
possible to model such
seemingly random or even
chaotic shapes as those of a
cloud, a flickering flame, a
mountain, or a jagged
coastline. The basic tools in
this type of modeling are

the fractals invented by the mathematician Benoit Mandelbrot. A frac-
tal is a geometric shape built up from a simple basic shape by scaling

and repeating the shape indefinitely according to a given rule. Fractals
have infinite detail; this means the closer you look, the more you see.
They are also self-similar; that is, zooming in on a portion of the fractal
yields the same detail as the original shape. Because of their beautiful
shapes, fractals are used by movie makers to create fictional landscapes
and exotic backgrounds.

Although a fractal is a complex shape, it is produced according to
very simple rules.This property of fractals is exploited in a process of
storing pictures on a computer called fractal image compression. In this
process a picture is stored as a simple basic shape and a rule; repeating
the shape according to the rule produces the original picture.This is an
extremely efficient method of storage; that’s how thousands of color pic-
tures can be put on a single compact disc.
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E X A M P L E  6 Infinite Series

Determine whether the infinite geometric series is convergent or divergent. If it is con-
vergent, find its sum.

(a) (b)

S O L U T I O N

(a) This is an infinite geometric series with and . Since , the
series converges. By the formula for the sum of an infinite geometric series we have 

(b) This is an infinite geometric series with and . Since ,
the series diverges.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 57 AND 61 ■

E X A M P L E  7 Writing a Repeated Decimal as a Fraction

Find the fraction that represents the rational number .

S O L U T I O N This repeating decimal can be written as a series:

After the first term, the terms of this series form an infinite geometric series with

Thus the sum of this part of the series is

So

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 69 ■

2.351 �
23

10
�

51

990
�

2328

990
�

388

165

S �
51

1000

1 � 1
100

�
51

1000
99
100

�
51

1000
# 100

99
�

51

990

a �
51

1000
  and  r �

1

100

23

10
�

51

1000
�

51

100,000
�

51

10,000,000
�

51

1,000,000,000
� . . .

2.351

0 r 0 � @ 75 @ � 1r � 7
5a � 1

S �
2

1 � 1
5

�
5

2

0 r 0 � @ 15 @ � 1r � 1
5a � 2

1 �
7

5
� a

7

5
b

2

� a
7

5
b

3

� . . . 2 �
2

5
�

2

25
�

2

125
� . . .
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C O N C E P T S
1. A geometric sequence is a sequence in which the of

successive terms is constant.

2. The sequence is a geometric sequence in which a

is the first term and r is the . So for the 

geometric sequence the first term is ,

and the common ratio is .

3. True or false? If we know the first and second terms of a geo-
metric sequence, then we can find any other term.

4. (a) The nth partial sum of a geometric sequence is 

given by .Sn �

an � ar n�1

an � 215 2 n�1

an � ar n�1

(b) The series 

is an infinite series. If , then this 

series , and its sum is .

If , the series .

S K I L L S
5–8 ■ The nth term of a sequence is given. (a) Find the first five
terms of the sequence. (b) What is the common ratio r? (c) Graph
the terms you found in (a).

5. 6.

7. 8. an � 3n�1an � 5
2  
A� 

1
2B

n�1

an � 31�4 2 n�1an � 512 2 n�1

0 r 0 	 1

S �

0 r 0 � 1

a
q

k�1
ar k�1 � a � ar � ar 2 � ar 3 � . . .

8 . 3  E X E R C I S E S
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49–52 ■ Find the partial sum Sn of the geometric sequence that
satisfies the given conditions.

49. a � 5, r � 2, n � 6 50.

51. a3 � 28, a6 � 224, n � 6

52. a2 � 0.12, a5 � 0.00096, n � 4

53–56 ■ Find the sum.

53. 1 � 3 � 9 � . . . � 2187

54.

55. 56.

57–68 ■ Determine whether the infinite geometric series is 
convergent or divergent. If it is convergent, find its sum.

57. 58.

59. 60.

61.

62.

63.

64.

65.

66.

67.

68.

69–74 ■ Express the repeating decimal as a fraction.

69. 0.777 . . . 70. 71. 0.030303 . . .

72. 73. 74. 0.123123123 . . .

75. If the numbers a1, a2, . . . , an form a geometric sequence, then
a2, a3, . . . , an�1 are geometric means between a1 and an. In-
sert three geometric means between 5 and 80.

76. Find the sum of the first ten terms of the sequence

A P P L I C A T I O N S
77. Depreciation A construction company purchases a bull-

dozer for $160,000. Each year the value of the bulldozer de-
preciates by 20% of its value in the preceding year. Let Vn be
the value of the bulldozer in the nth year. (Let n � 1 be the
year the bulldozer is purchased.)
(a) Find a formula for Vn.
(b) In what year will the value of the bulldozer be less than

$100,000?

a � b, a 
2 � 2b, a 

3 � 3b, a 
4 � 4b, . . .

0.1122.1125

0.253

1 � 22 � 2 � 222 � 4 � . . .

112
�

1

2
�

1

212
�

1

4
� . . .

� 

100

9
�

10

3
� 1 �

3

10
� . . .

3 � 311.1 2 � 311.1 2 2 � 311.1 2 3 � . . .

1 � 1 � 1 � 1 � . . .

3 �
3

2
�

3

4
�

3

8
� . . .

1

36 �
1

38 �
1

310 �
1

312 � . . .

1 �
3

2
� a

3

2
b

2

� a
3

2
b

3

� . . .

2

5
�

4

25
�

8

125
� . . .1 �

1

3
�

1

9
�

1

27
� . . .

1 �
1

2
�

1

4
�

1

8
� . . .1 �

1

3
�

1

9
�

1

27
� . . .

a
5

j�0
7A32B  

j
a
10

k�0
3A12B

k

1 � 1
2 � 1

4 � 1
8 � . . . � 1

512

a � 2
3,  r � 1

3,  n � 4

9–12 ■ Find the nth term of the geometric sequence with given
first term a and common ratio r. What is the fourth term?

9. a �3, r � 5 10. a � �6, r � 3

11. 12.

13–22 ■ Determine whether the sequence is geometric. If it is
geometric, find the common ratio.

13. 2, 4, 8, 16, . . . 14. 2, 6, 18, 36, . . .

15. 16.

17. 18. 27, �9, 3, �1, . . .

19. 20. e2, e4, e6, e8, . . .

21. 1.0, 1.1, 1.21, 1.331, . . . 22.

23–28 ■ Find the first five terms of the sequence, and determine
whether it is geometric. If it is geometric, find the common ratio,
and express the nth term of the sequence in the standard form 
an � arn�1.

23. 24.

25. 26.

27. 28. an � nn

29–38 ■ Determine the common ratio, the fifth term, and the nth
term of the geometric sequence.

29. 2, 6, 18, 54, . . . 30.

31. 0.3, �0.09, 0.027, �0.0081, . . .

32.

33. 144, �12, 1, , . . . 34.

35. 3, 35/3, 37/3, 27, . . . 36.

37. 1, s2/7, s4/ 7, s6/7, . . . 38. 5, 5c�1, 52c�1, 53c�1, . . .

39. The first term of a geometric sequence is 8, and the second
term is 4. Find the fifth term.

40. The first term of a geometric sequence is 3, and the third term
is . Find the fifth term.

41. The third term of a geometric sequence is , and the sixth
term is . Find the first and the second term.

42. The fourth term of a geometric sequence is , and the seventh
term is . Find the first term and the third term.

43. The eighth term of a geometric sequence is 640, and the third
term is 20. Find the first term and the nth term.

44. The third term of a geometric sequence is 12, and the sixth
term is 768. Find the first term and the nth term.

45. The common ratio in a geometric sequence is , and the fourth
term is . Find the third term.

46. The common ratio in a geometric sequence is , and the fifth
term is 1. Find the first three terms.

47. Which term of the geometric sequence 2, 6, 18, . . . is 118,098?

48. The second and fifth terms of a geometric sequence are 10 and
1250, respectively. Is 31,250 a term of this sequence? If so,
which term is it?

3
2

5
2

2
5

3645
64

135
8

800
243

100
9

4
3

t, 
t 

2

2
, 

t 
3

4
, 

t  
4

8
, . . .

�8, �2, � 
1
2, � 

1
8, . . .� 

1
12

1, 12, 2, 212, . . .

7, 14
3 , 28

9 , 56
27, . . .

an � ln15n�1 2

an � 1�1 2 n2nan �
1

4n

an � 4 � 3nan � 213 2 n

1
2, 

1
4, 

1
6, 

1
8, . . .

1
2, 

1
3, 

1
4, 

1
5, . . .

3, 32, 
3
4, 

3
8, . . .

48, 36, 27, 81
4 , . . .144, 96, 64, 128

3  , . . .

a � 13, r � 13a � 5
2, r � � 

1
2
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86. Drug Concentration A certain drug is administered once a
day. The concentration of the drug in the patient’s bloodstream
increases rapidly at first, but each successive dose has less ef-
fect than the preceding one. The total amount of the drug (in
mg) in the bloodstream after the nth dose is given by

(a) Find the amount of the drug in the bloodstream after 
n � 10 days.

(b) If the drug is taken on a long-term basis, the amount in 
the bloodstream is approximated by the infinite series 

. Find the sum of this series.

87. Bouncing Ball A certain ball rebounds to half the height
from which it is dropped. Use an infinite geometric series to
approximate the total distance the ball travels after being
dropped from 1 m above the ground until it comes to rest.

88. Bouncing Ball If the ball in Exercise 87 is dropped from 
a height of 8 ft, then 1 s is required for its first complete
bounce—from the instant it first touches the ground until it
next touches the ground. Each subsequent complete bounce re-
quires as long as the preceding complete bounce. Use
an infinite geometric series to estimate the time interval from
the instant the ball first touches the ground until it stops
bouncing.

89. Geometry The midpoints of the sides of a square of side 1
are joined to form a new square. This procedure is repeated for
each new square. (See the figure.)
(a) Find the sum of the areas of all the squares.
(b) Find the sum of the perimeters of all the squares.

90. Geometry A circular disk of radius R is cut out of paper,
as shown in figure (a). Two disks of radius are cut out of 
paper and placed on top of the first disk, as in figure (b), and
then four disks of radius are placed on these two disks, as
in figure (c). Assuming that this process can be repeated in-
definitely, find the total area of all the disks.

(a) (b) (c)

1
4 R

1
2 R

1/12

a
q

k�1
50A12B

k�1

a
n

k�1
50A12B

k�1

78. Family Tree A person has two parents, four grandparents,
eight great-grandparents, and so on. How many ancestors does
a person have 15 generations back?

79. Bouncing Ball A ball is dropped from a height of 80 ft. The
elasticity of this ball is such that it rebounds three-fourths of
the distance it has fallen. How high does the ball rebound on
the fifth bounce? Find a formula for how high the ball re-
bounds on the nth bounce.

80. Bacteria Culture A culture initially has 5000 bacteria, and
its size increases by 8% every hour. How many bacteria are
present at the end of 5 hours? Find a formula for the number
of bacteria present after n hours.

81. Mixing Coolant A truck radiator holds 5 gal and is filled
with water. A gallon of water is removed from the radiator and
replaced with a gallon of antifreeze; then a gallon of the mix-
ture is removed from the radiator and again replaced by a gal-
lon of antifreeze. This process is repeated indefinitely. How
much water remains in the tank after this process is repeated 
3 times? 5 times? n times?

82. Musical Frequencies The frequencies of musical notes
(measured in cycles per second) form a geometric sequence.
Middle C has a frequency of 256, and the C that is an octave
higher has a frequency of 512. Find the frequency of C two
octaves below middle C.

83. Bouncing Ball A ball is dropped from a height of 9 ft. The
elasticity of the ball is such that it always bounces up one-
third the distance it has fallen.
(a) Find the total distance the ball has traveled at the instant it

hits the ground the fifth time.
(b) Find a formula for the total distance the ball has traveled

at the instant it hits the ground the nth time.

84. Geometric Savings Plan A very patient woman wishes to
become a billionaire. She decides to follow a simple scheme:
She puts aside 1 cent the first day, 2 cents the second day,
4 cents the third day, and so on, doubling the number of cents
each day. How much money will she have at the end of 30 days?
How many days will it take this woman to realize her wish?

85. St. Ives The following is a well-known children’s rhyme:

As I was going to St. Ives,
I met a man with seven wives;
Every wife had seven sacks;
Every sack had seven cats;
Every cat had seven kits;
Kits, cats, sacks, and wives,
How many were going to St. Ives?

Assuming that the entire group is actually going to St. Ives,
show that the answer to the question in the rhyme is a partial
sum of a geometric sequence, and find the sum.

Father

Mother

Grandfather

Grandmother

Grandfather

Grandmother
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93. Reciprocals of a Geometric Sequence If a1, a2,
a3, . . . is a geometric sequence with common ratio r, show
that the sequence

is also a geometric sequence, and find the common ratio.

94. Logarithms of a Geometric Sequence If a1, a2,
a3, . . . is a geometric sequence with a common ratio r � 0
and a1 � 0, show that the sequence

is an arithmetic sequence, and find the common difference.

95. Exponentials of an Arithmetic Sequence If a1, a2,
a3, . . . is an arithmetic sequence with common difference d,
show that the sequence

is a geometric sequence, and find the common ratio.

10a1, 10a2, 10a3, . . .

log a1, log a2, log a3, . . .

1
a1

, 
1
a2

, 
1
a3

, . . .

91. Geometry A yellow square of side 1 is divided into nine
smaller squares, and the middle square is colored blue as
shown in the figure. Each of the smaller yellow squares is in
turn divided into nine squares, and each middle square is col-
ored blue. If this process is continued indefinitely, what is the
total area that is colored blue?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
92. Arithmetic or Geometric? The first four terms of a se-

quence are given. Determine whether these terms can be the
terms of an arithmetic sequence, a geometric sequence, or 
neither. Find the next term if the sequence is arithmetic or 
geometric.
(a) 5, �3, 5, �3, . . . (b) , 1, , , . . .
(c) , 3, 3 , 9, . . . (d) 1, �1, 1, �1, . . .
(e) 2, �1, , 2, . . . (f) x � 1, x, x � 1, x � 2, . . .
(g) �3, , 0, , . . . (h) , , , 1, . . .16 513 5153

2� 
3
2

1
2

1313

7
3

5
3

1
3
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Finding Patterns

In this project we investigate the process of finding 
patterns in sequences by using “difference sequences.”
You can find the project at the book companion website:
www.stewartmath.com

❍ DISCOVERY
PROJECT

8.4 MATHEMATICS OF FINANCE

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the amount of an annuity � Find the present value of an annuity
� Find the amount of the installment payments on a loan

Many financial transactions involve payments that are made at regular intervals. For ex-
ample, if you deposit $100 each month in an interest-bearing account, what will the value
of your account be at the end of 5 years? If you borrow $100,000 to buy a house, how
much must your monthly payments be in order to pay off the loan in 30 years? Each of
these questions involves the sum of a sequence of numbers; we use the results of the pre-
ceding section to answer them here.

▼ The Amount of an Annuity
An annuity is a sum of money that is paid in regular equal payments. Although the word
annuity suggests annual (or yearly) payments, they can be made semiannually, quarterly,
monthly, or at some other regular interval. Payments are usually made at the end of the
payment interval. The amount of an annuity is the sum of all the individual payments
from the time of the first payment until the last payment is made, together with all the in-
terest. We denote this sum by Af (the subscript f here is used to denote final amount).

E X A M P L E  1 Calculating the Amount of an Annuity

An investor deposits $400 every December 15 and June 15 for 10 years in an account
that earns interest at the rate of 8% per year, compounded semiannually. How much will
be in the account immediately after the last payment?
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S O L U T I O N We need to find the amount of an annuity consisting of 20 semiannual
payments of $400 each. Since the interest rate is 8% per year, compounded semiannu-
ally, the interest rate per time period is i � 0.08/2 � 0.04. The first payment is in the
account for 19 time periods, the second for 18 time periods, and so on.

The last payment receives no interest. The situation can be illustrated by the time line
in Figure 1.

The amount Af of the annuity is the sum of these 20 amounts. Thus

But this is a geometric series with a � 400, r � 1.04, and n � 20, so

Thus the amount in the account after the last payment is $11,911.23.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 3 ■

In general, the regular annuity payment is called the periodic rent and is denoted by R.
We also let i denote the interest rate per time period and let n denote the number of pay-
ments. We always assume that the time period in which interest is compounded is equal to
the time between payments. By the same reasoning as in Example 1, we see that the amount
Af of an annuity is

Since this is the nth partial sum of a geometric sequence with a � R and r � 1 � i, the
formula for the partial sum gives

Af � R  
1 � 11 � i 2 n

1 � 11 � i 2
� R  

1 � 11 � i 2 n

�i
� R  

11 � i 2 n � 1

i

Af � R � R11 � i 2 � R11 � i 2 2 � . . . � R11 � i 2 n�1

Af � 400  

1 � 11.04 2 20

1 � 1.04
� 11,911.23

Af � 400 � 40011.04 2 � 40011.04 2 2 � . . . � 40011.04 2 19

1 2 3

400 400 400 400 400 400

9 10

400400 400 400
400(1.04)
400(1.04)2

400(1.04)3

400(1.04)14

400(1.04)15

400(1.04)16

400(1.04)17

400(1.04)18

400(1.04)19

Time
(years)

NOW

Payment
(dollars)

…

…

S E C T I O N  8 . 4 | Mathematics of Finance 595

Unless otherwise noted, all content on this page is © Cengage Learning.

F I G U R E  1

When using interest rates in calcu-
lators, remember to convert percentages
to decimals. For example, 8% is 0.08.

AMOUNT OF AN ANNUIT Y

The amount Af of an annuity consisting of n regular equal payments of size R
with interest rate i per time period is given by

Af � R  
11 � i 2 n � 1

i
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E X A M P L E  2 Calculating the Amount of an Annuity

How much money should be invested every month at 12% per year, compounded monthly,
in order to have $4000 in 18 months?

S O L U T I O N In this problem i � 0.12/12 � 0.01, Af � 4000, and n � 18. We need to
find the amount R of each payment. By the formula for the amount of an annuity,

Solving for R, we get

Thus the monthly investment should be $203.93.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 9 ■

▼ The Present Value of an Annuity
If you were to receive $10,000 five years from now, it would be worth much less than if
you got $10,000 right now. This is because of the interest you could accumulate during the
next five years if you invested the money now. What smaller amount would you be will-
ing to accept now instead of receiving $10,000 in five years? This is the amount of money
that, together with interest, would be worth $10,000 in five years. The amount that we are
looking for here is called the discounted value or present value. If the interest rate is 8%
per year, compounded quarterly, then the interest per time period is i � 0.08/4 � 0.02, and
there are 4 
 5 � 20 time periods. If we let PV denote the present value, then by the for-
mula for compound interest (Section 4.1), we have

so

Thus in this situation the present value of $10,000 is $6729.71. This reasoning leads to 
a general formula for present value. If an amount is to be paid in a lump sum n time 
periods from now and the interest rate per time period is i, then its present value Ap is
given by

Similarly, the present value of an annuity is the amount Ap that must be invested now
at the interest rate i per time period to provide n payments, each of amount R. Clearly, Ap

is the sum of the present values of each individual payment (see Exercise 29). Another
way of finding Ap is to note that Ap is the present value of Af:

Ap � Af 11 � i 2�n � R  
11 � i 2 n � 1

i
 11 � i 2�n � R 

1 � 11 � i 2�n

i

Ap � Af 11 � i 2�n

Af

PV � 10,00011 � 0.02 2�20 � 6729.713

10,000 � PV11 � i 2 n � PV11 � 0.02 2 20

R �
400010.01 2

11 � 0.01 2 18 � 1
� 203.928

4000 � R 
11 � 0.01 2 18 � 1

0.01
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Mathematical Economics
The health of the global economy is
determined by such interrelated fac-
tors as supply, demand, production,
consumption, pricing, distribution, and
thousands of other factors. These fac-
tors are in turn determined by eco-
nomic decisions (for example, whether
or not you buy a certain brand of
toothpaste) made by billions of differ-
ent individuals each day. How will to-
day’s creation and distribution of
goods affect tomorrow’s economy?
Such questions are tackled by mathe-
maticians who work on mathematical
models of the economy. In the 1940s
Wassily Leontief, a pioneer in this area,
created a model consisting of thou-
sands of equations that describe how
different sectors of the economy, such
as the oil industry, transportation, and
communication, interact with each
other. A different approach to eco-
nomic models, one dealing with indi-
viduals in the economy as opposed to
large sectors, was pioneered by John
Nash in the 1950s. In his model, which
uses game theory, the economy is a
game where individual players make
decisions that often lead to mutual
gain. Leontief and Nash were awarded
the Nobel Prize in Economics in 1973
and 1994, respectively. Economic the-
ory continues to be a major area of
mathematical research.

M AT H E M AT I C S  I N  
T H E  M O D E R N  W O R L D

THE PRESENT VALUE OF AN ANNUIT Y

The present value Ap of an annuity consisting of n regular equal payments of size
R and interest rate i per time period is given by

Ap � R  

1 � 11 � i 2�n

i
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E X A M P L E  3 Calculating the Present Value of an Annuity

A person wins $10,000,000 in the California lottery, and the amount is paid in yearly in-
stallments of half a million dollars each for 20 years. What is the present value of his
winnings? Assume that he can earn 10% interest, compounded annually.

S O L U T I O N Since the amount won is paid as an annuity, we need to find its present
value. Here, i � 0.1, R � $500,000, and n � 20. Thus

This means that the winner really won only $4,256,781.86 if it were paid immediately.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 11 ■

▼ Installment Buying
When you buy a house or a car by installment, the payments that you make are an annu-
ity whose present value is the amount of the loan.

E X A M P L E  4 The Amount of a Loan

A student wishes to buy a car. She can afford to pay $200 per month but has no money
for a down payment. If she can make these payments for four years and the interest rate
is 12%, what purchase price can she afford?

S O L U T I O N The payments that the student makes constitute an annuity whose present
value is the price of the car (which is also the amount of the loan, in this case). Here,
we have i � 0.12/12 � 0.01, R � 200, and n � 12 
 4 � 48, so

Thus the student can buy a car priced at $7594.79.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

When a bank makes a loan that is to be repaid with regular equal payments R, then the
payments form an annuity whose present value Ap is the amount of the loan. So to find the
size of the payments, we solve for R in the formula for the amount of an annuity. This
gives the following formula for R.

E X A M P L E  5 Calculating Monthly Mortgage Payments

A couple borrows $100,000 at 9% interest as a mortage loan on a house. They expect to
make monthly payments for 30 years to repay the loan. What is the size of each pay-
ment?

Ap � R  
1 � 11 � i 2�n

i
� 200  

1 � 11 � 0.01 2�48

0.01
� 7594.792

Ap � 500,000 
1 � 11 � 0.1 2�20

0.1
� 4,256,781.859
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INSTALLMENT BUYING

If a loan Ap is to be repaid in n regular equal payments with interest rate i per
time period, then the size R of each payment is given by

R �
iAp

1 � 11 � i 2�n
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S O L U T I O N The mortgage payments form an annuity whose present value is 
Ap � $100,000. Also, i � 0.09/12 � 0.0075, and n � 12 
 30 � 360. We are looking 
for the amount R of each payment.

From the formula for installment buying, we get

Thus the monthly payments are $804.62.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

We now illustrate the use of graphing devices in solving problems related to install-
ment buying.

E X A M P L E  6 Calculating the Interest Rate from the Size 
of Monthly Payments

A car dealer sells a new car for $18,000. He offers the buyer payments of $405 per
month for 5 years. What interest rate is this car dealer charging?

S O L U T I O N The payments form an annuity with present value Ap � $18,000,
R � 405, and n � 12 
 5 � 60. To find the interest rate, we must solve for i in the
equation

A little experimentation will convince you that it is not possible to solve this equation
for i algebraically. So to find i, we use a graphing device to graph R as a function of the
interest rate x, and we then use the graph to find the interest rate corresponding to the
value of R we want ($405 in this case). Since i � x/12, we graph the function

in the viewing rectangle 30.06, 0.164 
 3350, 4504, as shown in Figure 2. We also graph
the horizontal line in the same viewing rectangle. Then, by moving the cur-
sor to the point of intersection of the two graphs, we find that the corresponding x-value
is approximately 0.125. Thus the interest rate is about %.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

12 
1
2

R1x 2 � 405

R1x 2 �

x

12
 118,000 2

1 � a1 �
x

12
b

�60

R �
iAp

1 � 11 � i 2�n

 R �
iAp

1 � 11 � i 2�n �
10.0075 2 1100,000 2

1 � 11 � 0.0075 2�360 � 804.623
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450

350
0.06 0.160.125

405

F I G U R E  2

C O N C E P T S
1. An annuity is a sum of money that is paid in regular equal 

payments. The of an annuity is the sum of all the
individual payments together with all the interest.

2. The of an annuity is the amount that
must be invested now at interest rate i per time period to 
provide n payments each of amount R.

A P P L I C A T I O N S
3. Annuity Find the amount of an annuity that consists of 

10 annual payments of $1000 each into an account that pays
6% interest per year.

4. Annuity Find the amount of an annuity that consists of 
24 monthly payments of $500 each into an account that pays
8% interest per year, compounded monthly.

8 . 4  E X E R C I S E S

90169_Ch08_569-624.qxd  11/23/11  3:58 PM  Page 598



tends to secure a 30-year mortgage, how much can they
borrow?

21. Financing a Car Jane agrees to buy a car for a down pay-
ment of $2000 and payments of $220 per month for 3 years. If
the interest rate is 8% per year, compounded monthly, what is
the actual purchase price of her car?

22. Financing a Ring Mike buys a ring for his fiancee by pay-
ing $30 a month for one year. If the interest rate is 10% per
year, compounded monthly, what is the price of the ring?

23. Mortgage A couple secures a 30-year loan of $100,000 at
% per year, compounded monthly, to buy a house.

(a) What is the amount of their monthly payment?
(b) What total amount will they pay over the 30-year period?
(c) If, instead of taking the loan, the couple deposits the

monthly payments in an account that pays % interest 
per year, compounded monthly, how much will be in the
account at the end of the 30-year period?

24. Mortgage A couple needs a mortgage of $300,000. Their
mortgage broker presents them with two options: a 30-year
mortgage at interest or a 15-year mortgage at 
interest.
(a) Find the monthly payment on the 30-year mortgage and

on the 15-year mortgage. Which mortgage has the larger
monthly payment?

(b) Find the total amount to be paid over the life of each loan.
Which mortgage has the lower total payment over its
lifetime?

25. Interest Rate John buys a stereo system for $640. He
agrees to pay $32 a month for 2 years. Assuming that interest
is compounded monthly, what interest rate is he paying?

26. Interest Rate Janet’s payments on her $12,500 car are $420
a month for 3 years. Assuming that interest is compounded
monthly, what interest rate is she paying on the car loan?

27. Interest Rate An item at a department store is priced at
$189.99 and can be bought by making 20 payments of $10.50.
Find the interest rate, assuming that interest is compounded
monthly.

28. Interest Rate A man purchases a $2000 diamond ring for a
down payment of $200 and monthly installments of $88 for 
2 years. Assuming that interest is compounded monthly, what
interest rate is he paying?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
29. Present Value of an Annuity

(a) Draw a time line as in Example 1 to show that the present
value of an annuity is the sum of the present values of
each payment, that is,

(b) Use part (a) to derive the formula for Ap given in the text.

30. An Annuity That Lasts Forever An annuity in perpetuity
is one that continues forever. Such annuities are useful in setting
up scholarship funds to ensure that the award continues.

Ap �
R

1 � i
�

R

11 � i 2 2
�

R

11 � i 2 3
� . . . �

R

11 � i 2 n

5 
3
4%6 

1
2%

9 
3
4

9 
3
4

5. Annuity Find the amount of an annuity that consists of 
20 annual payments of $5000 each into an account that pays
interest of 12% per year.

6. Annuity Find the amount of an annuity that consists of 
20 semiannual payments of $500 each into an account that
pays 6% interest per year, compounded semiannually.

7. Annuity Find the amount of an annuity that consists of 
16 quarterly payments of $300 each into an account that pays
8% interest per year, compounded quarterly.

8. Annuity Find the amount of an annuity that consists of 
40 annual payments of $2000 each into an account that pays
interest of 5% per year. 

9. Saving How much money should be invested every quarter
at 10% per year, compounded quarterly, to have $5000 in 
2 years?

10. Saving How much money should be invested monthly 
at 6% per year, compounded monthly, to have $2000 in 
8 months?

11. Annuity What is the present value of an annuity that con-
sists of 20 semiannual payments of $1000 at an interest rate of
9% per year, compounded semiannually?

12. Annuity What is the present value of an annuity that con-
sists of 30 monthly payments of  $300 at an interest rate of 8%
per year, compounded monthly. 

13. Funding an Annuity How much money must be invested
now at 9% per year, compounded semiannually, to fund an an-
nuity of 20 payments of $200 each, paid every 6 months, the
first payment being 6 months from now?

14. Funding an Annuity A 55-year-old man deposits $50,000
to fund an annuity with an insurance company. The money
will be invested at 8% per year, compounded semiannually. He
is to draw semiannual payments until he reaches age 65. What
is the amount of each payment?

15. Financing a Car A woman wants to borrow $12,000 
to buy a car. She wants to repay the loan by monthly install-
ments for 4 years. If the interest rate on this loan is % 
per year, compounded monthly, what is the amount of each
payment?

16. Mortgage What is the monthly payment on a 30-year mort-
gage of $80,000 at 9% interest? What is the monthly payment
on this same mortgage if it is to be repaid over a 15-year
period?

17. Mortgage What is the monthly payment on a 30-year
mortgage of $100,000 at 8% interest per year, compounded
monthly? What is the total amount paid on this loan over the
30-year period?

18. Mortgage What is the monthly payment on a 15-year mort-
gage of $200,000 at 6% interest? What is the total amount
paid on this loan over the 15-year period?

19. Mortgage Dr. Gupta is considering a 30-year mortgage at
6% interest. She can make payments of $3500 a month. What
size loan can she afford?

20. Mortgage A couple can afford to make a monthly mortgage
payment of $650. If the mortgage rate is 9% and the couple in-

10 
1
2
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ward the principal, and the remaining principal after each pay-
ment. The table below shows the first few entries in the amor-
tization schedule.

After 10 years they have made 120 payments and are wonder-
ing how much they still owe, but they have lost the amortiza-
tion schedule.
(a) How much do John and Mary still owe on their mortgage?

[Hint: The remaining balance is the present value of the
240 remaining payments.]

(b) How much of their next payment is interest, and how
much goes toward the principal? [Hint: Since
9% � 12 � 0.75%, they must pay 0.75% of the 
remaining principal in interest each month.]

(a) Draw a time line (as in Example 1) to show that to set up
an annuity in perpetuity of amount R per time period, the
amount that must be invested now is

where i is the interest rate per time period.
(b) Find the sum of the infinite series in part (a) to show that

(c) How much money must be invested now at 10% per year,
compounded annually, to provide an annuity in perpetuity
of $5000 per year? The first payment is due in one year.

(d) How much money must be invested now at 8% per year,
compounded quarterly, to provide an annuity in perpetuity
of $3000 per year? The first payment is due in one year.

31. Amortizing a Mortgage When they bought their house,
John and Mary took out a $90,000 mortgage at 9% interest,
repayable monthly over 30 years. Their payment is $724.17
per month (check this, using the formula in the text). The bank
gave them an amortization schedule, which is a table show-
ing how much of each payment is interest, how much goes to-

Ap �
R

i

Ap �
R

1 � i
�

R

11 � i 2 2
�

R

11 � i 2 3
� . . . �

R

11 � i 2 n
� . . .

600 C H A P T E R  8 | Sequences and Series

Payment Total Interest Principal Remaining 
number payment payment payment principal

1 724.17 675.00 49.17 89,950.83
2 724.17 674.63 49.54 89,901.29
3 724.17 674.26 49.91 89,851.38
4 724.17 673.89 50.28 89,801.10

8.5 MATHEMATICAL INDUCTION

LEARNING OBJECTIVES After completing this section, you will be able to:

Prove a statement using the Principle of Mathematical Induction

There are two aspects to mathematics—discovery and proof—and they are of equal im-
portance. We must discover something before we can attempt to prove it, and we cannot
be certain of its truth until it has been proved. In this section we examine the relationship
between these two key components of mathematics more closely.

▼ Conjecture and Proof
Let’s try a simple experiment. We add more and more of the odd numbers as follows:

What do you notice about the numbers on the right side of these equations? They are, in
fact, all perfect squares. These equations say the following:

.

.

.

.

.The sum of the first 5 odd numbers is 52

The sum of the first 4 odd numbers is 42

The sum of the first 3 odd numbers is 32

The sum of the first 2 odd numbers is 22

The sum of the first 1 odd number is 12

 1 � 3 � 5 � 7 � 9 � 25

 1 � 3 � 5 � 7 � 16

 1 � 3 � 5 � 9

 1 � 3 � 4

 1 � 1
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This leads naturally to the following question: Is it true that for every natural number n, the
sum of the first n odd numbers is n2? Could this remarkable property be true? We could try
a few more numbers and find that the pattern persists for the first 6, 7, 8, 9, and 10 odd num-
bers. At this point we feel fairly confident that this is always true, so we make a conjecture:

.

Since we know that the nth odd number is 2n � 1, we can write this statement more pre-
cisely as

It is important to realize that this is still a conjecture. We cannot conclude by checking a
finite number of cases that a property is true for all numbers (there are infinitely many).
To see this more clearly, suppose someone tells us that he has added up the first trillion
odd numbers and found that they do not add up to 1 trillion squared. What would you tell
this person? It would be silly to say that you’re sure it’s true because you have already
checked the first five cases. You could, however, take out paper and pencil and start check-
ing it yourself, but this task would probably take the rest of your life. The tragedy would
be that after completing this task, you would still not be sure of the truth of the conjec-
ture! Do you see why?

Herein lies the power of mathematical proof. A proof is a clear argument that demon-
strates the truth of a statement beyond doubt.

▼ Mathematical Induction
Let’s consider a special kind of proof called mathematical induction. Here is how it
works: Suppose we have a statement that says something about all natural numbers n. For
example, for any natural number n, let be the following statement:

: The sum of the first n odd numbers is 

Since this statement is about all natural numbers, it contains infinitely many statements;
we will call them P(1), P(2), . . . .

. .

. .

. .

How can we prove all of these statements at once? Mathematical induction is a clever way
of doing just that.

The crux of the idea is this: Suppose we can prove that whenever one of these state-
ments is true, then the one following it in the list is also true. In other words,

.

This is called the induction step because it leads us from the truth of one statement to the
truth of the next. Now suppose that we can also prove that

.

The induction step now leads us through the following chain of statements:

.

.

.
. .
. .
. .

P13 2  is true, so P14 2  is true

P12 2  is true, so P13 2  is true

P11 2  is true, so P12 2  is true

P11 2  is true

For every k, if P1k 2  is true, then P1k � 1 2  is true

 P13 2 : The sum of the first 3 odd numbers is 32.

 P12 2 : The sum of the first 2 odd numbers is 22.

 P11 2 : The sum of the first 1 odd number is 12.

n2P1n 2

P1n 2

1 � 3 � 5 � . . . � 12n � 1 2 � n2

The sum of the first n odd numbers is n2

S E C T I O N  8 . 5 | Mathematical Induction 601

Consider the polynomial

Here are some values of :

All the values so far are prime num-
bers. In fact, if you keep going, you
will find that is prime for all nat-
ural numbers up to n � 40. It might
seem reasonable at this point to conjec-
ture that is prime for every natural
number n. But that conjecture would be
too hasty, because it is easily seen that

is not prime. This illustrates that
we cannot be certain of the truth of a
statement no matter how many special
cases we check. We need a convincing
argument—a proof—to determine the
truth of a statement.

p141 2

p1n 2

p1n 2

p17 2 � 83 p18 2 � 97

p15 2 � 61 p16 2 � 71

p13 2 � 47 p14 2 � 53

p11 2 � 41 p12 2 � 43

p1n 2

p1n 2 � n2 � n � 41
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So we see that if both the induction step and are proved, then statement is
proved for all n. Here is a summary of this important method of proof.

To apply this principle, there are two steps:

Step 1 Prove that is true.

Step 2 Assume that is true, and use this assumption to prove that is true.

Notice that in Step 2 we do not prove that is true. We only show that if is
true, then is also true. The assumption that is true is called the induction
hypothesis.

We now use mathematical induction to prove that the conjecture that we made at the
beginning of this section is true.

E X A M P L E  1 A Proof by Mathematical Induction

Prove that for all natural numbers n,

S O L U T I O N Let denote the statement .

Step 1 We need to show that is true. But is simply the statement that 1 � 12,
which is of course true.

Step 2 We assume that is true. Thus our induction hypothesis is

We want to use this to show that is true, that is,

Note that we get by substituting k � 1 for each n in the statement
We start with the left side and use the induction hypothesis to obtain the

right side of the equation:
P1n 2 . 4

P1k � 1 23

1 � 3 � 5 � . . . � 12k � 1 2 � 321k � 1 2 � 1 4 � 1k � 1 22

P1k � 1 2

1 � 3 � 5 � . . . � 12k � 1 2 � k2

P1k 2

P11 2P11 2

1 � 3 � 5 � . . . � 12n � 1 2 � n2P1n 2

1 � 3 � 5 � . . . � 12n � 1 2 � n2

P1k 2P1k � 1 2
P1k 2P1k 2

P1k � 1 2P1k 2

P11 2

P1n 2P11 2
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PRINCIPLE OF MATHEMATIC AL INDUCTION

For each natural number n, let be a statement depending on n. Suppose that
the following two conditions are satisfied.

1. is true.

2. For every natural number k, if is true then is true.

Then is true for all natural numbers n.P1n 2

P1k � 1 2P1k 2

P11 2

P1n 2
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Group the first k terms

Induction hypothesis

Distributive Property

Simplify

Factor

Thus follows from and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical Induction
that is true for all natural numbers n.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 3 ■

E X A M P L E  2 A Proof by Mathematical Induction

Prove that for every natural number n,

S O L U T I O N Let be the statement . We want
to show that is true for all natural numbers n.

Step 1 We need to show that is true. But says that

and this statement is clearly true.

Step 2 Assume that is true. Thus our induction hypothesis is

We want to use this to show that is true, that is,

So we start with the left side and use the induction hypothesis to obtain the 
right side:

Group the first k terms

Induction hypothesis

Factor k � 1

Common denominator

Write k � 2 as k � 1 � 1

Thus follows from , and this completes the induction step.P1k 2P1k � 1 2

 � 
1k � 1 2 3 1k � 1 2 � 1 4

2

 � 1k � 1 2 a
k � 2

2
b

 � 1k � 1 2 a
k

2
� 1 b

 � 
k1k � 1 2

2
� 1k � 1 2

 � 31 � 2 � 3 � . . . � k 4 � 1k � 1 2

1 � 2 � 3 � . . . � k � 1k � 1 2

1 � 2 � 3 � . . . � k � 1k � 1 2 �
1k � 1 2 3 1k � 1 2 � 1 4

2

P1k � 1 2

1 � 2 � 3 � . . . � k �
k1k � 1 2

2

P1k 2

1 �
111 � 1 2

2

P11 2P11 2

P1n 2
1 � 2 � 3 � . . . � n � n1n � 1 2 /2P1n 2

1 � 2 � 3 � . . . � n �
n1n � 1 2

2

P1n 2

P1k 2 ,P1k � 1 2

 � 1k � 1 2 2

 � k 
2 � 2k � 1

 � k 
2 � 32k � 2 � 1 4

 � k 
2 � 321k � 1 2 � 1 4

 � 31 � 3 � 5 � . . . � 12k � 1 2 4 � 321k � 1 2 � 1 4

1 � 3 � 5 � . . . � 12k � 1 2 � 321k � 1 2 � 1 4
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This equals k 2 by the induction
hypothesis

This equals by the

induction hypothesis

k1k � 1 2

2
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Having proved Steps 1 and 2, we conclude by the Principle of Mathematical Induction
that is true for all natural numbers n.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

The following box gives formulas for the sums of powers of the first n natural num-
bers. These formulas are important in calculus. Formula 1 is proved in Example 2. The
other formulas are also proved by using mathematical induction (see Exercises 6 and 9).

It might happen that a statement is false for the first few natural numbers but true
from some number on. For example, we might want to prove that is true for n 	 5.
Notice that if we prove that is true, then this fact, together with the induction step,
would imply the truth of , , , . . . . The next example illustrates this point.

E X A M P L E  3 Proving an Inequality by Mathematical Induction

Prove that 4n � 2n for all n 	 5.

S O L U T I O N Let denote the statement 4n � 2n.

Step 1 is the statement that � 25, or 20 � 32, which is true.

Step 2 Assume that is true. Thus our induction hypothesis is

We want to use this to show that is true, that is,

41k � 1 2 � 2k�1

P1k � 1 2

4k � 2k

P1k 2

4 # 5P15 2

P1n 2

P17 2P16 2P15 2
P15 2

P1n 2
P1n 2

P1n 2
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SUMS OF POWERS

0. 2.

1. 3. a
n

k�1
k3 �

n21n � 1 2 2
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k �

n1n � 1 2
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B L A I S E  PA S C A L (1623–1662) is consid-
ered one of the most versatile minds in
modern history. He was a writer and
philosopher as well as a gifted mathe-
matician and physicist. Among his con-
tributions that appear in this book are
Pascal’s triangle and the Principle of
Mathematical Induction.

Pascal’s father, himself a mathemati-
cian, believed that his son should not
study mathematics until he was 15 or

16. But at age 12, Blaise insisted on learning geometry and proved
most of its elementary theorems himself. At 19 he invented the first

mechanical adding machine. In 1647, after writing a major treatise
on the conic sections, he abruptly abandoned mathematics because
he felt that his intense studies were contributing to his ill health. He
devoted himself instead to frivolous recreations such as gambling,
but this only served to pique his interest in probability. In 1654 he
miraculously survived a carriage accident in which his horses ran 
off a bridge. Taking this to be a sign from God, Pascal entered a
monastery, where he pursued theology and philosophy, writing his
famous Pensées. He also continued his mathematical research. He
valued faith and intuition more than reason as the source of truth,
declaring that “the heart has its own reasons, which reason cannot
know.”

We get P(k � 1) by replacing n by 
k � 1 in the statement P(n).
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So we start with the left-hand side of the inequality and use the induction hy-
pothesis to show that it is less than the right-hand side. For k 	 5 we have

Distributive Property

Induction hypothesis

Because 4 � 4k

Induction hypothesis

Property of exponents

Thus follows from and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical Induction
that is true for all natural numbers n 	 5.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 21 ■

P1n 2

P1k 2 ,P1k � 1 2

 � 2k�1

 � 2 # 2k

 � 2k � 2k

 � 2k � 4k

 � 2k � 4

 41k � 1 2 � 4k � 4
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C O N C E P T S
1. Mathematical induction is a method of proving that a statement 

is true for all numbers n. In Step 1 we prove 

that is true.

2. Which of the following is true about Step 2 in a proof by
mathematical induction?
(i) We prove “ is true.”

(ii) We prove “If is true, then is true.”

S K I L L S
3–14 ■ Use mathematical induction to prove that the formula is
true for all natural numbers n.

3.

4.

5.

6.

7.

8. � 
n1n � 1 2 12n � 7 2

6
1 # 3 � 2 # 4 � 3 # 5 � . . . � n1n � 2 2

� 
n1n � 1 2 1n � 2 2

3
1 # 2 � 2 # 3 � 3 # 4 � . . . � n1n � 1 2

12 � 22 � 32 � . . . � n 
2 �

n1n � 1 2 12n � 1 2

6

5 � 8 � 11 � . . . � 13n � 2 2 �
n13n � 7 2

2

1 � 4 � 7 � . . . � 13n � 2 2 �
n13n � 1 2

2

2 � 4 � 6 � . . . � 2n � n1n � 1 2

P1k � 1 2P1k 2
P1k � 1 2

P 1n 2

9.

10.

11.

12.

13.

14. 1 � 2 � 22 � . . . � 2n�1 � 2n � 1

15. Show that n2 � n is divisible by 2 for all natural numbers n.

16. Show that 5n � 1 is divisible by 4 for all natural numbers n.

17. Show that n2 � n � 41 is odd for all natural numbers n.

18. Show that n3 � n � 3 is divisible by 3 for all natural 
numbers n.

19. Show that 8n � 3n is divisible by 5 for all natural numbers n.

20. Show that 32n � 1 is divisible by 8 for all natural numbers n.

21. Prove that n � 2n for all natural numbers n.

22. Prove that for all natural numbers n 	 3.

23. Prove that if x � �1, then for all natural
numbers n.

24. Show that 100n � n2 for all n 	 100.

25. Let an�1 � 3an and a1 � 5. Show that an � 5 � 3n�1 for all nat-
ural numbers n.

11 � x 2 n 	 1 � nx

1n � 1 2 2 � 2n 
2

� 2 31 � 1n � 1 22n 4

1 # 2 � 2 # 22 � 3 # 23 � 4 # 24 � . . . � n # 2n

1

1 # 2
�

1

2 # 3
�

1

3 # 4
� . . . �

1

n1n � 1 2
�

n

1n � 1 2

23 � 43 � 63 � . . . � 12n 2 3 � 2n 
21n � 1 2 2

13 � 33 � 53 � . . . � 12n � 1 2 3 � n 
212n 

2 � 1 2

13 � 23 � 33 � . . . � n 
3 �

n 
21n � 1 2 2

4

8 . 5  E X E R C I S E S
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is false, give an example in which it fails.
(a) is prime for all n.
(b) n2 � n for all n 	 2.
(c) 22n�1 � 1 is divisible by 3 for all n 	 1.
(d) for all n 	 2.
(e) n3 � n is divisible by 3 for all n 	 2.
(f) n3 � 6n2 � 11n is divisible by 6 for all n 	 1.

38. All Cats Are Black? What is wrong with the following
“proof” by mathematical induction that all cats are black? Let

denote the statement “In any group of n cats, if one cat 
is black, then they are all black.”

Step 1 The statement is clearly true for n � 1.

Step 2 Suppose that is true. We show that 
is true.

Suppose we have a group of k � 1 cats, one of
whom is black; call this cat “Tadpole.” Remove some
other cat (call it “Sparky”) from the group. We are
left with k cats, one of whom (Tadpole) is black, so
by the induction hypothesis, all k of these are black.
Now put Sparky back in the group and take out Tad-
pole. We again have a group of k cats, all of whom—
except possibly Sparky—are black. Then by the in-
duction hypothesis, Sparky must be black too. So all
k � 1 cats in the original group are black.

Thus by induction is true for all n. Since everyone has
seen at least one black cat, it follows that all cats are black.

Tadpole Sparky

P1n 2

P1k � 1 2P1k 2

P1n 2

n 
3 	 1n � 1 2 2

p1n 2 � n 
2 � n � 11

26. A sequence is defined recursively by an�1 � 3an � 8 and 
a1 � 4. Find an explicit formula for an, and then use mathemat-
ical induction to prove that the formula you found is true.

27. Show that x � y is a factor of xn � yn for all natural numbers n.

28. Show that x � y is a factor of x2n�1 � y2n�1 for all natural
numbers n.

29–33 ■ Fn denotes the nth term of the Fibonacci sequence dis-
cussed in Section 8.1. Use mathematical induction to prove the
statement.

29. F3n is even for all natural numbers n.

30. F1 � F2 � F3 � . . . � Fn � Fn�2 � 1

31. F 2
1 � F 2

2 � F 2
3 � . . . � F 2

n � FnFn�1

32. F1 � F3 � . . . � F2n�1 � F2n

33. For all n 	 2,

34. Let an be the nth term of the sequence defined recursively by

and let a1 � 1. Find a formula for an in terms of the Fibonacci
numbers Fn. Prove that the formula you found is valid for all
natural numbers n.

35. Let Fn be the nth term of the Fibonacci sequence. Find and
prove an inequality relating n and Fn for natural numbers n.

36. Find and prove an inequality relating 100n and n3.

D I S C O V E R Y  ■ D I S C U S S I O N  ■ W R I T I N G
37. True or False? Determine whether each statement is true or

false. If you think the statement is true, prove it. If you think it

an�1 �
1

1 � an

c
1 1

1 0
d

n

� c
Fn�1 Fn

Fn Fn�1
d

3Hint: x 
k�1 � y 

k�1 � x 
k1x � y 2 � 1x 

k � y 
k 2y. 4
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8.6 THE BINOMIAL THEOREM

LEARNING OBJECTIVES After completing this section, you will be able to:

Expand powers of binomials using Pascal’s triangle � Find binomial coefficients
� Expand powers of binomials using the Binomial Theorem � Find a particular
term in a binomial expansion

An expression of the form a � b is called a binomial. Although in principle it’s easy to
raise a � b to any power, raising it to a very high power would be tedious. In this section
we find a formula that gives the expansion of for any natural number n and then
prove it using mathematical induction.

1a � b 2 n
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▼ Expanding (a � b)n

To find a pattern in the expansion of , we first look at some special cases.

.

.

.

The following simple patterns emerge for the expansion of .

1. There are n � 1 terms, the first being an and the last being bn.

2. The exponents of a decrease by 1 from term to term, while the exponents of b in-
crease by 1.

3. The sum of the exponents of a and b in each term is n.

For instance, notice how the exponents of a and b behave in the expansion of 

The exponents of a decrease:

The exponents of b increase:

With these observations we can write the form of the expansion of for any nat-
ural number n. For example, writing a question mark for the missing coefficients, we have

Óa � bÔ8 � a8 � a7b � a6b2 � a5b3 � a4b4 � a3b5 � a2b6 � ab7 � b8

To complete the expansion, we need to determine these coefficients. To find a pattern, let’s
write the coefficients in the expansion of for the first few values of n in a trian-
gular array as shown in the following array, which is called Pascal’s triangle.

The row corresponding to is called the zeroth row and is included to show the sym-
metry of the array. The key observation about Pascal’s triangle is the following property.

1a � b 2 0

1a � b 2 5

1a � b 2 4

1a � b 2 3

1a � b 2 2

1a � b 2 1

1 5 10 110 5

1

1

1

1

1

1

1

1

1

4

3

2

4

3

6

1a � b 2 0

1a � b 2 n

???????

1a � b 2 n

1a � b 2 5 � a5 � 5a4b  �  10a3b  �  10a2b � 5a1b  �  b

1a � b 2 5 � a �  5a  b1 �   10a b2 �  10a b3 � 5a  b4 � b5

1a � b 2 5.

1a � b 2 n

 1a � b 2 5 � a 
5 � 5a 

4b � 10a 
3b 

2 � 10a 
2b 

3 � 5ab 
4 � b 

5

 1a � b 2 4 � a 
4 � 4a 

3b � 6a 
2b 

2 � 4ab 
3 � b 

4

 1a � b 2 3 � a 
3 � 3a 

2b � 3ab 
2 � b 

3

 1a � b 2 2 � a 
2 � 2ab � b 

2

 1a � b 2 1 � a � b

1a � b 2 n
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5 4 3 2 1

1 2 3 4 5

KE Y PROPERT Y OF PASC AL’S TRIANGLE

Every entry (other than a 1) is the sum of the two entries diagonally above it.
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From this property it is easy to find any row of Pascal’s triangle from the row above it.
For instance, we find the sixth and seventh rows, starting with the fifth row:

To see why this property holds, let’s consider the following expansions:

We arrive at the expansion of by multiplying by . Notice, for
instance, that the circled term in the expansion of is obtained via this multipli-
cation from the two circled terms above it. We get this term when the two terms above it
are multiplied by b and a, respectively. Thus its coefficient is the sum of the coefficients
of these two terms. We will use this observation at the end of this section when we prove
the Binomial Theorem.

Having found these patterns, we can now easily obtain the expansion of any binomial,
at least to relatively small powers.

E X A M P L E  1 Expanding a Binomial Using Pascal’s Triangle

Find the expansion of using Pascal’s triangle.

S O L U T I O N The first term in the expansion is a7, and the last term is b7. Using the
fact that the exponent of a decreases by 1 from term to term and that of b increases by 1
from term to term, we have

1a � b27 � a7 � a6b � a5b2 � a4b3 � a3b4 � a2b5 � ab6 � b7

The appropriate coefficients appear in the seventh row of Pascal’s triangle. Thus

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

E X A M P L E  2 Expanding a Binomial Using Pascal’s Triangle

Use Pascal’s triangle to expand .

S O L U T I O N We find the expansion of and then substitute 2 for a and �3x
for b. Using Pascal’s triangle for the coefficients, we get

Substituting a � 2 and b � �3x gives

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 13 ■

▼ The Binomial Coefficients
Although Pascal’s triangle is useful in finding the binomial expansion for reasonably
small values of n, it isn’t practical for finding for large values of n. The reason
is that the method we use for finding the successive rows of Pascal’s triangle is recursive.
Thus, to find the 100th row of this triangle, we must first find the preceding 99 rows.

1a � b 2 n

1a � b 2 5 � a 
5 � 5a 

4b � 10a 
3b 

2 � 10a 
2b 

3 � 5ab 
4 � b 

5

1a � b 2 5

12 � 3x 2 5

1a � b 2 7 � a7 � 7a6b � 21a5b2 � 35a4b3 � 35a3b4 � 21a2b5 � 7ab6 � b7

??????

1a � b 2 7

1a � b 2 6
1a � b 21a � b 2 51a � b 2 6

1a � b 2 6 � a6 � 6a5b � 15a4b2 � 20a3b3 �  15a2b4 � 6ab5 � b6

1a � b 2 5 � a5 � 5a4b � 10a3b2 �  10a2b3 �  5ab4 � b5

1a � b 2 7

1a � b 2 6

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1a � b 2 5
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� � �

� � � � � �

� � �

� � � � � �

� � � �

�––

�

 � 32 � 240x � 720x 
2 � 1080x 

3 � 810x 
4 � 243x 

5

 12 � 3x 2 5 � 12 2 5 � 512 2 41�3x 2 � 1012 2 31�3x 2 2 � 1012 2 21�3x 2 3 � 512 2 1�3x 2 4 � 1�3x 2 5

What we now call Pascal’s triangle
appears in this Chinese document by
Chu Shikie, dated 1303. The title reads
“The Old Method Chart of the Seven
Multiplying Squares.”The triangle was
rediscovered by Pascal (see page 604).
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We need to examine the pattern in the coefficients more carefully to develop a formula
that allows us to calculate directly any coefficient in the binomial expansion. Such a for-
mula exists, and the rest of this section is devoted to finding and proving it. However, to
state this formula, we need some notation.

The product of the first n natural numbers is denoted by n! and is called n factorial.

We also define 0! as follows:

This definition of 0! makes many formulas involving factorials shorter and easier to write.

E X A M P L E  3 Calculating Binomial Coefficients

(a)

(b)

(c)

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 17 AND 19 ■

Although the binomial coefficient ( ) is defined in terms of a fraction, all the results of
Example 3 are natural numbers. In fact, ( ) is always a natural number (see Exercise 54).
Notice that the binomial coefficients in parts (b) and (c) of Example 3 are equal. This is a
special case of the following relation, which you are asked to prove in Exercise 52.

n
r

n
r

 � 
98 # 99 # 100

1 # 2 # 3
� 161,700

 a
100

97
b �

100!

97!1100 � 97 2 !
�

1 # 2 # 3 # p # 97 # 98 # 99 # 100

11 # 2 # 3 # p # 97 2 11 # 2 # 3 2

 � 
98 # 99 # 100

1 # 2 # 3
� 161,700

 a
100

3
b �

100!

3!1100 � 3 2 !
�

1 # 2 # 3 # p # 97 # 98 # 99 # 100

11 # 2 # 3 2 11 # 2 # 3 # p # 97 2

 � 
6 # 7 # 8 # 9

1 # 2 # 3 # 4
� 126

 a
9

4
b �

9!

4!19 � 4 2 !
�

9!

4! 5!
�

1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9

11 # 2 # 3 # 4 2 11 # 2 # 3 # 4 # 5 2
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n! � 1 # 2 # 3 # . . . # 1n � 1 2 # n

0! � 1

THE BINOMIAL COEFFICIENT

Let n and r be nonnegative integers with r � n. The binomial coefficient is de-
noted by ( ) and is defined by

a
n

r
b �

n!

r!1n � r 2 !

n
r

a
n

r
b � a

n

n � r
b

 � 3,628,800

 10! � 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

 7! � 1 # 2 # 3 # 4 # 5 # 6 # 7 � 5040

 4! � 1 # 2 # 3 # 4 � 24
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To see the connection between the binomial coefficients and the binomial expansion of
, let’s calculate the following binomial coefficients:

These are precisely the entries in the fifth row of Pascal’s triangle. In fact, we can write
Pascal’s triangle as follows.

To demonstrate that this pattern holds, we need to show that any entry in this version of
Pascal’s triangle is the sum of the two entries diagonally above it. In other words, we must
show that each entry satisfies the key property of Pascal’s triangle. We now state this prop-
erty in terms of the binomial coefficients.

Notice that the two terms on the left-hand side of this equation are adjacent entries in
the kth row of Pascal’s triangle and the term on the right-hand side is the entry diagonally
below them, in the st row. Thus this equation is a restatement of the key property
of Pascal’s triangle in terms of the binomial coefficients. A proof of this formula is out-
lined in Exercise 53.

▼ The Binomial Theorem
We are now ready to state the Binomial Theorem.

1k � 1 2

a
n

0
b  a

n

1
b  a

n

2
b  #   #   #   a

n

n � 1
b  a

n

n
b

#    #    #    #    #    #    #
a

5

0
b  a

5

1
b  a

5

2
b  a

5

3
b  a

5

4
b  a

5

5
b

a
4

0
b  a

4

1
b  a

4

2
b  a

4

3
b  a

4

4
b

a
3

0
b  a

3

1
b  a

3

2
b  a

3

3
b

a
2

0
b   a

2

1
b  a

2

2
b

a
1

0
b   a

1

1
b

a
0

0
b

a
5

0
b � 1  a

5

1
b � 5  a

5

2
b � 10  a

5

3
b � 10  a

5

4
b � 5  a

5

5
b � 1

1a � b 2 n
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a
5

2
b �

5!

2!15 � 2 2 !
� 10

KE Y PROPERT Y OF THE BINOMIAL COEFFICIENTS

For any nonnegative integers r and k with r � k,

a
k

r � 1
b � a

k

r
b � a

k � 1

r
b

THE BINOMIAL THEOREM

1a � b 2n � a
n

0
ba 

n � a
n

1
ba 

n�1b � a
n

2
ba 

n�2
 b 

2 � . . . � a
n

n � 1
bab 

n�1 � a
n

n
bb 

n
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We prove this theorem at the end of this section. First, let’s look at some of its appli-
cations.

E X A M P L E  4 Expanding a Binomial Using the Binomial Theorem

Use the Binomial Theorem to expand .

S O L U T I O N By the Binomial Theorem,

Verify that

It follows that

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

E X A M P L E  5 Expanding a Binomial Using the Binomial Theorem

Use the Binomial Theorem to expand .

S O L U T I O N We first find the expansion of and then substitute for a and
�1 for b. Using the Binomial Theorem, we have

Verify that

So

Performing the substitutions a � x1/2 and b � �1 gives

This simplifies to

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 27 ■

The Binomial Theorem can be used to find a particular term of a binomial expansion
without having to find the entire expansion.

11x � 1 2 8 � x4 � 8x7/2 � 28x3 � 56x5/2 � 70x2 � 56x3/2 � 28x � 8x1/2 � 1

 � 81x1/2 2 1�1 2 7 � 1�1 2 8

 � 701x1/2 2 41�1 2 4 � 561x1/2 2 31�1 2 5 � 281x1/2 2 21�1 2 6

 A1x � 1B8 � 1x1/2 2 8 � 81x1/2 2 71�1 2 � 281x1/2 2 61�1 2 2 � 561x1/2 2 51�1 2 3

 � 28a2b6 � 8ab7 � b8

 1a � b 2 8 � a8 � 8a7b � 28a6b2 � 56a5b3 � 70a4b4 � 56a3b5

a
8

5
b � 56  a

8

6
b � 28  a

8

7
b � 8  a

8

8
b � 1

a
8

0
b � 1  a

8

1
b � 8  a

8

2
b � 28  a

8

3
b � 56  a

8

4
b � 70

 � a
8

5
ba 

3b 
5 � a

8

6
ba 

2b6 � a
8

7
bab7 � a

8

8
bb8

 1a � b 2 8 � a
8

0
ba8 � a

8

1
ba7b � a

8

2
ba6b 

2 � a
8

3
ba 

5b 
3 � a

8

4
ba 

4b 
4

1x1a � b 2 8

A1x � 1B8

1x � y 2 4 � x 
4 � 4x 

3y � 6x 
2y 

2 � 4xy 
3 � y 

4

a
4

0
b � 1  a

4

1
b � 4  a

4

2
b � 6  a

4

3
b � 4  a

4

4
b � 1

1x � y 2 4 � a
4

0
b x 

4 � a
4

1
b x 

3y � a
4

2
b x 

2y 
2 � a

4

3
b xy 

3 � a
4

4
b y 

4

1x � y 2 4
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E X A M P L E  6 Finding a Particular Term in a Binomial Expansion

Find the term that contains x5 in the expansion of .

S O L U T I O N The term that contains x5 is given by the formula for the general term
with a � 2x, b � y, n � 20, and r � 5. So this term is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 39 ■

E X A M P L E  7 Finding a Particular Term in a Binomial Expansion

Find the coefficient of x8 in the expansion of .

S O L U T I O N Both x2 and 1/x are powers of x, so the power of x in each term of the
expansion is determined by both terms of the binomial. To find the required coefficient,
we first find the general term in the expansion. By the formula we have a � x2, b � 1/x,
and n � 10, so the general term is

Thus the term that contains x8 is the term in which

So the required coefficient is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

▼ Proof of the Binomial Theorem
We now give a proof of the Binomial Theorem using mathematical induction.

P R O O F Let denote the statement

Step 1 We show that is true. But is just the statement

which is certainly true.

1a � b 2 1 � a
1

0
ba1 � a

1

1
bb1 � 1a � 1b � a � b

P11 2P11 2

1a � b 2n � a
n

0
ba 

n � a
n

1
ba 

n�1b � a
n

2
ba 

n�2b 
2 � . . . � a

n

n � 1
bab 

n�1 � a
n

n
bb 

n

P1n 2

a
10

10 � 6
b � a

10

4
b � 210

 r � 6

 3r � 10 � 8

a
10

10 � r
b 1x2 2 r a

1
x
b

10�r

� a
10

10 � r
b x2r1x�1 2 10�r � a

10

10 � r
b x3r�10

a x 
2 �

1
x
b

10

a
20

15
ba 

5b15 �
20!

15!120 � 15 2 !
 12x 2 5y 

15 �
20!

15! 5!
 32x 

5y 
15 � 496,128x 

5y 
15

12x � y 2 20
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GENERAL TERM OF THE BINOMIAL EXPANSION

The term that contains ar in the expansion of is

a
n

n � r
barbn�r

1a � b 2 n
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Step 2 We assume that is true. Thus our induction hypothesis is

We use this to show that is true.P1k � 1 2

1a � b 2 k � a
k

0
ba 

k � a
k

1
ba 

k�1b � a
k

2
ba 

k�2b 
2 � . . . � a

k

k � 1
bab 

k�1 � a
k

k
bb 

k

P1k 2
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Group 
like terms� . . . � c a

k

k � 1
b � a

k

k
b d ab 

k � a
k

k
bb 

k�1

 � a
k

0
ba 

k�1 � c a
k

0
b � a

k

1
b da 

kb � c a
k

1
b � a

k

2
b da 

k�1b 
2

Distributive
Property

 � a
k

0
ba 

kb � a
k

1
ba 

k�1b 
2 � a

k

2
ba 

k�2b 
3 � . . . � a

k

k � 1
bab 

k � a
k

k
bb 

k�1

 � a
k

0
ba 

k�1 � a
k

1
ba 

kb � a
k

2
ba 

k�1b 
2 � . . . � a

k

k � 1
ba 

2b 
k�1 � a

k

k
bab 

k

Distributive
Property � b c a

k

0
ba 

k � a
k

1
ba 

k�1b � a
k

2
ba 

k�2b 
2 � . . . � a

k

k � 1
bab 

k�1 � a
k

k
bb 

k d

 � a c a
k

0
ba 

k � a
k

1
ba 

k�1b � a
k

2
ba 

k�2b 
2 � . . . � a

k

k � 1
bab 

k�1 � a
k

k
bb 

k d

Induction
hypothesis � 1a � b 2 c a

k

0
ba 

k � a
k

1
ba 

k�1b � a
k

2
ba 

k�2b 
2 � . . . � a

k

k � 1
bab 

k�1 � a
k

k
bb 

k d

 1a � b 2 k�1 � 1a � b 2 3 1a � b 2 k 4

Using the key property of the binomial coefficients, we can write each of the 
expressions in square brackets as a single binomial coefficient. Also, writing the first
and last coefficients as ( ) and ( ) (these are equal to 1 by Exercise 50) givesk�1

k�1
k�1

0

1a � b 2 k�1 � a
k � 1

0
ba 

k�1 � a
k � 1

1
ba 

kb � a
k � 1

2
ba 

k�1b 
2 � . . . � a

k � 1

k
bab 

k � a
k � 1

k � 1
bb 

k�1

But this last equation is precisely , and this completes the induction step.

Having proved Steps 1 and 2, we conclude by the Principle of Mathematical Induc-
tion that the theorem is true for all natural numbers n. ■

P1k � 1 2

B.
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an
er
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S I R  I S A A C  N E W T O N (1642–1727) is
universally regarded as one of the
giants of physics and mathematics.
He is well known for discovering the
laws of motion and gravity and for
inventing calculus, but he also
proved a generalization of the Bino-
mial Theorem, discovered the laws
of optics, and developed methods
for solving polynomial equations to
any desired accuracy. He was born

on Christmas Day, a few months after the death of his father. After an
unhappy childhood, he entered Cambridge University, where he learned
mathematics by studying the writings of Euclid and Descartes.

During the plague years of 1665 and 1666, when the university was
closed, Newton thought and wrote about ideas that, once published,

instantly revolutionized the sciences. Imbued with a pathological fear
of criticism, he published these writings only after many years of en-
couragement from Edmund Halley (who discovered the now-famous
comet) and other colleagues.

Newton’s works brought him enormous fame and prestige. Even
poets were moved to praise; Alexander Pope wrote:

Nature and Nature’s Laws
lay hid in Night.

God said,“Let Newton be”
and all was Light.

Newton was far more modest about his accomplishments. He said,
“I seem to have been only like a boy playing on the seashore . . . while
the great ocean of truth lay all undiscovered before me.” Newton was
knighted by Queen Anne in 1705 and was buried with great honor in
Westminster Abbey.
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C O N C E P T S
1. An algebraic expression of the form which consists of a

sum of two terms, is called a .

2. We can find the coefficients in the expansion of 

from the nth row of triangle. So 

3. The binomial coefficients can be calculated directly by using

the formula . So .

4. To expand , we can use the Theorem. 
Using this theorem, we find

S K I L L S
5–16 ■ Use Pascal’s triangle to expand the expression.

5. 6. 7.

8. 9. 10.

11. 12. 13.

14. 15. 16.

17–24 ■ Evaluate the expression.

17. 18. 19.

20. 21. 22.

23.

24.

25–28 ■ Use the Binomial Theorem to expand the expression.

25. 26.

27. 28.

29. Find the first three terms in the expansion of .

30. Find the first four terms in the expansion of .

31. Find the last two terms in the expansion of .

32. Find the first three terms in the expansion of

a x �
1
x
b

40

1a2/3 � a1/3 2 25

1x1/2 � 1 2 30

1x � 2y 2 20

12A � B 
2 2 4a1 �

1
x
b

6

11 � x 2 51x � 2y 2 4

a
5

0
b � a

5

1
b � a

5

2
b � a

5

3
b � a

5

4
b � a

5

5
b

a
5

0
b � a

5

1
b � a

5

2
b � a

5

3
b � a

5

4
b � a

5

5
b

a
5

2
b a

5

3
ba

3

1
b a

4

2
ba

10

5
b

a
100

98
ba

8

3
ba

6

4
b

a 2 �
x

2
b

5

a
1
x

� 1x b
5

11 � x 
3 2 3

12x � 3y 2 3A1 � 12B61x 
2

 y � 1 2 5
A1a � 1bB61x � 1 2 51x � y 2 5

a x �
1
x
b

4

12x � 1 2 41x � y 2 6

a
■
■
ba 4 � a

■
■
b a 3b � a

■
■
ba 2b 2 � a

■
■
bab 3 � a

■
■
bb4

1a � b 2 4 �

1a � b 2 n

a
4
3
b �a

n
k
b �

■a 4 � ■a 3b � ■a 2b 2 � ■ab 3 � ■b 41a � b 2 4 �

1a � b 2 n

a � b,

33. Find the middle term in the expansion of .

34. Find the fifth term in the expansion of .

35. Find the 24th term in the expansion of .

36. Find the 28th term in the expansion of .

37. Find the 100th term in the expansion of .

38. Find the second term in the expansion of

39. Find the term containing x4 in the expansion of .

40. Find the term containing y3 in the expansion of .

41. Find the term containing b8 in the expansion of .

42. Find the term that does not contain x in the expansion of

43–46 ■ Factor using the Binomial Theorem.

43.

44.

45.

46.

47–52 ■ Simplify using the Binomial Theorem.

47. 48.

49. Show that . [Hint: Note that
, and use the Binomial Theorem 

to show that the sum of the first two terms of the expansion 
is greater than 2.]

50. Show that and .

51. Show that .

52. Show that for 0 � r � n.

53. In this exercise we prove the identity

(a) Write the left-hand side of this equation as the sum of two
fractions.

(b) Show that a common denominator of the expression that
you found in part (a) is .

(c) Add the two fractions using the common denominator in
part (b), simplify the numerator, and note that the resulting
expression is equal to the right-hand side of the equation.

54. Prove that 1nr 2 is an integer for all n and for 0 � r � n. 
[Suggestion: Use induction to show that the statement is true
for all n, and use Exercise 53 for the induction step.]

r!1n � r � 1 2 !

a
n

r � 1
b � a

n

r
b � a

n � 1

r
b

a
n

r
b � a

n

n � r
b

a
n

1
b � a

n

n � 1
b � n

a
n

n
b � 1a

n

0
b � 1

11.01 2100 � 11 � 0.01 2 100
11.01 2 100 � 2

1x � h 2 4 � x4

h

1x � h 2 3 � x3

h

x 
8 � 4x 

6y � 6x 
4y 

2 � 4x 
2y 

3 � y 
4

8a 
3 � 12a 

2b � 6ab 
2 � b 

3

� 101x � 1 2 2 � 51x � 1 2 � 1

1x � 1 2 5 � 51x � 1 2 4 � 101x � 1 2 3
x 

4 � 4x 
3y � 6x 

2
 y 

2 � 4xy 
3 � y 

4

a8x �
1

2x
b

8

1a � b 
2 2 12

A12 � yB12

1x � 2y 2 10

a x 
2 �

1
x
b

25

11 � y 2 100

1A � B 2 30

1a � b 2 25

1ab � 1 2 20

1x 
2 � 1 2 18
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58. Sums of Binomial Coefficients Add each of the first five
rows of Pascal’s triangle, as indicated. Do you see a pattern?

On the basis of the pattern you have found, find the sum of the
nth row:

Prove your result by expanding using the Binomial
Theorem.

59. Alternating Sums of Binomial Coefficients Find the sum

by finding a pattern as in Exercise 58. Prove your result by
expanding using the Binomial Theorem.11 � 1 2 n

a
n

0
b � a

n

1
b � a

n

2
b � . . . � 1�1 2 n a

n

n
b

11 � 1 2 n

a
n

0
b � a

n

1
b � a

n

2
b � . . . � a

n

n
b

?1 � 5 � 10 � 10 � 5 � 1 �

?1 � 4 � 6 � 4 � 1 �

?1 � 3 � 3 � 1 �

?1 � 2 � 1 �

?1 � 1 �

A P P L I C A T I O N S
55. Difference in Volumes of Cubes The volume of a cube of

side x inches is given by , so the volume of a cube
of side inches is given by . Use
the Binomial Theorem to show that the difference in volume
between the larger and smaller cubes is cubic
inches. 

56. Probability of Hitting a Target The probability that an
archer hits the target is , so the probability that he
misses the target is . It is known that in this situation
the probability that the archer hits the target exactly r times in
n attempts is given by the term containing in the binomial
expansion of . Find the probability that the archer hits
the target exactly three times in five attempts.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
57. Powers of Factorials Which is larger, or

[Hint: Try factoring the expressions. Do they have
any common factors?]
1101! 2 100?

1100! 2 101

1  p � q 2 n
pr

q � 0.1
p � 0.9

6x 2 � 12x � 8

V1x � 2 2 � 1x � 2 2 3x � 2
V1x 2 � x 3
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Sequences (p. 570)

A sequence is a function whose domain is the set of natural num-
bers. Instead of writing a(n) for the value of the sequence at n, we
generally write and we refer to this value as the nth term of
the sequence. Sequences are often described in list form:

Partial Sums of a Sequence (pp. 575–576)

For the sequence the nth partial sum is the sum of
the first n terms of the sequence:

The nth partial sum of a sequence can also be expressed by using
sigma notation:

Arithmetic Sequences (p. 581)

An arithmetic sequence is a sequence whose terms are obtained
by adding the same fixed constant d to each term to get the next
term. Thus an arithmetic sequence has the form

The number a is the first term of the sequence, and the number d
is the common difference. The nth term of the sequence is

an � a � 1n � 1 2d

a, a � d, a � 2d, a � 3d, p

Sn � a
n

k�1
ak

Sn � a1 � a2 � a3 � p � an

Sna1, a2, a3, p

a1, a2, a3, p

an,

Partial Sums of an Arithmetic Sequence (p. 583)

For the arithmetic sequence the nth partial sum 

is given by either of the following equiva-

lent formulas:

1.

2.

Geometric Sequences (p. 586)

A geometric sequence is a sequence whose terms are obtained by
multiplying each term by the same fixed constant r to get the next
term. Thus a geometric sequence has the form

The number a is the first term of the sequence, and the number r
is the common ratio. The nth term of the sequence is

Partial Sums of a Geometric Sequence (p. 588)

For the geometric sequence the nth partial sum 

(where ) is given by

Sn � a 

1 � r n

1 � r

r � 1Sn � a
n

k�1
ar k�1

an � ar n�1

an � ar n�1

a, ar, ar 2, ar 3, p

Sn � n a
a � an

2
b

Sn �
n

2
 32a � 1n � 1 2d 4

Sn � a
n

k�1
3a � 1k � 1 2d 4

an � a � 1n � 1 2d

C H A P T E R  8 | R E V I E W
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Principle of Mathematical Induction (p. 602)

For each natural number n, let P(n) be a statement that depends on
n. Suppose that each of the following conditions is satisfied.

1. P(1) is true.
2. For every natural number k, if P(k) is true, then is true.

Then P(n) is true for all natural numbers n.

Sums of Powers (p. 604)

0. 1.

2. 3.

Binomial Coefficients (pp. 609–610)

If n and r are positive integers with then the binomial co-

efficient is defined by

Binomial coefficients satisfy the following properties:

The Binomial Theorem (p. 610)

a
n
0
ba n � a

n
1
ba n�1b � a

n
2
ba n�2b2 � p � a

n
n b bn1a � b 2 n �

a
k

r � 1
b � a

k
r b � a

k � 1
r b

a
n
r b � a

n
n � r b

a
n
r b �

n!

r!1n � r 2 !

a
n
r b

n 	 r,

a
n

k�1
k 3 �

n 2 1n � 1 2 2

4a
n

k�1
k 2 �

n1n � 1 2 12n � 1 2

6

a
n

k�1
k �

n1n � 1 2

2a
n

k�1
1 � n

P1k � 1 2

Infinite Geometric Series (p. 590)

An infinite geometric series is a series of the form

An infinite series for which has the sum

Amount of an Annuity (p. 595)

The amount of an annuity consisting of n regular equal pay-
ments of size R with interest rate i per time period is given by

Present Value of an Annuity (p. 596)

The present value of an annuity consisting of n regular equal
payments of size R with interest rate i per time period is given by

Present Value of a Future Amount (p. 596)

If an amount is to be paid in one lump sum, n time periods
from now, and the interest rate per time period is i, then its pres-
ent value is given by

Installment Buying (p. 597)

If a loan is to be repaid in n regular equal payments with inter-
est rate i per time period, then the size R of each payment is given
by

R �
iAp

1 � 11 � i 2�n

Ap

Ap � Af 11 � i 2�n

Ap

Af

Ap � R 

1 � 11 � i 2�n

i

Ap

Af � R 

11 � i 2 n � 1

i

Af

S �
a

1 � r

0 r 0 � 1

a � ar � ar 2 � ar 3 � p � ar n�1 � p
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Section After completing this chapter, you should be able to . . . Review Exercises

8.1 ■ Find the terms of a sequence 1–6, 11–14
■ Find the terms of a recursive sequence 7–10
■ Find the partial sums of a sequence 11–14, 37–40
■ Use sigma notation 37–48

8.2 ■ Find the terms of an arithmetic sequence 11, 14, 15–17, 25–26, 30
■ Find the partial sums of an arithmetic sequence 50–52

8.3 ■ Find the terms of a geometric sequence 12–13, 18–19, 21–24, 27–29, 31
■ Find the partial sums of a geometric sequence 49, 53–54, 60–61
■ Find the sum of an infinite geometric sequence 55–60, 62–63

8.4 ■ Find the amount of an annuity 64
■ Find the present value of an annuity 65
■ Find the amount of the installment payments on a loan 66

8.5 ■ Prove a statement using the Principle of Mathematical Induction 67–72
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C H A P T E R  8 | Review 617

8.6 ■ Expand powers of binomials using Pascal's triangle 77–78
■ Find binomial coefficients 73–76
■ Expand powers of binomials using the Binomial Theorem 79–80
■ Find a particular term in a binomial expansion 81–83

1–6 ■ Find the first four terms as well as the tenth term of the se-
quence with the given nth term.

1. 2.

3. 4.

5. 6.

7–10 ■ A sequence is defined recursively. Find the first seven
terms of the sequence.

7. an � an�1 � 2n � 1, a1 � 1

8. , a1 � 1

9. an � an�1 � 2an�2, a1 � 1, a2 � 3

10.

11–14 ■ The nth term of a sequence is given. (a) Find the first
five terms of the sequence. (b) Graph the terms you found in part
(a). (c) Find the fifth partial sum of the sequence. (d) Determine
whether the series is arithmetic or geometric. Find the common dif-
ference or the common ratio.

11. an � 2n � 5 12.

13. 14.

15–22 ■ The first four terms of a sequence are given. Determine
whether they can be the terms of an arithmetic sequence, a geo-
metric sequence, or neither. If the sequence is arithmetic or geo-
metric, find the fifth term.

15. 5, 5.5, 6, 6.5, . . .

16.

17. t � 3, t � 2, t � 1, t, . . . 18.

19. t 3, t2, t, 1, . . . 20.

21. 22.

23. Show that 3, 6i, �12, �24i, . . . is a geometric sequence, and
find the common ratio. (Here .)

24. Find the nth term of the geometric sequence 2, 2 � 2i, 4i,
�4 � 4i, �8, . . . (Here .)i � 1�1

i � 1�1

a, 1, 
1
a

, 
1

a 
2, . . .3

4, 
1
2, 

1
3, 

2
9, . . .

1, � 
3
2, 2, � 

5
2, . . .

12, 2, 2 12, 4, . . .

12, 2 12, 3 12, 4 12, . . .

an � 4 �
n

2
an �

3n

2n�1

an �
5

2n

an � 23an�1, a1 � 13

an �
an�1

n

an � a
n � 1

2
ban �

12n 2 !

2nn!

an �
n1n � 1 2

2
an �

1�1 2 n � 1

n 
3

an � 1�1 2 n 

2n

n
an �

n 
2

n � 1

25. The sixth term of an arithmetic sequence is 17, and the fourth
term is 11. Find the second term.

26. The 20th term of an arithmetic sequence is 96, and the com-
mon difference is 5. Find the nth term.

27. The third term of a geometric sequence is 9, and the common
ratio is . Find the fifth term.

28. The second term of a geometric sequence is 10, and the fifth
term is . Find the nth term.

29. A teacher makes $32,000 in his first year at Lakeside School
and gets a 5% raise each year.
(a) Find a formula for his salary An in his nth year at this

school.
(b) List his salaries for his first 8 years at this school.

30. A colleague of the teacher in Exercise 29, hired at the same
time, makes $35,000 in her first year, and gets a $1200 raise
each year.
(a) What is her salary An in her nth year at this school?
(b) Find her salary in her eighth year at this school, and com-

pare it to the salary of the teacher in Exercise 29 in his
eighth year.

31. A certain type of bacteria divides every 5 s. If three of these
bacteria are put into a petri dish, how many bacteria are in the
dish at the end of 1 min?

32. If a1, a2, a3, . . . and b1, b2, b3, . . . are arithmetic sequences,
show that a1 � b1, a2 � b2, a3 � b3, . . . is also an arithmetic
sequence.

33. If a1, a2, a3, . . . and b1, b2, b3, . . . are geometric sequences,
show that a1b1, a2b2, a3b3, . . . is also a geometric sequence.

34. (a) If a1, a2, a3, . . . is an arithmetic sequence, is the sequence
a1 � 2, a2 � 2, a3 � 2, . . . arithmetic?

(b) If a1, a2, a3, . . . is a geometric sequence, is the sequence
5a1, 5a2, 5a3, . . . geometric?

35. Find the values of x for which the sequence 6, x, 12, . . . is
(a) arithmetic (b) geometric

36. Find the values of x and y for which the sequence 2, x, y,
17, . . . is
(a) arithmetic (b) geometric

37–40 ■ Find the sum.

37. 38.

39. 40. a
5

m�1
3m�2

a
6

k�1
1k � 1 22k�1

a
4

i�1

2i

2i � 1a
6

k�3
1k � 1 2 2

1250
27

3
2
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63. A person has two parents, four grandparents, eight great-
grandparents, and so on. What is the total number of a per-
son’s ancestors in 15 generations?

64. Find the amount of an annuity consisting of 16 annual pay-
ments of $1000 each into an account that pays 8% interest per
year, compounded annually.

65. How much money should be invested every quarter at 12% 
per year, compounded quarterly, in order to have $10,000 in
one year?

66. What are the monthly payments on a mortgage of $60,000 at
9% interest if the loan is to be repaid in
(a) 30 years? (b) 15 years?

67–69 ■ Use mathematical induction to prove that the formula is
true for all natural numbers n.

67.

68.

69.

70. Show that 7n � 1 is divisible by 6 for all natural numbers n.

71. Let an�1 � 3an � 4 and a1 � 4. Show that an � 2 3n � 2 for
all natural numbers n.

72. Prove that the Fibonacci number F4n is divisible by 3 for all
natural numbers n.

73–76 ■ Evaluate the expression.

73. 74.

75. 76.

77–80 ■ Expand the expression.

77. 78.

79. 80.

81. Find the 20th term in the expansion of .

82. Find the first three terms in the expansion of .

83. Find the term containing A6 in the expansion of .1A � 3B 2 10

1b�2/3 � b1/3 2 20

1a � b 2 22

12x � y 2 411 � x2 2 6

1x � 2 2 51A � B 2 3

a
8

k�0
a

8

k
b a

8

8 � k
ba

5

k�0
a

5

k
b

a
10

2
b � a

10

6
ba

5

2
b a

5

3
b

#

a1 �
1

1
b a1 �

1

2
b a1 �

1

3
b  . . . a1 �

1
n
b � n � 1

 �
n

2n � 1

1

1 # 3
�

1

3 # 5
�

1

5 # 7
� . . . �

1

12n � 1 2 12n � 1 2

1 � 4 � 7 � . . . � 13n � 2 2 �
n13n � 1 2

2

41–44 ■ Write the sum without using sigma notation. Do not
evaluate.

41. 42.

43. 44.

45–48 ■ Write the sum using sigma notation. Do not evaluate.

45. 3 � 6 � 9 � 12 � . . . � 99

46. 12 � 22 � 32 � . . . � 1002

47. 1 23 � 2 24 � 3 25 � 4 26 � . . . � 100 2102

48.

49–54 ■ Determine whether the expression is a partial sum of an
arithmetic or geometric sequence. Then find the sum.

49.

50. 3 � 3.7 � 4.4 � . . . � 10

51.

52.

53. 54.

55–60 ■ Determine whether the infinite geometric series is con-
vergent or divergent. If it is convergent, find its sum.

55.

56. 0.1 � 0.01 � 0.001 � 0.0001 � . . .

57.

58.

59.

60. a � ab2 � ab4 � ab6 � . . . ,

61. The first term of an arithmetic sequence is a � 7, and the
common difference is d � 3. How many terms of this se-
quence must be added to obtain 325?

62. The sum of the first three terms of a geometric series is 52,
and the common ratio is r � 3. Find the first term.

0 b 0 � 1

�1 �
9

8
� a

9

8
b

2

� a
9

8
b

3

� . . .

1 �
1

31/2
�

1

3
�

1

33/2
� . . .

5 � 511.01 2 � 511.01 2 2 � 511.01 2 3 � . . .

1 � 2
5 � 4

25 � 8
125 � . . .

a
8

k�0
715 2 k/2

a
6

n�0
31�4 2 n

1
3 � 2

3 � 1 � 4
3 � . . . � 33

15 � 2 15 � 3 15 � . . . � 100 15

1 � 0.9 � 10.9 2 2 � . . . � 10.9 2 5

1

1 # 2
�

1

2 # 3
�

1

3 # 4
� . . . �

1

999 # 1000

#####

a
10

n�1
n 

22 
n

a
50

k�1

3k

2k�1

a
100

j�2

1

j � 1a
10

k�1
1k � 1 2 2
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1. Find the first six terms and the sixth partial sum of the sequence whose nth term is 
an � 2n2 � n.

2. A sequence is defined recursively by Find the first six terms of 
the sequence.

3. An arithmetic sequence begins 2, 5, 8, 11, 14, . . . .

(a) Find the common difference d for this sequence.

(b) Find a formula for the nth term an of the sequence.

(c) Find the 35th term of the sequence.

4. A geometric sequence begins 12, 3, 3/4, 3/16, 3/64, . . . .

(a) Find the common ratio r for this sequence.

(b) Find a formula for the nth term an of the sequence.

(c) Find the tenth term of the sequence.

5. The first term of a geometric sequence is 25, and the fourth term is .

(a) Find the common ratio r and the fifth term.

(b) Find the partial sum of the first eight terms.

6. The first term of an arithmetic sequence is 10, and the tenth term is 2.

(a) Find the common difference and the 100th term of the sequence.

(b) Find the partial sum of the first ten terms.

7. Let a1, a2, a3, . . . be a geometric sequence with initial term a and common ratio r. Show that
, . . . is also a geometric sequence by finding its common ratio.

8. Write the expression without using sigma notation, and then find the sum.

(a) (b)

9. Find the sum.

(a)

(b)

10. Use mathematical induction to prove that for all natural numbers n,

11. Expand .

12. Find the term containing x3 in the binomial expansion of .

13. A puppy weighs 0.85 lb at birth, and each week he gains 24% in weight. Let an be his weight
in pounds at the end of his nth week of life.

(a) Find a formula for an.

(b) How much does the puppy weigh when he is six weeks old?

(c) Is the sequence a1, a2, a3, . . . arithmetic, geometric, or neither?

13x � 2 2 10

12x � y 
2 2 5

12 � 22 � 32 � . . . � n2 �
n1n � 1 2 12n � 1 2

6

1 �
1

21/2
�

1

2
�

1

23/2
� . . .

1

3
�

2

32 �
22

33 �
23

34 � . . . �
29

310

a
6

n�3
1�1 2 n2n�2

a
5

n�1
11 � n2 2

a 
2
1, a 

2
2, a 

2
3

1
5

an�1 � 3an � n, a1 � 2. 
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F O C U S  O N  M O D E L I N G

Modeling with Recursive S equences

Many real-world processes occur in stages. Population growth can be viewed in stages—
each new generation represents a new stage in population growth. Compound interest is
paid in stages—each interest payment creates a new account balance. Many things that
change continuously are more easily measured in discrete stages. For example, we can
measure the temperature of a continuously cooling object in one-hour intervals. In this
Focus we learn how recursive sequences are used to model such situations. In some cases
we can get an explicit formula for a sequence from the recursion relation that defines it
by finding a pattern in the terms of the sequence.

▼ Recursive Sequences as Models
Suppose you deposit some money in an account that pays 6% interest compounded
monthly. The bank has a definite rule for paying interest: At the end of each month the
bank adds to your account % (or 0.005) of the amount in your account at that time. Let’s
express this rule as follows:

� � 0.005 
 

Using the Distributive Property, we can write this as

� 1.005 
 

To model this statement using algebra, let A0 be the amount of the original deposit, let A1

be the amount at the end of the first month, let A2 be the amount at the end of the second
month, and so on. So An is the amount at the end of the nth month. Thus

We recognize this as a recursively defined sequence—it gives us the amount at each stage
in terms of the amount at the preceding stage.

To find a formula for An, let’s find the first few terms of the sequence and look for a
pattern:

We see that in general, .An � 11.005 2 nA0

 A4 � 1.005A3 � 11.005 2 4A0

 A3 � 1.005A2 � 11.005 2 3A0

 A2 � 1.005A1 � 11.005 2 2A0

 A1 � 1.005A0

An�1

0.005An�1

A2A1A0

An � 1.005An�1

amount at the end of
last month

amount at the end of
this month

amount at the end of
last month

amount at the end of
last month

amount at the end of
this month

1
2

We can use mathematical induction to
prove that the formula we found for An

is valid for all natural numbers n.
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Modeling with Recursive Sequences 621

E X A M P L E  1 Population Growth

A certain animal population grows by 2% each year. The initial population is 5000.

(a) Find a recursive sequence that models the population Pn at the end of the nth year.

(b) Find the first five terms of the sequence Pn.

(c) Find a formula for Pn.

S O L U T I O N

(a) We can model the population using the following rule:

� 1.02 


Algebraically, we can write this as the recursion relation

(b) Since the initial population is 5000, we have

(c) We see from the pattern exhibited in part (b) that . (Note that Pn

is a geometric sequence, with common ratio r � 1.02.) ■

E X A M P L E  2 Daily Drug Dose

A patient is to take a 50-mg pill of a certain drug every morning. It is known that the
body eliminates 40% of the drug every 24 hours.

(a) Find a recursive sequence that models the amount An of the drug in the patient’s
body after each pill is taken.

(b) Find the first four terms of the sequence An.

(c) Find a formula for An.

(d) How much of the drug remains in the patient’s body after 5 days? How much will
accumulate in his system after prolonged use?

S O L U T I O N

(a) Each morning, 60% of the drug remains in his system, plus he takes an additional
50 mg (his daily dose).

� 0.6 
 � 50 mg
amount of drug

yesterday morning
amount of drug this

morning

Pn � 11.02 2 n5000

 P4 � 1.02P3 � 11.02 2 45000

 P3 � 1.02P2 � 11.02 2 35000

 P2 � 1.02P1 � 11.02 2 25000

 P1 � 1.02P0 � 11.02 25000

 P0 � 5000

Pn � 1.02Pn�1

population at the end of last yearpopulation at the end of this year
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We can express this as a recursion relation

(b) Since the initial dose is 50 mg, we have

(c) From the pattern in part (b) we see that

Partial sum of a geometric 
sequence (page 588)

Simplify

(d) To find the amount remaining after 5 days, we substitute n � 5 and get
.

To find the amount remaining after prolonged use, we let n become large. As n
gets large, 0.6n approaches 0. That is, 0.6n 0 as n q (see Section 4.1). So as
n q,

Thus after prolonged use the amount of drug in the patient’s system approaches 
125 mg (see Figure 1, where we have used a graphing calculator to graph the 
sequence).

■

P R O B L E M S
1. Retirement Accounts Many college professors keep retirement savings with TIAA, the

largest annuity program in the world. Interest on these accounts is compounded and credited
daily. Professor Brown has $275,000 on deposit with TIAA at the start of 2011 and receives
3.65% interest per year on his account.

(a) Find a recursive sequence that models the amount An in his account at the end of the nth
day of 2011.

(b) Find the first eight terms of the sequence An, rounded to the nearest cent.

(c) Find a formula for An.

An � 12511 � 0.6n�1 2 � 12511 � 0 2 � 125

�
��

A5 � 12511 � 0.65�1 2 � 119 mg

 � 12511 � 0.6n�1 2

 � 50 a
1 � 0.6n�1

1 � 0.6
b

 An � 5011 � 0.6 � 0.62 � . . . � 0.6n 2

 � 5010.63 � 0.62 � 0.6 � 1 2

 � 0.63150 2 � 0.62150 2 � 0.6150 2 � 50

 A3 � 0.6A2 � 50 � 0.6 30.62150 2 � 0.6150 2 � 50 4 � 50

 � 5010.62 � 0.6 � 1 2

 � 0.62150 2 � 0.6150 2 � 50

 A2 � 0.6A1 � 50 � 0.6 30.6150 2 � 50 4 � 50

 A1 � 0.6A0 � 50 � 0.6150 2 � 50

 A0 � 50

An � 0.6An�1 � 50

622 Focus on Modeling

Enter sequence Graph sequence

Plot1 Plot2 Plot3

 Min=0
u( )=125(1-.6^( +1))

150

0 16

F I G U R E  1
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2. Fitness Program Sheila decides to embark on a swimming program as the best way to
maintain cardiovascular health. She begins by swimming 5 min on the first day, then adds 

min every day after that.

(a) Find a recursive formula for the number of minutes Tn that she swims on the nth day of
her program.

(b) Find the first 6 terms of the sequence Tn.

(c) Find a formula for Tn. What kind of sequence is this?

(d) On what day does Sheila attain her goal of swimming at least 65 min a day?

(e) What is the total amount of time she will have swum after 30 days?

3. Monthly Savings Program Alice opens a savings account that pays 3% interest per year,
compounded monthly. She begins by depositing $100 at the start of the first month and adds
$100 at the end of each month, when the interest is credited.

(a) Find a recursive formula for the amount An in her account at the end of the nth month.
(Include the interest credited for that month and her monthly deposit.)

(b) Find the first five terms of the sequence An.

(c) Use the pattern you observed in (b) to find a formula for An. [Hint: To find the pattern
most easily, it’s best not to simplify the terms too much.]

(d) How much has she saved after 5 years?

4. Stocking a Fish Pond A pond is stocked with 4000 trout, and through reproduction the
population increases by 20% per year. Find a recursive sequence that models the trout popu-
lation Pn at the end of the nth year under each of the following circumstances. Find the trout
population at the end of the fifth year in each case.

(a) The trout population changes only because of reproduction.

(b) Each year 600 trout are harvested.

(c) Each year 250 additional trout are introduced into the pond.

(d) Each year 10% of the trout are harvested, and 300 additional trout are introduced into 
the pond.

5. Pollution A chemical plant discharges 2400 tons of pollutants every year into an adjacent
lake. Through natural runoff, 70% of the pollutants contained in the lake at the beginning of
the year are expelled by the end of the year.

(a) Explain why the following sequence models the amount An of the pollutant in the lake at
the end of the nth year that the plant is operating.

(b) Find the first five terms of the sequence An.

(c) Find a formula for An.

(d) How much of the pollutant remains in the lake after 6 years? How much will remain af-
ter the plant has been operating a long time?

(e) Verify your answer to part (d) by graphing An with a graphing calculator for n � 1 to 
n � 20.

6. Annual Savings Program Ursula opens a one-year CD that yields 5% interest per year.
She begins with a deposit of $5000. At the end of each year when the CD matures, she rein-
vests at the same 5% interest rate, also adding 10% to the value of the CD from her other sav-
ings. (So for example, after the first year her CD has earned 5% of $5000 in interest, for a
value of $5250 at maturity. She then adds 10%, or $525, bringing the total value of her re-
newed CD to $5775.)

(a) Find a recursive formula for the amount Un in Ursula’s CD when she reinvests at the end
of the nth year.

(b) Find the first five terms of the sequence Un. Does this appear to be a geometric sequence?

(c) Use the pattern you observed in (b) to find a formula for Un.

(d) How much has she saved after 10 years?

An � 0.30An�1 � 2400

1 
1
2

Modeling with Recursive Sequences 623
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7. Annual Savings Program Victoria opens a one-year CD with a 5% annual interest yield
at the same time as her friend Ursula in Problem 6. She also starts with an initial deposit of
$5000. However, Victoria decides to add $500 to her CD when she reinvests at the end of the
first year, $1000 at the end of the second, $1500 at the end of the third, and so on.

(a) Explain why the recursive formula displayed below gives the amount Vn in Victoria’s CD
when she reinvests at the end of the nth year.

(b) Using the Seq (“sequence”) mode on your graphing calculator, enter the sequences
Un and Vn as shown in the figure. Then use the command to compare the
two sequences. For the first few years, Victoria seems to be accumulating more savings
than Ursula. Scroll down in the table to verify that Ursula eventually pulls ahead of 
Victoria in the savings race. In what year does this occur?

8. Newton’s Law of Cooling A tureen of soup at a temperature of 170F is placed on a table
in a dining room in which the thermostat is set at 70F. The soup cools according to the fol-
lowing rule, a special case of Newton’s Law of Cooling: Each minute, the temperature of the
soup declines by 3% of the difference between the soup temperature and the room
temperature.

(a) Find a recursive sequence that models the soup temperature Tn at the nth minute.

(b) Enter the sequence Tn in your graphing calculator, and use the command to find
the temperature at 10-min increments from n � 0 to n � 60. (See Problem 7(b).)

(c) Graph the sequence Tn. What temperature will the soup be after a long time?

9. Logistic Population Growth Simple exponential models for population growth do not
take into account the fact that when the population increases, survival becomes harder for
each individual because of greater competition for food and other resources. We can get a
more accurate model by assuming that the birth rate is proportional to the size of the popula-
tion, but the death rate is proportional to the square of the population. Using this idea, re-
searchers find that the number of raccoons Rn on a certain island is modeled by the following
recursive sequence:

Here, n represents the number of years since observations began, R 0 is the initial population,
0.08 is the annual birth rate, and 0.0004 is a constant related to the death rate.

(a) Use the command on a graphing calculator to find the raccoon population for
each year from n � 1 to n � 7.

(b) Graph the sequence Rn. What happens to the raccoon population as n becomes large?

TABLE

Rn � Rn�1 � 0.08Rn�1 � 0.00041Rn�1 2
2,  R0 � 100

TABLE

Entering the sequences Table of values of the sequences

   u( )
 0 5000
 1 5750
 2 6612.5
 3 7604.4
 4 8745
 5 10057
 6 11565

5000
5750
7037.5
8889.4
11334
14401
18121

v( )

 =0

TABLE

Vn � 1.05Vn�1 � 500n

624 Focus on Modeling

Population at end
of year

Number of
births

Population at beginning 
of year

Number of
deaths
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Modeling Patterns in Randomness In the preceding chapters we modeled
real-world situations using precise rules, such as equations or functions. But
many of our everyday activities are not governed by precise rules; rather, they
involve randomness and uncertainty. It is remarkable that we can also use 
algebra to describe patterns in random events. Probability, the main topic 
of this chapter, gives us a way to quantify the “chance” or “probability”
that a particular event occurs. 

The importance of probability in the modern world cannot be overesti-
mated. It is used in industry, manufacturing, government, medical research,
political polling, and many other areas of human endeavor. For example,
insurance companies carefully estimate the probability of lightning striking 
a house. Knowing this probability allows the company to make certain that 
the premiums they collect exceed the payouts they would expect to make for
lightning damage. 

In Focus on Modeling at the end of the chapter we use a calculator (or com-
puter) to simulate random events and estimate probabilities.  
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Counting the number of apples in a bag or the number of students in an algebra class is
easy. But counting all the different ways in which these students can stand in a row is
more difficult. It is this latter kind of counting that we'll study in this section.

▼ The Fundamental Counting Principle
Suppose that three towns—Ashbury, Brampton, and Carmichael—are located in such a
way that two roads connect Ashbury to Brampton and three roads connect Brampton to
Carmichael.

How many different routes can one take to travel from Ashbury to Carmichael via Bramp-
ton? The key to answering this question is to consider the problem in stages. At the first
stage—from Ashbury to Brampton—there are two choices. For each of these choices there
are three choices at the second stage—from Brampton to Carmichael. Thus the number of
different routes is 2 � 3 � 6. These routes are conveniently enumerated by a tree diagram as
in Figure 1. The method that we used to solve this problem leads to the following principle.

There is an immediate consequence of this principle for any number of events: If
are events that occur in order and if E1 can occur in n1 ways, E2 in n2 ways,

and so on, then the events can occur in order in ways.

E X A M P L E  1 Using the Fundamental Counting Principle

An ice-cream store offers three types of cones and 31 flavors. How many different single-
scoop ice-cream cones is it possible to buy at this store?

S O L U T I O N There are two stages for selecting an ice-cream cone. At the first stage
we choose a type of cone, and at the second stage we choose a flavor. We can think of
the different stages as boxes:

n1 � n2 � . . . � nk

E1, E2, . . . , Ek

Ashbury

Brampton

Carmichael

p

q z
y x
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9.1 COUNTING

LEARNING OBJECTIVES After completing this section, you will be able to:

Use the Fundamental Counting Principle � Count permutations � Count 
distinguishable permutations � Count combinations � Solve counting 
problems involving both permutations and combinations

Route

q

p

x

x

y

y

z

z

px

py

pz

qx

qy

qz

A

B

B

C

C

C

C

C

C

F I G U R E  1 Tree diagram

THE FUNDAMENTAL COUNTING PRINCIPLE

Suppose that two events occur in order. If the first event can occur in m ways and
the second can occur in n ways (after the first has occurred), then the two events
can occur in order in m � n ways.

Stage 1: Type
of Cone

Stage 2:
Flavor
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The first box can be filled in three ways, and the second can be filled in 31 ways:

By the Fundamental Counting Principle there are 3 � 31 � 93 ways of choosing a 
single-scoop ice-cream cone at this store.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

E X A M P L E  2 Using the Fundamental Counting Principle

In a certain state, automobile license plates display three letters followed by three digits.
How many such plates are possible if repetition of the letters

(a) is allowed? (b) is not allowed?

S O L U T I O N

(a) There are six selection stages, one for each letter or digit on the license plate. As in
the preceding example, we sketch a box for each stage:

At the first stage we choose a letter (from 26 possible choices); at the second stage
we choose another letter (again from 26 choices); at the third stage we choose an-
other letter (26 choices); at the fourth stage we choose a digit (from 10 possible
choices); at the fifth stage we choose a digit (again from 10 choices); and at the
sixth stage, we choose another digit (10 choices). By the Fundamental Counting
Principle the number of possible license plates is

(b) If repetition of letters is not allowed, then we arrange the choices as follows:

At the first stage we have 26 letters to choose from, but once the first letter has been
chosen, there are only 25 letters to choose from at the second stage. Once the first two
letters have been chosen, 24 letters are left to choose from for the third stage. The dig-
its are chosen as before. Thus the number of possible license plates in this case is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 29 ■

Let S be a set with n elements. A subset of S can be chosen by making one of two
choices for each element: We can choose the element to be in or out of A. Since S has n
elements and we have two choices for each element, by the Fundamental Counting Prin-

26 � 25 � 24 � 10 � 10 � 10 � 15,600,000

26 25 24 10 10 10

26 � 26 � 26 � 10 � 10 � 10 � 17,576,000

26 26 26 10 10 10

3 31
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ciple the total number of different subsets is , where there are n factors.
This gives the following formula.

E X A M P L E  3 Finding the Number of Subsets

A pizza parlor offers a basic cheese pizza and a choice of 16 toppings. How many dif-
ferent kinds of pizza can be ordered at this pizza parlor?

S O L U T I O N We need the number of possible subsets of the 16 toppings (including the
empty set, which corresponds to a plain cheese pizza). Thus

different pizzas can be ordered.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

▼ Counting Permutations
A permutation of a set of distinct objects is an ordering of these objects. For example,
some permutations of the letters ABCD are

ABDC BACD DCBA DABC

How many such permutations are possible? There are four choices for the first position,
three for the second (after the first has been chosen), two for the third (after the first two have
been chosen), and only one choice for the fourth letter (the letter that has not yet been cho-
sen). By the Fundamental Counting Principle the number of possible permutations is

The same reasoning with 4 replaced by n leads to the following.

The number of permutations of n objects is 

How many permutations consisting of two letters can be made from these same four
letters? Some of these permutations are AB, AC, BD, DB, . . . . There are 4 choices of the
first letter and 3 for the second letter. By the Fundamental Counting Principle there are

such permutations. In general, if a set has n elements, then the number of
ways of ordering r elements from the set is denoted by P(n, r) and is called the number
of permutations of n objects taken r at a time.

4 � 3 � 12

n!

4 � 3 � 2 � 1 � 4! � 24

216 � 65,536

2 � 2 � . . . � 2
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THE NUMBER OF SUBSETS OF A SET

A set with n elements has different subsets.2n

Permutations of
three colored squares

PERMUTATIONS OF n OBJECTS TAKEN r AT A TIME

The number of permutations of n objects taken r at a time is

P1n, r 2 �
n!

1n � r 2 !
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P R O O F There are n objects and r positions to place them in. Thus there are n choices
for the first position, choices for the second, choices for the third, and so
on. The last position can be filled in ways. By the Fundamental Counting
Principle we conclude that

We can express this formula using factorial notation by multiplying numerator and 
denominator by :

■

E X A M P L E  4 Finding the Number of Permutations

There are six runners in a race that is completed with no tie.

(a) In how many different ways can the race be completed?

(b) In how many different ways can first, second, and third place be decided?

S O L U T I O N

(a) The number of ways to complete the race is the number of permutations of the six
runners:

(b) The number of ways in which the first three positions can be decided is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 41 ■

E X A M P L E  5 Finding the Number of Permutations

A club has nine members. In how many ways can a president, a vice president, and a
secretary be chosen from the members of this club?

S O L U T I O N We need the number of ways of selecting three members, in order, for the
positions of president, vice president, and secretary from the nine club members. This
number is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 43 ■

P19, 3 2 �
9!

19 � 3 2 !
�

9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1

6 � 5 � 4 � 3 � 2 � 1
� 504

P16, 3 2 �
6!

16 � 3 2 !
�

6 � 5 � 4 � 3 � 2 � 1

3 � 2 � 1
� 120

6! � 720.

P1n, r 2 �
n1n � 1 2 1n � 2 2  . . . 1n � r � 1 2 1n � r 2  . . . 3 # 2 # 1

1n � r 2  . . . 3 # 2 # 1
�

n!

1n � r 2 !

1n � r 2  . . . 3 # 2 # 1

P1n, r 2 � n1n � 1 2 1n � 2 2  . . . 1n � r � 1 2

n � r � 1
n � 2n � 1
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R O N A L D  G R A H A M , born in
Taft, California, in 1935, is con-
sidered the world’s leading
mathematician in the field of
combinatorics, the branch of
mathematics that deals with
counting. For many years 
Graham headed the Mathe-
matical Studies Center at Bell
Laboratories in Murray Hill,
New Jersey, where he solved
key problems for the tele-
phone industry. During the

Apollo program, NASA needed to evaluate mission schedules so that
the three astronauts aboard the spacecraft could find the time to per-
form all the necessary tasks. The number of ways to allot these tasks
was astronomical—too vast for even a computer to sort out. Graham,
using his knowledge of combinatorics, was able to reassure NASA that
there were easy ways of solving their problem that were not too far
from the theoretically best possible solution. Besides being a prolific
mathematician, Graham is an accomplished juggler (he has been on
stage with the Cirque du Soleil and is a past president of the Interna-
tional Jugglers Association). Several of his research papers address the
mathematical aspects of juggling. He is also fluent in Mandarin Chinese
and Japanese and once spoke with former President Jiang of China in
his native language.
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E X A M P L E  6 Finding the Number of Permutations

From 20 raffle tickets in a hat, 4 tickets are to be selected in order. The holder of the
first ticket wins a car, the second a motorcycle, the third a bicycle, and the fourth a
skateboard. In how many different ways can these prizes be awarded?

S O L U T I O N The order in which the tickets are chosen determines who wins each
prize. So we need to find the number of ways of selecting 4 objects, in order, from 20
objects (the tickets). This number is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 45 ■

▼ Distinguishable Permutations
If we have a collection of ten balls, each a different color, then the number of permuta-
tions of these balls is . If all ten balls are red, then we have just one dis-
tinguishable permutation because all the ways of ordering these balls look exactly the
same. In general, in considering a set of objects, some of which are of the same kind, then
two permutations are distinguishable if one cannot be obtained from the other by inter-
changing the positions of elements of the same kind. For example, if we have ten balls, of
which six are red and the other four are each a different color, then how many distin-
guishable permutations are possible? The key point here is that balls of the same color are
not distinguishable. So each rearrangement of the red balls, keeping all the other balls
fixed, gives essentially the same permutation. Since there are 6! rearrangements of the red
balls for each fixed position of the other balls, the total number of distinguishable permu-
tations is 10!/6!. The same type of reasoning gives the following general rule:

E X A M P L E  7 Finding the Number of Distinguishable 
Permutations

Find the number of different ways of placing 15 balls in a row given that 4 are red, 3 
are yellow, 6 are black, and 2 are blue.

S O L U T I O N We want to find the number of distinguishable permutations of these
balls. By the formula this number is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 55 ■

Suppose we have 15 wooden balls in a row and four colors of paint: red, yellow, black,
and blue. In how many different ways can the 15 balls be painted in such a way that we
have 4 red, 3 yellow, 6 black, and 2 blue balls? A little thought will show that this num-

15!

4! 3! 6! 2!
� 6,306,300

P110, 10 2 � 10!
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P120, 4 2 �
20!

120 � 4 2 !
�

20 � 19 � 18 � 17 � 16 � 15 � 14 � . . . � 3 � 2 � 1

16 � 15 � 14 � . . . � 3 � 2 � 1
� 116,280

DISTINGUISHABLE PERMUTATIONS

If a set of n objects consists of k different kinds of objects with n1 objects of the
first kind, n2 objects of the second kind, n3 objects of the third kind, and so on,
where n1 � n2 � . . . � nk � n, then the number of distinguishable permutations
of these objects is

n!

n 1! n 2! n 3! . . . nk!
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ber is exactly the same as that calculated in Example 3. This way of looking at the prob-
lem is somewhat different, however. Here we think of the number of ways to partition
the balls into four groups, each containing 4, 3, 6, and 2 balls to be painted red, yellow,
black, and blue, respectively. The next example shows how this reasoning is used.

E X A M P L E  8 Finding the Number of Partitions

Fourteen construction workers are to be assigned to three different tasks. Seven workers 
are needed for mixing cement, five for laying bricks, and two for carrying the bricks to the
brick layers. In how many different ways can the workers be assigned to these tasks?

S O L U T I O N We need to partition the workers into three groups containing 7, 5, and 
2 workers, respectively. This number is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 59 ■

▼ Counting Combinations
When counting permutations, we are interested in the number of ways of ordering the el-
ements of a set. In many counting problems, however, order is not important. For exam-
ple, a poker hand is the same hand regardless of how it is ordered. A poker player who is
interested in the number of possible hands wants to know the number of ways of drawing
five cards from 52 cards, without regard to the order in which the cards are dealt. We now
develop a formula for counting in situations in which order doesn’t matter.

A combination of r elements of a set is any subset of r elements from the set (without
regard to order). If the set has n elements, then the number of combinations of r elements
is denoted by C(n, r) and is called the number of combinations of n elements taken r
at a time. For example, consider a set with the four elements A, B, C, and D. The combi-
nations of these four elements taken three at a time are listed below. Compare this with
the permutations of these elements listed in the margin.

ABC ABD ACD BCD

We notice that the number of combinations is a lot fewer than the number of permuta-
tions. In fact, each combination of three elements generates 3! permutations. So

. In general, each combination of r objects gives rise to per-
mutations of these objects, so we get the following formula.

The key difference between permutations and combinations is order. If we are interested
in ordered arrangements, then we are counting permutations, but if we are concerned with
subsets without regard to order, then we are counting combinations. Compare Examples 9
and 10 below (where order doesn’t matter) to Examples 5 and 6 (where order does matter).

E X A M P L E  9 Finding the Number of Combinations

A club has nine members. In how many ways can a committee of three be chosen from
the members of this club?

r!C14, 3 2 � P14, 3 2 /3! � 4

14!

7! 5! 2!
� 72,072

S E C T I O N  9 . 1 | Counting 631

ABC ABD ACD BCD
ACB ADB ADC BDC
BAC BAD CAD CBD
BCA BDA CDA CDB
CAB DAB DAC DBC
CBA DBA DCA DCB

COMBINATIONS OF n OBJECTS TAKEN r AT A TIME

The number of combinations of n objects taken r at a time is

C1n, r 2 �
n!

r! 1n � r 2 !
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S O L U T I O N We need the number of ways of choosing three of the nine members. Or-
der is not important here, because the committee is the same no matter how its members
are ordered. So we want the number of combinations of nine objects (the club members)
taken three at a time. This number is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 61 ■

E X A M P L E  1 0 Finding the Number of Combinations

From 20 raffle tickets in a hat, four tickets are to be chosen at random. The holders of the
winning tickets get free trips to the Bahamas. In how many ways can the four winners be
chosen?

S O L U T I O N We need to find the number of ways of choosing four winners from 20
entries. The order in which the tickets are chosen doesn’t matter, because the same prize
is awarded to each of the four winners. So we want the number of combinations of 20
objects (the tickets) taken four at a time. This number is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 63 ■

▼ Problem Solving with Permutations and Combinations
The crucial step in solving counting problems is deciding whether to use permutations,
combinations, or the Fundamental Counting Principle. In some cases the solution of a
problem may require using more than one of these principles. Here are some general
guidelines to help us decide how to apply these principles.

E X A M P L E  1 1 Using Combinations

A group of 25 campers consists of 15 women and 10 men. In how many ways can a
scouting party of 6 be chosen if it must consist of 3 women and 2 men?

S O L U T I O N Three women can be chosen from the 15 women in ways, and
two men can be chosen from the 10 men in ways. It follows by the Fundamen-
tal Counting Principle that the number of ways of choosing the scouting party is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 75 ■

C115, 3 2 � C110, 2 2 � 455 � 45 � 20,475

C110, 2 2
C115, 3 2

C19, 3 2 �
9!

3!19 � 3 2 !
�

9 � 8 � 7 � 6 � 5 � 4 � 3 � 2 � 1

13 � 2 � 1 2 � 16 � 5 � 4 � 3 � 2 � 1 2
� 84

C120, 4 2 �
20!

4!120 � 4 2 !
�

20 � 19 � 18 � 17 � 16 � 15 � 14 � . . . � 3 � 2 � 1

14 � 3 � 2 � 1 2 � 116 � 15 � 14 � . . . � 3 � 2 � 1 2
� 4845

GUIDELINES FOR SOLVING COUNTING PROBLEMS

1. Fundamental Counting Principle. When consecutive choices are being
made, use the Fundamental Counting Principle.

2. Does Order Matter? When we want to find the number of ways of picking r
objects from n objects, we need to ask ourselves, “Does the order in which we
pick the objects matter?”

If the order matters, we use permutations.

If the order doesn’t matter, we use combinations.
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E X A M P L E  1 2 Using Permutations and Combinations

A committee of seven—consisting of a chairman, a vice chairman, a secretary, and four
other members—is to be chosen from a class of 20 students. In how many ways can the
committee be chosen?

S O L U T I O N In choosing the three officers, order is important. So the number of ways
of choosing them is

Next, we need to choose four other students from the 17 remaining. Since order doesn’t
matter in choosing these four members, the number of ways of doing this is

By the Fundamental Counting Principle the number of ways of choosing this committee is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 77 ■

E X A M P L E  1 3 Using Permutations and Combinations

Twelve employees at a company picnic are to stand in a row for a group photograph. In
how many ways can this be done if

(a) Jane and John insist on standing next to each other?

(b) Jane and John refuse to stand next to each other?

S O L U T I O N Since the order in which the people stand is important, we use permuta-
tions. But we can’t use permutations directly.

(a) Since Jane and John insist on standing together, let’s think of them as one object.
So we have 11 objects to arrange in a row, and there are ways of doing
this. For each of these arrangements there are two ways of having Jane and John
stand together: Jane-John or John-Jane. By the Fundamental Counting Principle the
total number of arrangements is

(b) There are ways of arranging the 12 people. Of these, have
Jane and John standing together (by part (a)). All the rest have Jane and John stand-
ing apart. So the number of arrangements with Jane and John standing apart is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 85 ■

P112, 12 2  � 2 � P111, 11 2 � 12! � 2 � 11! � 399,168,000

2 � P111, 11 2P112, 12 2

2 � P111, 11 2 � 2 � 11! � 79,833,600

P111, 11 2

P120, 3 2 � C117, 4 2 � 6840 � 2380 � 16,279,200

C117, 4 2 � 2380

P120, 3 2 � 6840

C O N C E P T S
1. The Fundamental Counting Principle says that if one event can

occur in m ways and a second event can occur in n ways, then 

the two events can occur in order in � ways. So
if you have two choices for shoes and three choices for hats,
then the number of different shoe-hat combinations you can 

wear is � � .

2. The number of ways of arranging r objects from n objects 

in order is called the number of of 
n objects taken r at a time and is given by the formula 

.P1n, r 2 �

9 . 1  E X E R C I S E S

Jane John
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3. The number of ways of choosing r objects from n objects is 

called the number of of n objects taken r at a 

time and is given by the formula .

4. True or false?
(a) In counting combinations, order matters.
(b) In counting permutations, order matters.
(c) For a set of n distinct objects, the number of different

combinations of these objects is more than the number of
different permutations.

(d) If we have a set with five distinct objects, then the number
of different ways of choosing two members of this set is
the same as the number of ways of choosing three 
members.

S K I L L S
5–16 ■ Evaluate the expression.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

A P P L I C A T I O N S
Exercises 17–36 involve the Fundamental Counting Principle.

17. Ice-Cream Cones A vendor sells ice cream from a cart on
the boardwalk. He offers vanilla, chocolate, strawberry, and
pistachio ice cream, served in either a waffle, sugar, or plain
cone. How many different single-scoop ice-cream cones can
you buy from this vendor?

18. Three-Letter Words How many three-letter “words”
(strings of letters) can be formed by using the 26 letters of the
alphabet if repetition of letters
(a) is allowed?
(b) is not allowed?

19. Horse Race Eight horses compete in a race. (Assume that
the race does not end in a tie.)
(a) How many different orders are possible for completing the

race?
(b) In how many different ways can first, second, and third

places be decided?

20. Multiple-Choice Test A multiple-choice test has five ques-
tions with four choices for each question. In how many differ-
ent ways can the test be completed?

21. Phone Numbers Telephone numbers consist of seven dig-
its; the first digit cannot be 0 or 1. How many telephone num-
bers are possible?

22. Running a Race In how many different ways can a race
with five runners be completed? (Assume that there is no tie.)

C 199, 3 2C 1100, 1 2

C 110, 5 2C 111, 4 2

C 19, 2 2C 18, 3 2

P 199, 3 2P 1100, 1 2

P 110, 5 2P 111, 4 2

P 19, 2 2P 18, 3 2

C 1n, r 2 �

23. Restaurant Meals A restaurant offers the items listed in the
table. How many different meals consisting of a main course, a
drink, and a dessert can be selected at this restaurant?

24. Multiple Routes Towns A, B, C, and D are located in such
a way that there are four roads from A to B, five roads from B
to C, and six roads from C to D. How many routes are there
from town A to town D via towns B and C?

25. Flipping a Coin A coin is flipped five times, and the result-
ing sequence of heads and tails is recorded. How many such
sequences are possible?

26. Rolling a Pair of Dice A red die and a white die are rolled,
and the numbers that show are recorded. How many different
outcomes are possible? (The singular form of the word dice 
is die.)

27. Rolling Three Dice A red die, a blue die, and a white 
die are rolled, and the numbers that show are recorded. How
many different outcomes are possible?

28. Choosing Outfits A girl has five skirts, eight blouses, and
12 pairs of shoes. How many different skirt-blouse-shoe outfits
can she wear? (Assume that each item matches all the others,
so she is willing to wear any combination.)

29. License Plates Standard automobile license plates in 
California display a nonzero digit, followed by three letters,
followed by three digits. How many different standard plates
are possible in this system?

30. ID Numbers A company’s employee ID number system
consists of one letter followed by three digits. How many dif-
ferent ID numbers are possible with this system?

Main courses Drinks Desserts

Chicken Iced tea Ice cream
Beef Apple juice Layer cake
Lasagna Cola Blueberry pie
Quiche Ginger ale

Coffee
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Exercises 41–52 involve counting permutations.

41. Seating Arrangements Ten people are at a party.
(a) In how many different ways can they be seated in a row of

ten chairs?
(b) In how many different ways can six of these people be se-

lected and then seated in a row of six chairs?

42. Three-Letter Words How many three-letter “words”
can be made from the letters FGHIJK? (Letters may not be re-
peated.)

43. Class Officers In how many different ways can a president,
vice president, and secretary be chosen from a class of 15 stu-
dents?

44. Three-Digit Numbers How many different three-digit
whole numbers can be formed by using the digits 1, 3, 5, and
7 if no repetition of digits is allowed?

45. Contest Prizes In how many different ways can first,
second, and third prizes be awarded in a game with eight 
contestants?

46. Piano Recital A pianist plans to play eight pieces at a
recital. In how many ways can she arrange these pieces in the
program?

47. Running a Race In how many different ways can a race
with nine runners be completed, assuming that there is no tie?

48. Signal Flags A ship carries five signal flags of different col-
ors. How many different signals can be sent by hoisting ex-
actly three of the five flags on the ship’s flagpole in different
orders?

49. Contest Prizes In how many ways can first, second, and
third prizes be awarded in a contest with 1000 contestants?

50. Class Officers In how many ways can a president, vice
president, secretary, and treasurer be chosen from a class of 30
students?

51. Seating Arrangements In how many ways can five 
students be seated in a row of five chairs if Jack insists on sit-
ting in the first chair?

52. Seating Arrangements In how many ways can the
students in Exercise 51 be seated if Jack insists on sitting in
the middle chair?

Exercises 53–60 involve distinguishable permutations.

53. Arrangements In how many ways can two blue marbles
and four red marbles be arranged in a row?

54. Arrangements In how many different ways can five red
balls, two white balls, and seven blue balls be arranged in 
a row?

Jack

31. Combination Lock A combination lock has 60 different
positions. To open the lock, the dial is turned to a certain num-
ber in the clockwise direction, then to a number in the coun-
terclockwise direction, and finally to a third number in the
clockwise direction. If successive numbers in the combination
cannot be the same, how many different combinations are 
possible?

32. License Plates A state has registered 8 million automo-
biles. To simplify the license plate system, a state employee
suggests that each plate display only two letters followed by
three digits. Will this system create enough different license
plates for all the vehicles that are registered?

33. Class Executive In how many ways can a president, vice
president, and secretary be chosen from a class of 30 students?

34. Committee Officers A senate subcommittee consists of
ten Democrats and seven Republicans. In how many ways can
a chairman, vice chairman, and secretary be chosen if the
chairman must be a Democrat and the vice chairman must be a
Republican?

35. Social Security Numbers Social Security numbers consist
of nine digits, with the first digit between 0 and 6, inclusive.
How many Social Security numbers are possible?

36. Holiday Photos A couple have seven children: three 
girls and four boys. In how many ways can the children be
arranged for a holiday photo if the girls sit in a row in the
front and the boys stand in a row behind the girls?

Exercises 37–40 involve counting subsets.

37. Subsets A set has eight elements.
(a) How many subsets containing five elements does this set

have?
(b) How many subsets does this set have?

38. Travel Brochures A travel agency has limited numbers of
eight different free brochures about Australia. The agent tells
you to take any that you like but no more than one of any
kind. In how many different ways can you choose brochures
(including not choosing any)?

39. Hamburgers A hamburger chain gives their customers a
choice of ten different hamburger toppings. In how many dif-
ferent ways can a customer order a hamburger?

40. To Shop or Not to Shop Each of 20 shoppers in a 
shopping mall chooses to enter or not to enter the Dressfastic
clothing store. How many different outcomes of their deci-
sions are possible?
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69. Violin Recital A violinist has practiced 12 pieces. In how
many ways can he choose eight of these pieces for a recital?

70. Choosing Clothing If a woman has eight skirts, in how
many ways can she choose five of these to take on a weekend
trip?

71. Choosing Clothing If a man has ten pairs of pants, in how
many ways can he choose three of these to take on a business
trip?

72. Field Trip From a class with 30 students, seven are to be cho-
sen to go on a field trip. Find the number of different ways that
the seven students can be chosen under the given condition.
(a) Jack must go on the field trip.
(b) Jack is not allowed to go on the field trip.
(c) There are no restrictions on who can go on the field trip.

73. Lottery In the 6/49 lottery game, a player picks six numbers
from 1 to 49. How many different choices does the player have?

74. Jogging Routes A jogger jogs every morning to his health
club, which is eight blocks east and five blocks north of his
home. He always takes a route that is as short as possible, but
he likes to vary it (see the figure). How many different routes
can he take? [Hint: The route shown can be thought of as
ENNEEENENEENE, where E is East and N is North.]

Solve Exercises 75–90 by using the appropriate counting 
principle(s).

75. Choosing a Committee A class has 20 students, of whom
12 are females and 8 are males. In how many ways can a com-
mittee of five students be picked from this class under each
condition?
(a) No restriction is placed on the number of males or females

on the committee.
(b) No males are to be included on the committee.
(c) The committee must have three females and two males.

76. Doubles Tennis From a group of ten male and ten fe-
male tennis players, two men and two women are to face each
other in a men-versus-women doubles match. In how many
different ways can this match be arranged?

77. Choosing a Committee A committee of six is to be cho-
sen from a class of 20 students. The committee is to consist of
a chair, a secretary and four other members. In how many dif-
ferent ways can the committee be picked?

78. Choosing a Group Sixteen boys and nine girls go on a
camping trip. In how many ways can a group of six be se-
lected to gather firewood, given the following conditions?
(a) The group consists of two girls and four boys.
(b) The group contains at least two girls.

Home

Health club

55. Arranging Coins In how many different ways can four pen-
nies, three nickels, two dimes, and three quarters be arranged
in a row?

56. Arranging Letters In how many different ways can the let-
ters of the word ELEEMOSYNARY be arranged?

57. Distributions A man bought three vanilla ice-cream cones,
two chocolate cones, four strawberry cones, and five butter-
scotch cones for his 14 chidren. In how many ways can he dis-
tribute the cones among his children?

58. Room Assignments When seven students take a trip, they
find a hotel with three rooms available: a room for one person,
a room for two people, and a room for three people. In how
many different ways can the students be assigned to these
rooms? (One student has to sleep in the car.)

59. Work Assignments Eight workers are cleaning a large
house. Five are needed to clean windows, two to clean the
carpets, and one to clean the rest of the house. In how many
different ways can these tasks be assigned to the eight
workers?

60. Transporting Students A group of 30 students is taking a
field trip to a science museum. Three vans are available for
transporting the students. The first van has room for 8 stu-
dents, and the other two vans each have room for 11 students.
In how many different ways can the students be assigned to
the vans? 

Exercises 61–74 involve counting combinations.

61. Committee In how many ways can a committee of three
members be chosen from a club of 25 members?

62. Choosing Books In how many ways can three books be
chosen from a group of six different books?

63. Raffle In a raffle with 12 entries, in how many ways can
three winners be selected?

64. Choosing a Group In how many ways can six people be
chosen from a group of ten?

65. Draw Poker Hands How many different five-card hands
can be dealt from a deck of 52 cards?

66. Stud Poker Hands How many different seven-card hands
can be picked from a deck of 52 cards?

67. Choosing Exam Questions A student must answer seven
of the ten questions on an exam. In how many ways can she
choose the seven questions?

68. Three-Topping Pizzas A pizza parlor offers a choice 
of 16 different toppings. How many three-topping pizzas are
possible?
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89. Selecting Prizewinners From a group of 30 contestants,
six are to be chosen as semifinalists, then two of those are
chosen as finalists, and then the top prize is awarded to one of
the finalists. In how many ways can these choices be made in
sequence?

90. Choosing a Delegation Three delegates are to be chosen
from a group of four lawyers, a priest, and three professors. In
how many ways can the delegation be chosen if it must in-
clude at least one professor?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
91. Pairs of Initials Explain why in any group of 677 people, at

least two people must have the same pair of initials.

92. Complementary Combinations Without performing any
calculations, explain in words why the number of ways of
choosing two objects from ten objects is the same as the num-
ber of ways of choosing eight objects from ten objects. In gen-
eral, explain why

93. An Identity Involving Combinations Kevin has ten dif-
ferent marbles, and he wants to give three of them to Luke and
two to Mark. In how many ways can he choose to do this?
There are two ways of analyzing this problem: He could first
pick three for Luke and then two for Mark, or he could first
pick two for Mark and then three for Luke. Explain how these
two viewpoints show that

In general, explain why

94. Why Is the Same as ? This exercise explains 
why the binomial coefficients that appear in the expansion
of are the same as , the number of ways of
choosing r objects from n objects. First, note that expanding a
binomial using only the Distributive Property gives

(a) Expand using only the Distributive Property.
(b) Write all the terms that represent x2y3. These are all the

terms that contain two x’s and three y’s.
(c) Note that the two x’s appear in all possible positions. Con-

clude that the number of terms that represent x2y3 is .
(d) In general, explain why in the Binomial Theorem is

the same as .C1n, r 2
1nr 2

C15, 2 2

1x � y 2 5

 � yxy � yyx � yyy

 � xxx � xxy � xyx � xyy � yxx

 1x � y 2 3 � 1x � y 2 1xx � xy � yx � yy 2

 � xx � xy � yx � yy

 � 1x � y 2x � 1x � y 2y

 1x � y 22 � 1x � y 2 1x � y 2

C1n, r 21x � y 2n
1nr 2

C1n, r 21nr 2

C1n, r 2 # C1n � r, k 2 � C1n, k 2 # C1n � k, r 2

C110, 3 2 # C17, 2 2 � C110, 2 2 # C18, 3 2

C1n, r 2 � C1n, n � r 2

79. Dance Committee A school dance committee is to consist
of two freshmen, three sophomores, four juniors, and five se-
niors. If six freshmen, eight sophomores, twelve juniors, and
ten seniors are eligible to be on the committee, in how many
ways can the committee be chosen?

80. Casting a Play A group of 22 aspiring thespians contains 10
men and 12 women. For the next play, the director wants to
choose a leading man, a leading lady, a supporting male role, a
supporting female role, and eight extras—three women and five
men. In how many ways can the cast be chosen?

81. Hockey Lineup A hockey team has 20 players, of whom 12
play forward, six play defense, and two are goalies. In how
many ways can the coach pick a starting lineup consisting of
three forwards, two defense players, and one goalie?

82. Choosing a Pizza A pizza parlor offers four sizes of pizza
(small, medium, large, and colossus), two types of crust (thick
and thin), and 14 different toppings. How many different piz-
zas can be made with these choices?

83. Choosing a Committee In how many ways can a commit-
tee of four be chosen from a group of ten if Barry and Harry
refuse to serve together on the same committee?

84. Parking Committee A five-person committee consist-
ing of students and teachers is being formed to study the issue
of student parking privileges. Of those who have expressed an
interest in serving on the committee, 12 are teachers and 14
are students. In how many ways can the committee be formed
if at least one student and one teacher must be included?

85. Arranging Books In how many ways can five different
mathematics books be placed on a shelf if the two algebra
books are to be placed next to each other?

86. Arranging a Class Picture In how many ways can ten stu-
dents be arranged in a row for a class picture if John and Jane
want to stand next to each other and Mike and Molly also in-
sist on standing next to each other?

87. Seating Arrangements In how many ways can four men
and four women be seated in a row of eight seats for each of
the following arrangements?
(a) The first seat is to be occupied by a man.
(b) The first and last seats are to be occupied by women.

88. Seating Arrangements In how many ways can four men
and four women be seated in a row of eight seats for each of
the following arrangements?
(a) The women are to be seated together.
(b) The men and women are to be seated alternately by 

gender.
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9.2 PROBABILIT Y

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the probability of an event by counting � Find the probability of the 
complement of an event � Find the probability of the union of events
� Find conditional probabilities � Find the probability of the intersection
of events

In this section we study probability, which is the mathematical study of “chance.”

▼ What Is Probability?
Suppose we roll a die, and we’re hoping to get a “two.” Of course, it’s impossible to pre-
dict what number will show up. But here’s the key idea: If we roll the die many many
times, a “two” will show up about one-sixth of the time. If you try this experiment you’ll
see that it actually works! We say that the probability (or chance) of getting a “two” is .

To discuss probability, let’s begin by defining some terms. An experiment is a process,
such as tossing a coin, that gives definite results, called the outcomes of the experiment.
The sample space of an experiment is the set of all possible outcomes. If we let H stand
for heads and T for tails, then the sample space of the coin-tossing experiment is

. The table gives some experiments and their sample spaces.

We will be concerned only with experiments for which all the outcomes are equally
likely. For example, when we toss a perfectly balanced coin, heads and tails are equally
likely outcomes in the sense that if this experiment is repeated many times, we expect that
about as many heads as tails will show up.

In any given experiment we are often concerned with a particular set of outcomes. We
might be interested in a die showing an even number or in picking an ace from a deck of
cards. Any particular set of outcomes is a subset of the sample space. This leads to the fol-
lowing definition.

S � 5H, T6

1
6

The mathematical theory of probabil-
ity was first discussed in 1654 in a se-
ries of letters between Pascal (see page
604) and Fermat (see page 107). Their
correspondence was prompted by a
question raised by the experienced
gambler the Chevalier de Méré. The
Chevalier was interested in the equi-
table distribution of the stakes of an in-
terrupted gambling game (see Prob-
lem 3, page 666).

Experiment Sample space

Tossing a coin 5H, T6

Rolling a die 51, 2, 3, 4, 5, 66

Tossing a coin twice and observing 5HH, HT, TH, TT6
the sequence of heads and tails

Picking a card from a deck 
and observing the suit

Administering a drug to three patients 5RRR, RRN, RNR, RNN,
and observing whether they recover (R) NRR, NRN, NNR, NNN6
or not (N)
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E X A M P L E  1 Events in a Sample Space

An experiment consists of tossing a coin three times and recording the results in order.
List the outcomes in the sample space, then list the outcome in each event.

(a) The event E of getting “exactly two heads.”

(b) The event F of getting “at least two heads.”

(c) The event G of getting “no heads.”

S O L U T I O N We write H for heads and T for tails. So the outcome HTH means that the
three tosses resulted in Heads, Tails, Heads, in that order. The sample space is

(a) The event E is the subset of the sample space S that consists of all outcomes with
exactly two heads. Thus

(b) The event F is the subset of the sample space S that consists of all outcomes with
at least two heads. Thus

(c) The event G is the subset of the sample space S that consists of all outcomes with
no heads. Thus

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 5 ■

We are now ready to define the notion of probability. Intuitively, we know that rolling
a die may result in any of six equally likely outcomes, so the chance of any particular out-
come occurring is . What is the chance of showing an even number? Of the six equally
likely outcomes possible, three are even numbers. So it is reasonable to say that the
chance of showing an even number is . This reasoning is the intuitive basis for the
following definition of probability.

Notice that , so the probability of an event is a number between
0 and 1, that is,

0 � P1E 2 � 1

P1E 20 � n1E 2 � n1S 2

3
6 � 1

2

1
6

G � 5TTT6

F � 5HHH, HHT, HTH, THH6

E � 5HHT, HTH, THH6

S � 5HHH, HHT, HTH, THH, TTH, THT, HTT, TTT6

S E C T I O N  9 . 2 | Probability 639

DEFINITION OF AN EVENT

If S is the sample space of an experiment, then an event E is any subset of the
sample space.

DEFINITION OF PROBABILIT Y

Let S be the sample space of an experiment in which all outcomes are equally
likely, and let E be an event. Then the probability of E, written , is

P1E 2 �
n1E 2

n1S 2
�

number of elements in E

number of elements in S

P1E 2
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The closer the probability of an event is to 1, the more likely the event is to happen; the
closer to 0, the less likely. If , then E is called a certain event; if , then
E is called an impossible event.

E X A M P L E  2 Finding the Probability of an Event

A coin is tossed three times, and the results are recorded in order. Find the probability
of the following.

(a) The event E of getting “exactly two heads.”

(b) The event F of getting “at least two heads.”

(c) The event G of getting “no heads.”

S O L U T I O N By the results of Example 1 the sample space S of this experiment con-
tains 8 outcomes.

(a) The event E of getting “exactly two heads” contains 3 outcomes, so by the defini-
tion of probability,

(b) The event F of getting “at least two heads” has 4 outcomes, so

(c) The event G of getting “no heads” has one outcome, so

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 7 ■

▼ Calculating Probability by Counting
To find the probability of an event, we do not need to list all the elements in the sample
space and the event. We need only the number of elements in these sets. The counting
techniques that we learned in the preceding sections will be very useful here.

E X A M P L E  3 Finding the Probability of an Event

A five-card poker hand is drawn from a standard deck of 52 cards. What is the probabil-
ity that all five cards are spades?

S O L U T I O N The experiment here consists of choosing five cards from the deck, and
the sample space S consists of all possible five-card hands. Thus the number of elements
in the sample space is

The event E that we are interested in consists of choosing five spades. Since the deck
contains only 13 spades, the number of ways of choosing five spades is

n1E 2 � C113, 5 2 �
13!

5!113 � 5 2 !
� 1287

n1S 2 � C152, 5 2 �
52!

5!152 � 5 2 !
� 2,598,960

P1G 2 �
n1G 2

n1S 2
�

1

8

P1F 2 �
n1F 2

n1S 2
�

4

8
�

1

2

P1E 2 �
n1E 2

n1S 2
�

3

8

P1E 2 � 0P1E 2 � 1
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P E R S I  D I A C O N I S (b. 1945) is currently
professor of statistics and mathematics
at Stanford University in California. He
was born in New York City into a musi-
cal family and studied violin until the
age of 14. At that time he left home to
become a magician. He was a magician
(apprentice and master) for ten years.
Magic is still his passion, and if there
were a professorship for magic, he
would certainly qualify for such a post!
His interest in card tricks led him to a
study of probability and statistics. He is
now one of the leading statisticians in
the world. With his unusual back-
ground he approaches mathematics
with an undeniable flair. He says,“Sta-
tistics is the physics of numbers. Num-
bers seem to arise in the world in an
orderly fashion. When we examine the
world, the same regularities seem to
appear again and again.” Among his
many original contributions to mathe-
matics is a probabilistic study of the
perfect card shuffle.
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Thus the probability of drawing five spades is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

What does the answer to Example 3 tell us? Because , we conclude that
if you play poker many, many times, on average you will be dealt a hand consisting of
only spades about once in every 2000 hands.

E X A M P L E  4 Finding the Probability of an Event

A bag contains 20 tennis balls, of which four are defective. If two balls are selected at
random from the bag, what is the probability that both are defective?

S O L U T I O N The experiment consists of choosing two balls from 20, so the number of
elements in the sample space S is . Since there are four defective balls, the
number of ways of picking two defective balls is . Thus the probability of the
event E of picking two defective balls is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

▼ The Complement of an Event
The complement of an event E is the set of outcomes in the sample space that are not in
E. We denote the complement of E by .

P R O O F We calculate the probability of using the definition of probability and the
fact that .

■

This is a very useful result, since it is often difficult to calculate the probability of an
event E but easy to find the probability of .

E X A M P L E  5 Finding a Probability Using
the Complement of an Event

An urn contains 10 red balls and 15 blue balls. Six balls are drawn at random from the
urn. What is the probability that at least one ball is red?

E¿

P1E¿ 2 �
n1E¿ 2
n1S 2

�
n1S 2 � n1E 2

n1S 2
�

n1S 2

n1S 2
�

n1E 2

n1S 2
� 1 � P1E 2

n1E¿ 2 � n1S 2 � n1E 2
E¿

E¿

P1E 2 �
n1E 2

n1S 2
�

C14, 2 2

C120, 2 2
�

6

190
� 0.032

C14, 2 2
C120, 2 2

0.0005 � 1
2000

P1E 2 �
n1E 2

n1S 2
�

1287

2,598,960
� 0.0005

S E C T I O N  9 . 2 | Probability 641

PROBABILIT Y OF THE COMPLEMENT OF AN EVENT

Let S be the sample space of an experiment, and let E be an event. Then the prob-
ability of , the complement of E, is

P1E¿ 2 � 1 � P1E 2

E¿
By solving this equation for , we
also have

P 1E 2 � 1 � P 1E ¿ 2

P 1E 2
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S O L U T I O N Let E be the event that at least one red ball is drawn. It is tedious to
count all the possible ways in which one or more of the balls drawn are red. So let’s con-
sider , the complement of this event—namely, that none of the balls that are chosen is
red. The number of ways of choosing 6 blue balls from the 15 blue balls is ; the
number of ways of choosing 6 balls from the 25 balls is . Thus

By the formula for the complement of an event we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 19 ■

▼ The Union of Events
If E and F are events, what is the probability that E or F occurs? The word or indicates
that we want the probability of the union of these events, that is, .

P R O O F We need to find the number of elements in . If we simply added 
the number of elements in E to the number of elements in F, we would be counting 
the elements in the overlap twice—once in E and once in F (see Figure 1). To get the
correct total, we must subtract the number of elements in . So

. Using the definition of probability we get

E X A M P L E  6 Finding the Probability of the Union of Events

What is the probability that a card drawn at random from a standard 52-card deck is ei-
ther a face card or a spade?

S O L U T I O N Let E denote the event “the card is a face card,” and let F denote the event
“the card is a spade.” We want to find the probability of E or F, that is, .

There are 12 face cards and 13 spades in a 52-card deck, so

and

Since 3 cards are simultaneously face cards and spades, we have

P1E � F 2 �
3

52

P1F 2 �
13

52
P1E 2 �

12

52

P1E � F 2

P1E � F 2 �
n1E � F 2

n1S 2
�

n1E 2 � n1F 2 � n1E � F 2

n1S 2
� P1E 2 � P1F 2 � P1E � F 2

n1E � F 2 � n1E 2 � n1F 2 � n1E � F 2
E � F

E � F

E � F

P1E 2 � 1 � P1E¿ 2 � 1 �
13

460
� 0.97

P1E¿ 2 �
n1E¿ 2
n1S 2

�
C115, 6 2

C125, 6 2
�

5005

177,100
�

13

460

C125, 6 2
C115, 6 2

E¿
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PROBABILIT Y OF THE UNION OF EVENTS

If E and F are events in a sample space S, then the probability of E or F is

P1E � F 2 � P1E 2 � P1F 2 � P1E � F 2

E F

E � F

F I G U R E  1

K
Q
J

K
Q
J

K
Q
J

K
Q
J

A
2

3

4

5

6

7

8

9
10

Face cards Spades

■
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Now, by the formula for the probability of the union of two events we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 21 ■

Two events that have no outcome in common are said to be mutually exclusive (see
Figure 2). In other words, the events E and F are mutually exclusive if . So if
the events E and F are mutually exclusive, then . The following result now
follows from the formula for the union of two events.

E X A M P L E  7 Finding the Probability of the Union 
of Mutually Exclusive Events

What is the probability that a card drawn at random from a standard 52-card deck is ei-
ther a seven or a face card?

S O L U T I O N Let E denote the event “the card is a seven,” and let F denote the event
“the card is a face card.” These events are mutually exclusive because a card cannot be
at the same time a seven and a face card. By the above formula we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 23 AND 25 ■

▼ Conditional Probability and the Intersection of Events
When we calculate probabilities, there sometimes is additional information that may alter
the probability of an event. For example, suppose a person is chosen at random. What is
the probability that the person has long hair? How does the probability change if we are
given the additional information that the person chosen is a woman? In general, the prob-
ability of an event E given that another event F has occurred is expressed by writing

For example, suppose a die is rolled. Let E be the event of “getting a two,” and let F be
the event of “getting an even number.” Then

Since we know that the number is even, the possible outcomes are the three numbers 2,
4, and 6. So in this case the probability of a “two” is .P1E 0 F 2 � 1

3

P1E 0 F 2 � P1The number is two given that the number is even 2

P1E 0 F 2 � The probability of E given F

P1E � F 2 � P1E 2 � P1F 2 �
4

52
�

12

52
�

4

13

P1E � F 2 � 0
E � F � �

 �
12

52
�

13

52
�

3

52
�

11

26

 P1E � F 2 � P1E 2 � P1F 2 � P1E � F 2

S E C T I O N  9 . 2 | Probability 643
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E F

F I G U R E  2

PROBABILIT Y OF THE UNION OF MUTUALLY EXCLUSIVE EVENTS

If E and F are mutually exclusive events, then

P1E � F 2 � P1E 2 � P1F 2

7

7
7

7

Q

Q

Q

Q

K

K

K

K

J

J

J

J

Sevens

Face cards
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In general, if we know that F has occurred, then F serves as the sample space (see Fig-
ure 3). So is determined by the number of outcomes in E that are also in F, that
is, the number of outcomes in .

E X A M P L E  8 Finding Conditional Probability

A mathematics class consists of 30 students; 12 of them study French, 8 study German,
3 study both of these languages, and the rest do not study a foreign language. If a stu-
dent is chosen at random from this class, find the probability of each of the following
events.

(a) The student studies French.

(b) The student studies French, given that he or she studies German.

(c) The student studies French, given that he or she studies a foreign language.

S O L U T I O N Let F denote the event “the student studies French,” let G be the event
“the student studies German,” and let L be the event “the student studies a foreign lan-
guage.” It is helpful to organize the information in a Venn diagram, as in Figure 4.

(a) There are 30 students in the class, 12 of whom study French, so

(b) We are asked to find , the probability that a student studies French given
that the student studies German. Since eight students study German and three of
these study French, it is clear that the required conditional probability is . The for-
mula for conditional probability confirms this:

(c) From the Venn diagram in Figure 4 we see that the number of students who study a
foreign language is . Since 12 of these study French, we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 27 AND 29 ■

If we start with the expression for conditional probability and then divide numerator
and denominator by , we get

P1E 0 F 2 �
n1E � F 2

n1F 2
�

n1E � F 2

n1S 2
n1F 2

n1S 2

�
P1E � F 2

P1F 2

n1S 2

P1F 0 L 2 �
n1F � L 2

n1L 2
�

12

17

9 � 3 � 5 � 17

P1F 0 G 2 �
n1F � G 2

n1G 2
�

3

8

3
8

P1F 0 G 2

P1F 2 �
12

30
�

2

5

E � F
P1E 0 F 2
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E F

E � F

F I G U R E  3

CONDITIONAL PROBABILIT Y

Let E and F be events in a sample space S. The conditional probability of E
given that F occurs is

P1E 0 F 2 �
n1E � F 2

n1F 2

F G

39 5

12 8

F I G U R E  4
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Multiplying both sides by gives the following formula.

E X A M P L E  9 Finding the Probability 
of the Intersection of Events

Two cards are drawn, without replacement, from a 52-card deck. Find the probability of
the following events.

(a) The first card drawn is an ace and the second is a king.

(b) The first card drawn is an ace and the second is also an ace.

S O L U T I O N Let E be the event “the first card is an ace,” and let F be the event “the
second card is a king.”

(a) We are asked to find the probability of E and F, that is, . Now, .
After an ace is drawn, 51 cards remain in the deck; of these, 4 are kings, so

. By the above formula we have

(b) Let E be the event “the first card is an ace,” and let H be the event “the second card
is an ace.” The probability that the first card drawn is an ace is . After an 
ace is drawn, 51 cards remain; of these, 3 are aces, so . By the above
formula we have

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 33 ■

When the occurrence of one event does not affect the probability of the occurrence of
another event, we say that the events are independent. This means that the events E and
F are independent if and . For instance, if a fair coin is
tossed, the probability of showing heads on the second toss is , regardless of what was
obtained on the first toss. So any two tosses of a coin are independent.

E X A M P L E  1 0 Finding the Probability of Independent Events

A jar contains five red balls and four black balls. A ball is drawn at random from the jar and
then replaced; then another ball is picked. What is the probability that both balls are red?

1
2

P1F 0 E 2 � P1F 2P1E 0 F 2 � P1E 2

P1E � H 2 � P1E 2P1H 0 E 2 �
4

52
�

3

51
� 0.0045

P1H 0 E 2 � 3
51

P1E 2 � 4
52

P1E � F 2 � P1E 2P1F 0 E 2 �
4

52
�

4

51
� 0.0060

P1F 0 E 2 � 4
51

P1E 2 � 4
52P1E � F 2

P1F 2

S E C T I O N  9 . 2 | Probability 645

PROBABILIT Y OF THE INTERSECTION OF EVENTS

If E and F are events in a sample space S, then the probability of E and F is

P1E � F 2 � P1E 2P1F 0 E 2

PROBABILIT Y OF THE INTERSECTION OF INDEPENDENT EVENTS

If E and F are independent events in a sample space S, then the probability of E
and F is

P1E � F 2 � P1E 2P1F 2
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S O L U T I O N Let E be the event “the first ball drawn is red,” and let F be the event “the
second ball drawn is red.” Since we replace the first ball before drawing the second,
the events E and F are independent. Now, the probability that the first ball is red is .
The probability that the second is red is also . Thus the probability that both balls are
red is

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 37 ■

P1E � F 2 � P1E 2P1F 2 �
5

9
�

5

9
� 0.31

5
9

5
9
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C O N C E P T S
1. The set of all possible outcomes of an experiment is called the 

. A subset of the sample space is 

called an . The sample space for the experiment 

of tossing two coins is . The

event “getting at least one head” is . 
The probability of getting at least one head is 

.

2. Let E and F be events in a sample space S.
(a) The probability of E or F occurring is 

.
(b) If the events E and F have no outcome in common (that is,

the intersection of E and F is empty), then the events are 

called . So in drawing a card
from a deck, the event E, “getting a heart,” and the event 

F, “getting a spade,” are .
(c) If E and F are mutually exclusive, then the probability of 

E or F is .

3. The conditional probability of E given that F occurs is 

. So in rolling a die the conditional
probability of the event E, “getting a six,” given that the 
event F, “getting an even number,” has occurred is 

.

4. Let E and F be events in a sample space S.
(a) The probability of E and F occurring is 

______________.
(b) If the occurrence of E does not affect the probability of 

the occurrence F, then the events are called .
So in tossing a coin twice, the event E, “getting heads on
the first toss,” and the event F, “getting heads on the 

second toss,” are .

P 1E � F 2 �

P1E 0 F 2 �

P1E 0 F 2 �

P 1E � F 2 �

P 1E � F 2 �

P 1E 2 �
n 1___ 2

n 1___ 2
� ____

E � 5HH, ___, ___6

S � 5HH, ___, ___, ___6

(c) If E and F are independent events, then the probability of 

E and F is .

S K I L L S
5. An experiment consists of rolling a die. List the elements in

the following sets.
(a) The sample space
(b) The event “getting an even number”
(c) The event “getting a number greater than 4”

6. An experiment consists of tossing a coin and drawing a card
from a deck.
(a) How many elements does the sample space have?
(b) List the elements in the event “getting heads and an ace.”
(c) List the elements in the event “getting tails and a face

card.”
(d) List the elements in the event “getting heads and a spade.”

Exercises 7–20 are about finding probability by counting.

7. An experiment consists of tossing a coin twice.
(a) Find the sample space.
(b) Find the probability of getting heads exactly two times.
(c) Find the probability of getting heads at least one time.
(d) Find the probability of getting heads exactly one time.

8. An experiment consists of tossing a coin and rolling a die.
(a) Find the sample space.
(b) Find the probability of getting heads and an even number.
(c) Find the probability of getting heads and a number greater

than 4.
(d) Find the probability of getting tails and an odd number.

9–10 ■ A die is rolled. Find the probability of the given event.

9. (a) The number showing is a six.
(b) The number showing is an even number.
(c) The number showing is greater than five.

10. (a) The number showing is a two or a three.
(b) The number showing is an odd number.
(c) The number showing is a number divisible by 3.

P 1E � F 2 �

9 . 2  E X E R C I S E S
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Exercises 21–26 are about the probability of the union of events.

21–22 ■ Refer to the spinner shown in the figure. Find the proba-
bility of the given event.

21. (a) The spinner stops on red.
(b) The spinner stops on an even number.
(c) The spinner stops on red or an even number.

22. (a) The spinner stops on blue.
(b) The spinner stops on an odd number.
(c) The spinner stops on blue or an odd number.

23–24 ■ A die is rolled, and the number showing is observed. De-
termine whether the events E and F are mutually exclusive. Then
find the probability of the event .

23. (a) E: The number is even.
F: The number is odd.

(b) E: The number is even.
F: The number is greater than 4.

24. (a) E: The number is greater than 3.
F: The number is less than 5.

(b) E: The number is divisible by 3.
F: The number is less than 3.

25–26 ■ A card is drawn at random from a standard 52-card deck.
Determine whether the events E and F are mutually exclusive.
Then find the probability of the event .

25. (a) E: The card is a face card.
F: The card is a spade.

(b) E: The card is a heart.
F: The card is a spade.

26. (a) E: The card is a club.
F: The card is a king.

(b) E: The card is an ace.
F: The card is a spade.

Exercises 27–32 are about conditional probability.

27. A die is rolled. Find the given conditional probability.
(a) A “five” shows, given that the number showing is greater

than 3.
(b) A “three” shows, given that the number showing is odd.

28. A card is drawn from a deck. Find the following conditional
probability.
(a) The card is a queen, given that it is a face card.
(b) The card is a king, given that it is a spade.
(c) The card is a spade, given that it is a king.

E � F

E � F

11
22

33

44

55

66
77

8899
1010

1111

1212

1313

1414
1515

1616

11–12 ■ A card is drawn randomly from a standard 52-card deck.
Find the probability of the given event.

11. (a) The card drawn is a king.
(b) The card drawn is a face card.
(c) The card drawn is not a face card.

12. (a) The card drawn is a heart.
(b) The card drawn is either a heart or a spade.
(c) The card drawn is a heart, a diamond, or a spade.

13–14 ■ A ball is drawn randomly from a jar that contains five
red balls, two white balls, and one yellow ball. Find the probability
of the given event.

13. (a) A red ball is drawn.
(b) The ball drawn is not yellow.
(c) A black ball is drawn.

14. (a) Neither a white nor yellow ball is drawn.
(b) A red, white, or yellow ball is drawn.
(c) The ball that is drawn is not white.

15. A poker hand, consisting of five cards, is dealt from a standard
deck of 52 cards. Find the probability that the hand contains
the cards described.
(a) Five hearts
(b) Five cards of the same suit
(c) Five face cards
(d) An ace, king, queen, jack, and a ten, all of the same suit

(royal flush)

16. Three CDs are picked at random from a collection of 12 CDs
of which four are defective. Find the probability of the 
following.
(a) All three CDs are defective.
(b) All three CDs are functioning properly.

17. Two balls are picked at random from a jar that contains three
red and five white balls. Find the probability of the following
events.
(a) Both balls are red.
(b) Both balls are white.

18. A letter is chosen at random from the word 
EXTRATERRESTRIAL. Find the probability of the given 
event.
(a) The letter T is chosen.
(b) The letter chosen is a vowel.
(c) The letter chosen is a consonant.

19. A five-card poker hand is drawn from a standard 52-card deck.
Find the probability of the following events.
(a) At least one card is a spade.
(b) At least one card is a face card.

20. A pair of dice is rolled, and the numbers showing are 
observed.
(a) List the sample space of this experiment.
(b) Find the probability of getting a sum of 7.
(c) Find the probability of getting a sum of 9.
(d) Find the probability that the two dice show doubles (the

same number).
(e) Find the probability that the two dice show different 

numbers.
(f) Find the probability of getting a sum of 9 or higher.
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39–40 ■ Spinners A and B shown in the figure are spun at the
same time.

39. (a) Are the events “spinner A stops on red” and “spinner B
stops on yellow” independent?

(b) Find the probability that spinner A stops on red and spin-
ner B stops on yellow

40. (a) Find the probability that both spinners stop on purple.
(b) Find the probability that both spinners stop on blue.

A P P L I C A T I O N S
41. Four Siblings A couple intends to have four children. Assume

that having a boy and having a girl are equally likely events.
(a) List the sample space of this experiment.
(b) Find the probability that the couple will have only boys.
(c) Find the probability that the couple will have two boys

and two girls.
(d) Find the probability that the couple will have four children

of the same gender
(e) Find the probability that the couple will have at least two

girls.

42. Bridge Hands What is the probability that a 13-card bridge
hand consists of all cards from the same suit?

43. Roulette An American roulette wheel has 38 slots; two
slots are numbered 0 and 00, and the remaining slots are num-
bered from 1 to 36. Find the probability that the ball lands in
an odd-numbered slot.

44. Making Words A toddler has wooden blocks showing 
the letters C, E, F, H, N, and R. Find the probability that the
child arranges the letters in the indicated order.
(a) In the order FRENCH
(b) In alphabetical order

45. Lottery In the 6/49 lottery game, a player selects six num-
bers from 1 to 49. What is the probability of picking the six
winning numbers?

46. An Unlikely Event The president of a large company se-
lects six employees to receive a special bonus. He claims that
the six employees are chosen randomly from among the 30
employees, of whom 19 are women and 11 are men. What is
the probability that no woman is chosen?

47. Guessing on a Test An exam has ten true-false questions.
A student who has not studied answers all ten questions by
just guessing. Find the probability that the student correctly
answers all ten questions.

Spinner A Spinner B

29–30 ■ Refer to the spinner in Exercises 21–22.

29. Find the probability that the spinner has stopped on an even
number, given that it has stopped on red.

30. Find the probability that the spinner has stopped on a number
divisible by 3, given that it has stopped on blue.

31–32 ■ A jar contains five red balls numbered 1 to 5, and seven
green balls numbered 1 to 7.

31. A ball is drawn at random from the jar. Find the following
conditional probabilities.
(a) The ball is red, given that it is numbered 3.
(b) The ball is green, given that is numbered 7.
(c) The ball is red, given that it has an even number.
(d) The ball has an even number, given that it is red.

32. Two balls are drawn at random from the jar. Find the follow-
ing conditional probabilities.
(a) The second ball drawn is red, given that the first is red.
(b) The second ball drawn is red, given that the first is 

green.
(c) The second ball drawn is even-numbered, given that the

first is odd-numbered.
(d) The second ball drawn is even-numbered, given that the

first is even-numbered.

Exercises 33–40 are about the probability of the intersection 
of events.

33. A jar contains seven black balls and three white balls. Two
balls are drawn, without replacement, from the jar. Find the
probability of the following events.
(a) The first ball drawn is black, and the second is white.
(b) The first ball drawn is black, and the second is black.

34. A drawer contains an unorganized collection of 18 socks.
Three pairs are red, two pairs are white, and four pairs are
black.
(a) If one sock is drawn at random from the drawer, what is

the probability that it is red?
(b) Once a sock is drawn and discovered to be red, what is the

probability of drawing another red sock to make a match-
ing pair?

(c) If two socks are drawn from the drawer at the same time,
what is the probability that both are red?

35. Two cards are drawn from a deck without replacement. Find
the probability of the following events.
(a) The first is an ace and the second a king?
(b) Both cards are aces?

36. A die is rolled twice. Let E and F be the following events:

E: The first roll shows a “six.”
F: The second roll shows a “six.”

(a) Are the events E and F independent?
(b) Find the probability of showing a “six” on both rolls.

37. A die is rolled twice. What is the probability of getting a “one”
on the first roll and an even number on the second roll?

38. A coin is tossed and a die is rolled.
(a) Are the events “tails” and “even number” independent?
(b) Find the probability of getting a tail and an even number.
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Find the probability that a given offspring of these parents 
will be
(a) tall (b) short

54. Genetics Refer to Exercise 53. Make a chart of the possible
genotypes of the offspring if one parent has genotype Tt and
the other has tt. Find the probability that a given offspring 
will be
(a) tall (b) short

55. Roulette An American roulette wheel has 38 slots. Two of
the slots are numbered 0 and 00, and the rest are numbered
from 1 to 36. A player places a bet on a number between 1
and 36 and wins if a ball thrown into the spinning roulette
wheel lands in the slot with the same number. Find the proba-
bility of winning on two consecutive spins of the roulette
wheel.

56. Choosing a Committee A committee of five is chosen ran-
domly from a group of six males and eight females. What is
the probability that the committee includes either all males or
all females?

57. Snake Eyes What is the probability of rolling snake eyes
(“double ones”) three times in a row?

58. Lottery In the 6/49 lottery game a player selects six num-
bers from 1 to 49. What is the probability of selecting at least
five of the six winning numbers?

59. Marbles in a Jar A jar contains six red marbles numbered 
1 to 6 and ten blue marbles numbered 1 to 10. A marble is
drawn at random from the jar. Find the probability that the
given event occurs.
(a) The marble is red.
(b) The marble is odd-numbered.
(c) The marble is red or odd-numbered.
(d) The marble is blue or even-numbered.

60. Lottery In the 6/49 lottery game, a player selects six num-
bers from 1 to 49 and wins if he or she selects the winning six
numbers. What is the probability of winning the lottery two
times in a row?

61. Balls in a Jar Jar A contains three red balls and four 
white balls. Jar B contains five red balls and two white balls.
Which one of the following ways of randomly selecting balls
gives the greatest probability of drawing two red balls?
(i) Draw two balls from jar B.
(ii) Draw one ball from each jar.
(iii) Put all the balls in one jar, and then draw two balls.

62. Slot Machine A slot machine has three wheels. Each wheel
has 11 positions: a bar and the digits 0, 1, 2, . . . , 9. When the
handle is pulled, the three wheels spin independently before
coming to rest. Find the probability that the wheels stop on the
following positions.
(a) Three bars

48. Quality Control To control the quality of their product, the
Bright-Light Company inspects three light bulbs out of each
batch of ten bulbs manufactured. If a defective bulb is found,
the batch is discarded. Suppose a batch contains two defective
bulbs. What is the probability that the batch will be discarded?

49. Monkeys Typing Shakespeare An often-quoted example
of an event of extremely low probability is that a monkey types
Shakespeare’s entire play Hamlet by randomly striking keys on a
typewriter. Assume that the typewriter has 48 keys (including the
space bar) and that the monkey is equally likely to hit any key.
(a) Find the probability that such a monkey will actually cor-

rectly type just the title of the play as his first word.
(b) What is the probability that the monkey will type the

phrase “To be or not to be” as his first words?

50. Making Words A monkey is trained to arrange wooden
blocks in a straight line. He is then given six blocks showing
the letters A, E, H, L, M, T.
(a) What is the probability that he will arrange them to spell

the word HAMLET?
(b) What is the probability that he will arrange them to spell

the word HAMLET three consecutive times?

51. Making Words A toddler has eight wooden blocks showing
the letters A, E, I, G, L, N, T, and R. What is the probability
that the child will arrange the letters to spell one of the words
TRIANGLE or INTEGRAL?

52. Horse Race Eight horses are entered in a race. You ran-
domly predict a particular order for the horses to complete the
race. What is the probability that your prediction is correct?

53. Genetics Many genetic traits are controlled by two genes,
one dominant and one recessive. In Gregor Mendel’s original
experiments with peas, the genes controlling the height of the
plant are denoted by T (tall) and t (short). The gene T is domi-
nant, so a plant with the genotype (genetic makeup) TT or Tt
is tall, whereas one with genotype tt is short. By a statistical
analysis of the offspring in his experiments, Mendel concluded
that offspring inherit one gene from each parent and that each
possible combination of the two genes is equally likely. If each
parent has the genotype Tt, then the following chart gives the
possible genotypes of the offspring:
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(b) The same number 
on each wheel

(c) At least one bar

63. Combination Lock A student has locked her locker with a
combination lock, showing numbers from 1 to 40, but she has
forgotten the three-number combination that opens the lock. She
remembers that all three numbers in the combination are differ-
ent. To open the lock, she decides to try all possible combina-
tions. If she can try ten different combinations every minute, what
is the probability that she will open the lock within one hour?

64. Committee Membership A mathematics department con-
sists of ten men and eight women. Six mathematics faculty mem-
bers are to be selected at random for the curriculum committee.
(a) What is the probability that two women and four men are

selected?
(b) What is the probability that two or fewer women are 

selected?
(c) What is the probability that more than two women are 

selected?
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Small Samples, Big Results

In this project we perform several experiments that show how
we can obtain information about a big population from a small
sample. You can find the project at the book companion web-
site: www.stewartmath.com

❍ DISCOVERY
PROJECT

9.3 BINOMIAL PROBABILIT Y

LEARNING OBJECTIVES After completing this section, you will be able to:

Find binomial probabilities � Make a table of a probability distribution

In this section we study a special kind of probability that plays a crucial role in modeling
many real-world situations.

▼ Binomial Probability
A coin is weighted so that the probability of heads is 0.6. What is the probability of get-
ting exactly two heads in five tosses of this coin? Since the tosses are independent, the
probability of getting two heads followed by three tails is

But this is not the only way we can get exactly two heads. The two heads can occur, for
example, on the second toss and the last toss. In this case the probability is

0.4 �  0.6 �  0.4 �  0.4 �  0.6 �  10.6 2 210.4 2 3

0.6 �  0.6 �  0.4 �  0.4 �  0.4 �  10.6 2 210.4 2 3

Calculating the probability of in-
dependent events is studied on
page 645.

Heads

Heads Tails

Tails Tails

Tails

Heads Tails

Tails Heads

65. Class Photo Twenty students are arranged randomly in a
row for a class picture. Paul wants to stand next to Phyllis.
Find the probability that he gets his wish.

66. Making Words A monkey is trained to arrange wooden
blocks in a row. The monkey is then given 6 blocks showing
the letters B, B, B, E, L, U. What is the probability that the
monkey will arrange the blocks to spell the word BUBBLE?

67. Making Words A monkey is trained to arrange wooden
blocks in a row. The monkey is then given 11 blocks showing
the letters A, B, B, I, I, L, O, P, R, T, Y. What is the probability
that the monkey will arrange the blocks to spell the word
PROBABILITY?

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
68. Oldest Son A family with two children is randomly se-

lected. Assume that the events of having a boy or a girl are
equally likely. Find the following probabilities.
(a) The family has two boys given that the oldest child is a boy.
(b) The family has two boys given that one of the children is

a boy.
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In fact, the two heads could occur on any two of the five tosses. Thus there are 
ways in which this can happen, each with probability . It follows that

The probability that we have just calculated is an example of a binomial probability. In
general, a binomial experiment is one in which there are two outcomes, which are called
“success” and “failure.” In the coin-tossing experiment described above, “success” is get-
ting “heads,” and “failure” is getting “tails.” The following box tells us how to calculate
the probabilities associated with binomial experiments when we perform them many
times.

E X A M P L E  1 Binomial Probability

A fair die is rolled 10 times. Find the probability of each event.

(a) Exactly 2 sixes.

(b) At most 1 six.

(c) At least 2 sixes.

S O L U T I O N Let’s call “getting a six” success and “not getting a six” failure. So
and . Since each roll of the die is independent of the other

rolls, we can use the formula for binomial probability with and .

(a)

(b) The statement “at most 1 six” means 0 sixes or 1 six. So

Meaning of “at most”

P(A or B) � P(A) � P(B)

Binomial probability

Calculator

Calculator

(c) The statement “at least two sixes” means two or more sixes. Instead of adding the
probabilities of getting 2, 3, 4, 5, 6, 7, 8, 9, or 10 sixes (which is a lot of work), it’s
easier to find the probability of the complement of this event. The complement of
the event “two or more sixes” is “0 or 1 six.” So

P(E) � 1 � P(E�)

From part (b)

Calculator

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISES 3 AND 21 ■

 � 0.5155

 � 1 � 0.4845

 P1two or more sixes 2 � 1 � P10 or 1 six 2

� 0.4845

� 0.1615 � 0.3230

� C110, 0 2 a
1

6
b

0

a
5

6
b

10

�  C110, 1 2 a
1

6
b

1

a
5

6
b

9

� P10 sixes 2 � P11 six 2

� P10 sixes or 1 six 2

P1at most one six 2

P1exactly 2 sixes 2 � C110, 2 2 116 2
2156 2

8 � 0.29

p � 1
6n � 10

P1failure 2 � 5
6P1success 2 � 1

6

P1exactly 2 heads in 5 tosses 2 � C15, 2 2 10.6 2 210.4 2 3 � 0.023

10.6 2 210.4 2 3
C15, 2 2

S E C T I O N  9 . 3 | Binomial Probability 651

The name “binomial probability” is ap-
propriate because is the same 
as the binomial coefficient (see 
Exercise 94, page 637).

1nr 2

C 1n, r 2

BINOMIAL PROBABILIT Y

An experiment has two possible outcomes called “success” and “failure,” with
and . The probability of getting exactly r suc-

cesses in n independent trials of the experiment is

P1r successes in n trials 2 � C1n, r 2pr11 � p 2 n�r

P1failure 2 � 1 � pP1success 2 � p
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E X A M P L E  2 Binomial Probability

Patients infected with a certain virus have a 40% chance of surviving. There are 10 pa-
tients in a hospital who have acquired this virus. Find the probability that 7 or more of
the patients survive.

S O L U T I O N Let’s call the event “patient survives” success and the event “patient dies”
failure. We are given that the probability of success is , so the probability of
failure is . We need to calculate the probability of 7, 8, 9, or 10
successes in 10 trials:

Adding the probabilities, we find that

There is about a 1 in 20 chance that 7 or more patients recover.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 35 ■

▼ The Binomial Distribution
We can describe how the probabilities of an experiment are “distributed” among all the
outcomes of an experiment by making a table of values. The function that assigns to each
outcome its corresponding probability is called a probability distribution. A bar graph
of a probability distribution in which the width of each bar is 1 is called a probability his-
togram. The next example illustrates these concepts.

E X A M P L E  3 Probability Distributions

Make a table of the probability distribution for the experiment of rolling a fair die and
observing the number of dots. Draw a histogram of the distribution.

S O L U T I O N When rolling a fair die each face has probability 1/6 of showing. The
probability distribution is shown in the following table. To draw a histogram, we draw
bars of width 1 and height corresponding to each outcome.

Probability Distribution Probability Histogram

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 15 ■

1
6

P17 or more recover 2 � 0.05476

 P110 out of 10 recover 2 � C110, 10 2 10.4 2 1010.6 2 0 � 0.00010

 P19 out of 10 recover 2 � C110, 9 2 10.4 2 910.6 2 1 � 0.00157

 P18 out of 10 recover 2 � C110, 8 2 10.4 2 810.6 2 2 � 0.01062

 P17 out of 10 recover 2 � C110, 7 2 10.4 2 710.6 2 3 � 0.04247

1 � p � 1 � 0.4 � 0.6
p � 0.4
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Outcome 
(dots) Probability

1

2

3

4

5

6 1
6

1
6

1
6

1
6

1
6

1
6

Pr
ob

ab
ili

ty

Number of dots
0 2 3 4 5 6

1
6

1
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A probability distribution in which all outcomes have the same probability is called a
uniform distribution. The rolling-a-die experiment in Example 3 is a uniform distribu-
tion. The probability distribution of a binomial experiment is called a binomial distribu-
tion.

E X A M P L E  4 A Binomial Distribution

A fair coin is tossed eight times, and the number of heads is observed. Make a table of
the probability distribution, and draw a histogram. What is the number of heads that is
most likely to show up?

S O L U T I O N This is a binomial experiment with and , so as
well. We need to calculate the probability of getting 0 heads, 1 head, 2 heads, 3 heads,
and so on. For example, to calculate the probability of 3 heads, we have

The other entries in the following table are calculated similarly. We draw the histogram
by making a bar for each outcome with width 1 and height equal to the corresponding
probability.

Probability Distribution Probability Histogram

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 17 ■

Notice that the sum of the probabilities in a probability distribution is 1, because the sum
is the probability of the occurrence of any outcome in the sample space (this is the certain
event).

P13 heads 2 �  C18, 3 2 a
1

2
b

3

a
1

2
b

5

�
28

256

1 � p � 1
2p � 1

2n � 8
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Outcome 
(heads) Probability

0

1

2

3

4

5

6

7

8 1
256

8
256

28
256

56
256

70
256

56
256

28
256

8
256

1
256

C O N C E P T S
1. A binomial experiment is one in which there are exactly 

outcomes. One outcome is called ,

and the other is called .

2. If a binomial experiment has probability p of success, then 

the probability of failure is . The probability of
getting exactly r successes in n trials of this experiment is

C 1 , 2p 11 � p2 .

S K I L L S
3–14 ■ Five independent trials of a binomial experiment with
probability of success are performed. Find the probability
of each event.

3. Exactly two successes 4. Exactly three successes

5. No successes 6. All successes

7. Exactly one success 8. Exactly one failure

9. At least four successes 10. At least three successes

p � 0.7

9 . 3  E X E R C I S E S

Pr
ob

ab
ili

ty

Number of heads
0 2 3 4 5 61 7 8

70
256

28
256
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23. Television Ratings According to a ratings survey, 40% of
the households in a certain city tune in to the local evening TV
news. If ten households are visited at random, what is the
probability that four of them will have their television tuned to
the local news?

24. Spread of Disease Health authorities estimate that 10% of
the raccoons in a certain rural county are carriers of rabies. A
dog is bitten by four different raccoons in this county. What is
the probability that he was bitten by at least one rabies carrier?

25. Blood Type About 45% of the populations of the United
States and Canada have Type O blood.
(a) If a random sample of ten people is selected, what is the

probability that exactly five have Type O blood?
(b) What is the probability that at least three of the random

sample of ten have Type O blood?

26. Handedness A psychologist needs 12 left-handed subjects
for an experiment, and she interviews 15 potential subjects.
About 10% of the population is left-handed.
(a) What is the probability that exactly 12 of the potential

subjects are left-handed?
(b) What is the probability that 12 or more are left-handed?

27. Germination Rates A certain brand of tomato seeds has a
0.75 probability of germinating. To increase the chance that at
least one tomato plant per seed hill germinates, a gardener
plants four seeds in each hill.
(a) What is the probability that at least one seed germinates in

a given hill?
(b) What is the probability that two or more seeds will germi-

nate in a given hill?
(c) What is the probability that all four seeds germinate in a

given hill?

28. Genders of Children Assume that for any given live 
human birth, the chances that the child is a boy or a girl are
equally likely.
(a) What is the probability that in a family of five children a

majority are boys?
(b) What is the probability that in a family of seven children a

majority are girls?

29. Genders of Children The ratio of male to female births is
in fact not exactly one to one. The probability that a newborn
turns out to be a male is about 0.52. A family has ten children.
(a) What is the probability that all ten children are boys?
(b) What is the probability all are girls?
(c) What is the probability that five are girls and five are

boys?

30. Education Level In a certain county 20% of the population
has a college degree. A jury consisting of 12 people is selected
at random from this county.
(a) What is the probability that exactly two of the jurors have

a college degree?
(b) What is the probability that three or more of the jurors

have a college degree?

31. Defective Light Bulbs The DimBulb Lighting Company
manufactures light bulbs for appliances such as ovens and re-
frigerators. Typically, 0.5% of their bulbs are defective. From a

11. At most one failure 12. At most two failures

13. At least two successes 14. At most three failures

15–16 ■ An experiment is described. (a) Complete the table of
the probability distribution. (b) Draw a probability histogram.

15. A jar contains five balls numbered 1 to 5. A ball is drawn at
random, and the number of the ball is observed.

16. A jar contains five balls numbered 1, three balls numbered 2,
one ball numbered 3, and one ball numbered 4. A ball is
drawn at random and the number of the ball is observed.

17–20 ■ A binomial experiment with probability of success p is
performed n times. (a) Make a table of the probability distribution.
(b) Draw a probability histogram.

17. 18.

19. 20.

A P P L I C A T I O N S
21. Rolling Dice Six dice are rolled. Find the probability that

two of them show a four.

22. Archery An archer hits his target 80% of the time. If he
shoots seven arrows, what is the probability of each event?
(a) He never hits the target.
(b) He hits the target each time.
(c) He hits the target more than once.
(d) He hits the target at least five times.

n � 6, p � 0.9n � 7, p � 0.2

n � 5, p � 0.4n � 4, p � 0.5
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Outcome Probability

1 0.2
2

3

4

5

Outcome Probability

1 0.5
2

3

4

5
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the probability that on a given day the indicated event 
occurs.
(a) The machine breaks down.
(b) The machine does not break down.
(c) Only one component does not fail.

37. Genetics Huntington’s disease is a hereditary ailment
caused by a recessive gene. If both parents carry the gene but
do not have the disease, there is a 0.25 probability that an off-
spring will fall victim to the condition. A newlywed couple
find through genetic testing that they both carry the gene (but
do not have the disease). If they intend to have four children,
find the probability of each event.
(a) At least one child gets the disease.
(b) At least three of the children get the disease.

38. Selecting Cards Three cards are randomly selected from a
standard 52-card deck, one at a time, with each card replaced
in the deck before the next one is picked. Find the probability
of each event.
(a) All three cards are hearts.
(b) Exactly two of the cards are spades.
(c) None of the cards is a diamond.
(d) At least one of the cards is a club.

39. Smokers and Nonsmokers The participants at a 
mathematics conference are housed dormitory-style, five to a
room. Because of an oversight, conference organizers forget to
ask whether the participants are smokers. In fact, it turns out
that 30% are smokers. Find the probability that Fred, a non-
smoking conference participant, will be housed with:
(a) Exactly one smoker.
(b) One or more smokers.

40. Telephone Marketing A mortgage company advertises its
rates by making unsolicited telephone calls to random num-
bers. About 2% of the calls reach consumers who are inter-
ested in the company’s services. A telephone consultant can
make 100 calls per evening shift.
(a) What is the probability that two or more calls will reach

an interested party in one shift?
(b) How many calls does a consultant need to make to ensure

at least a 0.5 probability of reaching one or more inter-
ested parties? [Hint: Use trial and error.]

41. Effectiveness of a Drug A certain disease has a mortality
rate of 60%. A new drug is tested for its effectiveness against
this disease. Ten patients are given the drug, and eight of them
recover.
(a) Find the probability that eight or more of the patients

would have recovered without the drug.
(b) Does the drug appear to be effective? (Consider the drug

effective if the probability in part (a) is 0.05 or less.)

42. Hitting a Target An archer normally hits the target with
probability of 0.6. She hires a new coach for a series of special
lessons. After the lessons she hits the target in five out of eight
attempts.
(a) Find the probability that she would have hit five or more out

of the eight attempts before her lessons with the new coach.
(b) Did the new coaching appear to make a difference? (Con-

sider the coaching effective if the probability in part (a) is
0.05 or less.)

crate with 100 bulbs, three are tested. Find the probability that
the given event occurs.
(a) All three bulbs are defective.
(b) One or more bulbs is defective.

32. Quality Control An assembly line that manufactures fuses
for automotive use is checked every hour to ensure the quality
of the finished product. Ten fuses are selected randomly, and if
any one of the ten is found to be defective, the process is
halted and the machines are recalibrated. Suppose that at a
certain time 5% of the fuses being produced are actually de-
fective. What is the probability that the assembly line is halted
at that hour’s quality check?

33. Sick Leave The probability that a given worker at Dyno Nu-
trition will call in sick on a Monday is 0.04. The packaging
department has eight workers. What is the probability that two
or more packaging workers will call in sick next Monday?

34. Political Surveys In a certain county, 60% of the voters are
in favor of an upcoming school bond initiative. If five voters
are interviewed at random, what is the probability that exactly
three of them will favor the initiative?

35. Pharmaceuticals A drug that is used to prevent motion
sickness is found to be effective about 75% of the time. Six
friends, all prone to seasickness, go on a sailing cruise, and all
take the drug. Find the probability of each event.
(a) None of the friends gets seasick.
(b) All of the friends get seasick.
(c) Exactly three get seasick.
(d) At least two get seasick.

36. Reliability of a Machine A machine that is used in a
manufacturing process has four separate components, each of
which has a 0.01 probability of failing on any given day. If
any component fails, the entire machine breaks down. Find
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(a) Suppose . Draw a probability histogram for the re-
sulting binomial distribution. What number of heads has
the greatest probability of occurring? If , what
number of heads has the greatest probability of occurring?

(b) Suppose . Draw a probability histogram for the re-
sulting binomial distribution. What number of heads has
the greatest probability of occurring? If , what
number of heads has the greatest probability of occurring?

n � 101

n � 9

n � 100

n � 8
D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
43. Most Likely Outcome for n Tosses of a Coin A bal-

anced coin is tossed n times. In this exercise we investigate the
following question: What is the number of heads that has the
greatest probability of occurring? Note that for a balanced coin
the probability of heads is .p � 0.5
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9.4 EXPECTED VALUE

LEARNING OBJECTIVES After completing this section, you will be able to:

Find the expected value of a game � Find the expected number of occurrences
of an event

In this section we study an important application of probability called expected value.

▼ Expected Value
Suppose that a coin has probability 0.8 of showing heads. If the coin is tossed many times,
we would expect to get heads about 80% of the time. Now, suppose that you get a payout
of one dollar for each head. If you play this game many times, you would expect on av-
erage to gain $0.80 per game:

The reasoning in this example motivates the following definition.

E X A M P L E  1 Finding Expected Value

A die is rolled, and you receive $1 for each point that shows. What is your expectation?

S O L U T I O N Each face of the die has probability of showing. So you get $1 with 
probability , $2 with probability , $3 with probability , and so on. Thus the expected
value is

So if you play this game many times, you will make, on average, $3.50 per game.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 3 ■

E X A M P L E  2 Finding Expected Value

In Monte Carlo the game of roulette is played on a wheel with slots numbered 
0, 1, 2, . . . , 36. The wheel is spun, and a ball dropped in the wheel is equally 

E � 1 a
1

6
b � 2 a

1

6
b � 3 a

1

6
b � 4 a

1

6
b � 5 a

1

6
b � 6 a

1

6
b � 3.5

1
6

1
6

1
6

1
6

� $1.00 � 0.80 � $0.80

 a
Expected payout

per game
b � a

Amount of payout
per game

b � a
Probability of payout

per game
b

DEFINITION OF EXPECTED VALUE

A game gives payouts with probabilities . The ex-
pected value (or expectation) E of this game is

E � a1p1 � a2p2 � . . . � anpn

p1, p2, . . . , pna1, a2, . . . , an
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likely to end up in any one of the slots. To play the game, you bet $1 on any number.
(For example, you may bet $1 on number 23.) If the ball stops in your slot, you get $36
(the $1 you bet plus $35). Find the expected value of this game.

S O L U T I O N The gambler can gain $35 with probability and can lose $1 with proba-
bility . So the gambler’s expected value is

In other words, if you play this game many times, you would expect to lose 2.7 cents on
every dollar you bet (on average). Consequently, the house expects to gain 2.7 cents on
every dollar that is bet.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 13 ■

E X A M P L E  3 Expected Number

At any given time, the express checkout lane at a small supermarket has three shoppers
in line with probability 0.2, two shoppers with probability 0.5, one shopper with proba-
bility 0.2, and no shoppers with probability 0.1. If you go to this market, how many
shoppers would you expect to find waiting in the express checkout lane?

S O L U T I O N The “payouts” here are the number of shoppers waiting in line. To find
the expected number of shoppers waiting in line, we multiply each “payout” by its prob-
ability and add the results.

So on average, you would expect 1.8 shoppers waiting in the express lane.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 21 ■

▼ What Is a Fair Game?
A fair game is game with expected value zero. So if you play a fair game many times,
you would expect, on average, to break even.

E X A M P L E  4 A Fair Game?

Suppose that you play the following game. A card is drawn from a deck. If the card is
an ace, you get a payout of $10. If the card is not an ace, you have to pay $1.

(a) Is this a fair game?

(b) If the game is not fair, find the payout amount that would make this game a fair game.

E � 310.2 2 � 210.5 2 � 110.2 2 � 010.1 2 � 1.8

E � 135 2
1

37
� 1�1 2

36

37
� �0.027

36
37

1
37
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Fair Voting Methods
The methods of mathematics have recently been applied to problems in
the social sciences. For example, how do we find fair voting methods?
You may ask,“What is the problem with how we vote in elections?”Well,
suppose candidates A, B, and C are running for president.The final vote
tally is as follows: A gets 40%, B gets 39%, and C gets 21%. So candidate A
wins. But 60% of the voters didn’t want A. Moreover, suppose you voted
for C, but you dislike A so much that you would have been willing to
change your vote to B to avoid having A win. Suppose most of the voters
who voted for C feel the same way you do.Then we have a situation in
which most of the voters prefer B over A, but A wins. Is that fair?

In the 1950s Kenneth Arrow showed mathematically that no demo-
cratic method of voting can be completely fair; he later won a Nobel

Prize for his work. Mathematicians continue to work on finding fairer vot-
ing systems.The system that is most often used in federal, state, and lo-
cal elections is called plurality voting (the candidate with the most votes
wins). Other systems include majority voting (if no candidate gets a ma-
jority, a runoff is held between the top two vote-getters), approval voting
(each voter can vote for as many candidates as he or she approves of ),
preference voting (each voter orders the candidates according to his or
her preference), and cumulative voting (each voter gets as many votes as
there are candidates and can give all of his or her votes to one candidate
or distribute them among the candidates as he or she sees fit).This last
system is often used to select corporate boards of directors. Each system
of voting has both advantages and disadvantages.

M AT H E M AT I C S  I N  T H E  M O D E R N  W O R L D
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S O L U T I O N

(a) In this game you get a payout of $10 if an ace is drawn (probability ), and you
lose $1 if any other card is drawn (probability ). So the expected value is

Since the expected value is not zero, the game is not fair. If you play this game
many times, you would expect to lose, on average, per game.

(b) We want to find the payout x that makes the expected value 0:

Solving this equation, we get . So a payout of $12 for an ace would make
this a fair game.

PRACTICE WHAT YOU’VE LEARNED: DO EXERCISE 25 ■

Games of chance in casinos are never fair; the gambler always has a negative expected
value (as in Examples 2 and 4(a)). This makes gambling profitable for the casino and un-
profitable for the gambler.

x � 12

E � x a
4

52
b � 1 a

48

52
b � 0

8
52 � $0.15

E � 10 a
4

52
b � 1 a

48

52
b � �

8

52

48
52

4
52
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C O N C E P T S
1. If a game gives payoffs of $10 and $100 with probabilities 0.9

and 0.1, respectively, then the expected value of this game is

2. If you played the game in Exercise 1 many times, then you
would expect your average payoff per game to be about 

$ .

S K I L L S
3–12 ■ Find the expected value (or expectation) of the games de-
scribed.

3. Mike wins $2 if a coin toss shows heads and $1 if it shows
tails.

4. Jane wins $10 if a die roll shows a six, and she loses $1 other-
wise.

5. The game consists of drawing a card from a deck. You win
$100 if you draw the ace of spades or lose $1 if you draw any
other card.

6. Tim wins $3 if a coin toss shows heads or $2 if it shows tails.

7. Carol wins $3 if a die roll shows a six, and she wins $0.50
otherwise.

8. A coin is tossed twice. Albert wins $2 for each heads and must
pay $1 for each tails.

9. A die is rolled. Tom wins $2 if the die shows an even number,
and he pays $2 otherwise.

E � _____ � 0.9 � _____ � 0.1 � ______

10. A card is drawn from a deck. You win $104 if the card is an
ace, $26 if it is a face card, and $13 if it is the 8 of clubs.

11. A bag contains two silver dollars and eight slugs. You pay 
50 cents to reach into the bag and take a coin, which you get
to keep.

12. A bag contains eight white balls and two black balls. John
picks two balls at random from the bag, and he wins $5 if he
does not pick a black ball.

A P P L I C A T I O N S
13. Roulette In the game of roulette as played in Las Vegas,

the wheel has 38 slots. Two slots are numbered 0 and 00, and
the rest are numbered 1 to 36. A $1 bet on any number wins
$36 ($35 plus the $1 bet). Find the expected value of this
game.

14. Sweepstakes A sweepstakes offers a first prize of
$1,000,000, second prize of $100,000, and third prize of
$10,000. Suppose that two million people enter the contest and
three names are drawn randomly for the three prizes.
(a) Find the expected winnings for a person participating in

this contest.
(b) Is it worth paying a dollar to enter this sweepstakes?

15. A Game of Chance A box contains 100 envelopes. Ten en-
velopes contain $10 each, ten contain $5 each, two are “un-
lucky,” and the rest are empty. A player draws an envelope
from the box and keeps whatever is in it. If a person draws an
unlucky envelope, however, he must pay $100. What is the ex-
pectation of a person playing this game?

9 . 4  E X E R C I S E S
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24. Expected Number Consider families with three children,
and assume that the probability of having a girl is .
(a) Complete the table for the probabilities of having 0, 1, 2,

or 3 girls in a family of three children.
(b) Find the expected number of girls in a family of three

children.

25–30 ■ A game of chance is described. (a) Is the game fair? 
(b) If the game is not fair, find the payout amount that would make
the game fair.

25. A Fair Game? A card is drawn from a deck. If the card is
the ace of spades you get a payout of $12. If the card is not an
ace you have to pay $0.50.

26. A Fair Game? A die is rolled. You get $20 if a one or a six
shows; otherwise, you pay $10.

27. A Fair Game? A pair of dice is rolled. You get $30 if two
ones show; otherwise, you pay $2.

28. A Fair Game? A die is rolled and a coin is tossed. If the re-
sult is a “six” and “heads,” you get $10. For any other result
you pay $1.

29. A Fair Game? A card is drawn from a deck, a die is rolled,
and a coin is tossed. If the result is the “ace of spades,” a “six,”
and “heads,” you get $600. For any other result you pay $1.

30. A Fair Game? A bag contains two silver dollars and six
slugs. A game consists of reaching into the bag and drawing a
coin, which you get to keep. If you draw a slug, you pay $0.50.

D I S C O V E R Y ■ D I S C U S S I O N ■ W R I T I N G
31. The Expected Value of a Sweepstakes Contest

A magazine clearinghouse holds a sweepstakes contest to sell
subscriptions. If you return the winning number, you win
$1,000,000. You have a 1-in-20-million chance of winning, but
your only cost to enter the contest is a first-class stamp to mail
the entry. Use the current price of a first-class stamp to calcu-
late your expected net winnings if you enter this contest. Is it
worth entering the contest?

1
2

16. Combination Lock A safe containing $1,000,000 is locked
with a combination lock. You pay $1 for one guess at the six-
digit combination. If you open the lock, you get to keep the
million dollars. What is your expectation?

17. Gambling on Stocks An investor buys 1000 shares of a
risky stock for $5 a share. She estimates that the probability
that the stock will rise in value to $20 a share is 0.1 and the
probability that it will fall to $1 a share is 0.9. If the only cri-
terion for her decision to buy this stock was the expected value
of her profit, did she make a wise investment?

18. Slot Machine A slot machine has three wheels, and each
wheel has 11 positions: the digits 0, 1, 2, . . . , 9 and the pic-
ture of a watermelon. When a quarter is placed in the machine
and the handle is pulled, the three wheels spin independently
and come to rest. When three watermelons show, the machine
pays the player $5; otherwise, nothing is paid. What is the ex-
pected value of this game?

19. Lottery In a 6/49 lottery game, a player pays $1 and selects
six numbers from 1 to 49. Any player who has chosen the six
winning numbers wins $1,000,000. Assuming that this is the
only way to win, what is the expected value of this game?

20. Lightning Insurance An insurance company has deter-
mined that in a certain region the probability of lightning strik-
ing a house in a given year is about 0.0003, and the average
cost of repairs of lightning damage is $7500 per incident. The
company charges $25 per year for lightning insurance.
(a) Find the company’s expected value for each lightning in-

surance policy.
(b) If the company has 450,000 lightning damage policies,

what is the company’s expected yearly income from light-
ning insurance?

21. Expected Number During the school year, a college 
student watches TV for two hours a week with probability
0.15, three hours with probability 0.45, four hours with proba-
bility 0.30, and five hours with probability 0.10. Find the ex-
pected number of hours of TV that he watches per week.

22. Expected Number In a large liberal arts college 5% of the
students are studying three foreign languages, 15% are study-
ing two foreign languages, 45% are studying one foreign lan-
guage, and 35% are not studying a foreign language. If a stu-
dent is selected at random, find the expected number of
foreign languages that he or she is studying.

23. Expected Number A student goes to swim practice several
times a week. In any given week the probability that he swims
three times is 0.30, two times is 0.45, one time is 0.15, and no
times is 0.10. Find the expected number of times the student
goes to practice in any given week.
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Number
of girls Probability

0

1

2

3

1
8
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Fundamental Counting Principle (p. 626)

If are events that occur in order and if event can
occur in ways then the sequence of events
can occur in order in ways.n1 � n2 � p � nk

1i � 1, 2, . . . , k 2 ,ni

EiE1, E2, . . . , Ek

Permutations (p. 628)

A permutation of a set of objects is an ordering of these objects. If
the set has n objects, then there are n! permutations of the objects.
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The Complement of an Event (p. 641)

If S is the sample space of an experiment and E is an event, then
the complement of E (denoted ) is the set of all outcomes in S
that are not in E. The probability of is given by

The Union of Events (pp. 642–643)

Suppose E and F are events in a sample space S.

The union of E and F is the set of all outcomes in S that are in
either E or F (or both). The union of E and F is denoted 

For any events E and F the probability of their union is

The events E and F are mutually exclusive if . For
mutually exclusive events E and F the probability of their union is

Conditional Probability (pp. 643–644)  

Suppose E and F are events in a sample space S.

The conditional probability of E given that F occurs is denoted
by and is given by

The Intersection of Events (p. 645)  

Suppose E and F are events in a sample space S.

The intersection of E and F is the set of all outcomes in S that are
in both E and F. The intersection of E and F is denoted by . 

The probability of the intersection of E and F is

The events E and F are independent if the occurrence of one of
them does not affect the probability of the occurrence of the other.
For independent events E and F the probability of their intersec-
tion is

Binomial Probabilities (p. 651)

A binomial experiment is one that has two possible outcomes, S
and F (“success” and “failure”). If 

and

then the probability of getting exactly r successes in n trials of the
experiment is

Expected Value (p. 656)

If a game gives payoffs with probabilities
then the expected value (or expectation) E of this

game is

E � a1 p1 � a2 p2 � p � an pn

p1, p2, . . . , pn,
a1, a2, . . . , an

P1r successes in n trials 2 � C1n, r 2prqn�r

1 � pP1F 2 � q �

P1S 2 � p

P1E � F 2 � P1E 2P1F 2

P1E � F 2 � P1E 2P1F 0 E 2

E � F

P1E 0 F 2 �
n1E � F 2

n1F 2

P1E 0 F 2

P1E � F 2 � P1E 2 � P1F 2

E � F � �

P1E � F 2 � P1E 2 � P1F 2 � P1E � F 2

E � F.

P1E¿ 2 � 1 � P1E 2

E¿
E¿

If a set has n objects, then the number of ways of ordering the 
r-element subsets of the set is denoted and is called the
number of permutations of n objects taken r at a time:

Distinguishable Permutations (p. 630)

Suppose that a set has n objects of k kinds (where the objects in
each kind cannot be distinguished from each other), and suppose
that there are n1 objects of the first kind, n2 of the second kind, and
so on (so ). Two permutations of the set are
distinguishable from each other if one cannot be obtained from
the other simply by interchanging the positions of elements of the
same kind. (In other words, the permutations “look” different.) 

The number of distinguishable permutations of these objects is 

Combinations (pp. 630–631)

A combination of r objects from a set is any subset of the set that
contains r elements (without regard to order). 

If a set has n objects, then the number of combinations of r ele-
ments from the set is denoted C 11n, r22 and is called the number of
combinations of n objects taken r at a time:

Permutations or Combinations? (p. 632)

When solving a problem that involves counting the number of
ways of picking r objects from a set of n objects, we ask, “Does
the order in which the objects are picked make a difference?”

If the order matters, use permutations.

If the order doesn’t matter, use combinations.

Sample Spaces and Events (pp. 638–639)

An experiment is a process that gives definite results, called the
outcomes. (For example, rolling a die results in the outcomes 1, 2,
3, 4, 5, or 6.) The sample space of an experiment is the set of all
possible outcomes. 

An event is any subset of the sample space. (For example, in rolling
a die, the event “get an even number” is the subset .)

Probability (pp. 639–640)

Suppose that S is the sample space of an experiment in which all
outcomes are equally likely and that E is an event in this experi-
ment. The probability of E, denoted is

The probability of any event E satisfies

If then E is impossible (will never happen). If
then E is certain (will definitely happen).P1E 2 � 1,

P1E 2 � 0,

0 � P1E 2 � 1

P1E 2 �
n1E 2

n1S 2
�

number of outcomes in E

number of outcomes in S

P1E 2 ,

52, 4, 66

C1n, r 2 �
n!

r!1n � r 2 !

n!

n1! n2! p nk!

n1 � n2 � p � nk � n

P1n, r 2 �
n!

1n � r 2 !

P1n, r 2
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1. A coin is tossed, a die is rolled, and a card is drawn from a
deck. How many possible outcomes does this experiment
have?

2. How many three-digit numbers can be formed by using the
digits 1, 2, 3, 4, 5, and 6 if repetition of digits 
(a) is allowed?
(b) is not allowed?

3. (a) How many different two-element subsets does the set 
{A, E, I, O, U} have?

(b) How many different two-letter “words” can be made by
using the letters from the set in part (a)?

4. An airline company has overbooked a particular flight, and
seven passengers must be “bumped” from the flight. If 120
passengers are booked on this flight, in how many ways can
the airline choose the seven passengers to be bumped?

5. A quiz has ten true-false questions. In how many different
ways can a student earn a score of exactly 70% on this quiz?

6. A test has ten true-false questions and five multiple-choice
questions with four choices for each. In how many ways can
this test be completed?

7. If you must answer only eight of ten questions on a test, how
many ways do you have of choosing the questions you will
omit?

8. An ice-cream store offers 15 flavors of ice cream. The spe-
cialty is a banana split with four scoops of ice cream. If each
scoop must be a different flavor, how many different banana
splits may be ordered?

9. A company uses a different three-letter security code for each
of its employees. What is the maximum number of codes this
security system can generate?

10. A group of students determines that they can stand in a row
for their class picture in 120 different ways. How many stu-
dents are in this class?

11. A coin is tossed ten times. In how many different ways can the
result be three heads and seven tails?

12. The Yukon Territory in Canada uses a license-plate system for
automobiles that consists of two letters followed by three
numbers. Explain how we can know that fewer than 700,000
autos are licensed in the Yukon.

13. A group of friends have reserved a tennis court. They find that
there are ten different ways in which two of them can play a
singles game on this court. How many friends are in this group?

14. A pizza parlor advertises that they prepare 2048 different types
of pizza. How many toppings does this parlor offer?

15. In Morse code, each letter is represented by a sequence of dots
and dashes, with repetition allowed. How many letters can be rep-
resented by using Morse code if three or fewer symbols are used?

16. The genetic code is based on the four nucleotides adenine (A),
cytosine (C), guanine (G), and thymine (T). These are con-
nected in long strings to form DNA molecules. For example, a
sequence in the DNA may look like CAGTGGTACC . . . . The
code uses “words,” all the same length, that are composed of
the nucleotides A, C, G, and T. It is known that at least 20 dif-
ferent words exist. What is the minimum word length neces-
sary to generate 20 words?

17. Given 16 subjects from which to choose, in how many ways
can a student select fields of study as follows?
(a) A major and a minor
(b) A major, a first minor, and a second minor
(c) A major and two minors

■ E X E R C I S E S

■ L E A R N I N G  O B J E C T I V E S  S U M M A R Y

Section After completing this chapter, you should be able to . . . Review Exercises

9.1 ■ Use the Fundamental Counting Principle 1, 2, 6, 9, 12, 14, 15, 18, 37–40
■ Count permutations 2, 3, 10, 17 
■ Count distinguishable permutations 16, 19–22
■ Count combinations 3–5, 7–8, 11, 13
■ Solve counting problems involving both permutations and combinations 17, 23–24

9.2 ■ Find the probability of an event by counting 18, 25–40 
■ Find the probability of the complement of an event 26, 32, 36–37, 42
■ Find the probability of the union of events 25–27, 30  
■ Find conditional probabilities 41
■ Find the probability of the intersection of events 26, 29–32

9.3 ■ Find binomial probabilities 27, 42–43
■ Make a table of a probability distribution 45

9.4 ■ Find the expected value of a game 44, 46–47
■ Find the expected number of occurrences of an event 48
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31. A card is drawn from a 52-card deck, a die is rolled, and a
coin is tossed. Find the probability of each outcome.
(a) The ace of spades, a six, and heads
(b) A spade, a six, and heads
(c) A face card, a number greater than 3, and heads

32. Two dice are rolled. Find the probability of each outcome.
(a) The dice show the same number.
(b) The dice show different numbers.

33. Four cards are dealt from a standard 52-card deck. Find the
probability that the cards are
(a) all kings (b) all spades
(c) all the same color

34. In the “numbers game” lottery a player picks a three-digit
number (from 000 to 999), and if the number is selected in the
drawing, the player wins $500. If another number with the
same digits (in any order) is drawn, the player wins $50. John
plays the number 159.
(a) What is the probability that he will win $500?
(b) What is the probability that he will win $50?

35. In a TV game show, a contestant is given five cards with a dif-
ferent digit on each and is asked to arrange them to match the
price of a brand-new car. If she gets the price right, she wins
the car. What is the probability that she wins, assuming that
she knows the first digit but must guess the remaining four?

36. A pizza parlor offers 12 different toppings, one of which is an-
chovies. If a a pizza is ordered at random (that is, any number
of the toppings from 0 to all 12 may be ordered), what is the
probability that anchovies is one of the toppings selected?

37. A drawer contains an unorganized collection of 50 socks; 20
are red and 30 are blue. Suppose the lights go out, so Kathy
can’t distinguish the color of the socks.
(a) What is the minimum number of socks Kathy must take

out of the drawer to be sure of getting a matching pair?
(b) If two socks are taken at random from the drawer, what is

the probability that they make a matching pair?

38. Zip codes consist of five digits.
(a) How many different zip codes are possible?
(b) How many different zip codes can be read when the enve-

lope is turned upside down? (An upside-down 9 is a 6;
and 0, 1, and 8 are the same when read upside down.)

(c) What is the probability that a randomly chosen zip code
can be read upside down?

(d) How many zip codes read the same upside down as right
side up?

39. In the Zip�4 postal code system, zip codes consist of nine
digits.
(a) How many different Zip�4 codes are possible?
(b) How many different Zip�4 codes are palindromes? (A

palindrome is a number that reads the same from left to
right as right to left.)

(c) What is the probability that a randomly chosen Zip�4
code is a palindrome?

40. Let . (Note that .)
(a) How many divisors does N have?
(b) How many even divisors does N have?
(c) How many divisors of N are multiples of 6?
(d) What is the probability that a randomly chosen divisor of

N is even?

N � 273255N � 3,600,000

18. (a) How many three-digit numbers can be formed by using
the digits 0, 1, . . . , 9? (Remember, a three-digit number
cannot have 0 as the leftmost digit.)

(b) If a number is chosen randomly from the set {0, 1, 2, . . . ,
1000}, what is the probability that the number chosen is a
three-digit number?

19–22 ■ An anagram of a word is a permutation of the letters of
that word. For example, anagrams of the word triangle include 
griantle, integral, and tenalgir. Find the number of different ana-
grams of the given word.

19. RANDOM 20. BLOB

21. BUBBLE 22. MISSISSIPPI

23. A committee of seven is to be chosen from a group of ten men
and eight women. In how many ways can the committee be
chosen using each of the following selection requirements?
(a) No restriction is placed on the number of men and women

on the committee.
(b) The committee must have exactly four men and three

women.
(c) Susie refuses to serve on the committee.
(d) At least five women must serve on the committee.
(e) At most two men can serve on the committee.
(f) The committee is to have a chairman, a vice chairman, a

secretary, and four other members.

24. The U.S. Senate has two senators from each of the 50 states.
In how many ways can a committee of five senators be chosen
if no state is to have two members on the committee?

25. A jar contains ten red balls labeled 0, 1, 2, . . . , 9 and five
white balls labeled 0, 1, 2, 3, 4. If a ball is drawn from the jar,
find the probability of the given event.
(a) The ball is red.
(b) The ball is even-numbered.
(c) The ball is white and odd-numbered.
(d) The ball is red or odd-numbered.

26. If two balls are drawn from the jar in Exercise 23, find the
probability of the given event.
(a) Both balls are red.
(b) One ball is white, and the other is red.
(c) At least one ball is red.
(d) Both balls are red and even-numbered.
(e) Both balls are white and odd-numbered.

27. A coin is tossed three times in a row, and the outcomes of
each toss are observed.
(a) Find the sample space for this experiment.
(b) Find the probability of getting three heads.
(c) Find the probability of getting two or more heads.
(d) Find the probability of getting tails on the first toss.

28. A shelf has ten books: two mysteries, four romance novels,
and four mathematics textbooks. If you select a book at ran-
dom to take to the beach, what is the probability that it turns
out to be a mathematics text?

29. A die is rolled, and a card is selected from a standard 52-card
deck. What is the probability that both the die and the card
show a six?

30. Find the probability that the indicated card is drawn at random
from a 52-card deck.
(a) An ace (b) An ace or a jack
(c) An ace or a spade (d) A red ace
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45. An unbalanced coin has probability 0.7 of showing a “heads.”
The coin is tossed four times. Make a table of the probability
distribution for the number of heads.

46. Three dice are rolled. John gets $5 if they all show the same
number; he pays $1 otherwise. What is the expected value of
this game?

47. Mary will win $1,000,000 if she can name the 13 original
states in the order in which they ratified the U.S. Constitution.
Mary has no knowledge of this order, so she makes a guess.
What is her expectation?

48. Liam goes jogging several times a week. In any given week
the probability that he jogs three times is 0.4, that he jogs two
times is 0.1, that he jogs once is 0.2, and that he doesn't go
jogging is 0.3. Find the expected number of times he goes
jogging in any given week.

41. A card is drawn at random from a standard 52-card deck. Find
the probability of each event.
(a) The card is a king.
(b) The card is a king or an ace.
(c) The card is a king given that it is a face card.
(d) The card is a king given that it is not an ace.

42. A fair die is rolled eight times. Find the probability of each
event.
(a) A six occurs four times.
(b) An even number occurs two or more times.

43. Pacific Chinook salmon occur in two varieties: white-fleshed
and red-fleshed. It is impossible to tell without cutting the fish
open whether it is the white or red variety. About 30% of Chi-
nooks have white flesh. An angler catches five Chinooks. Find
the probability of each event.
(a) All are white.
(b) All are red.
(c) Exactly two are white.
(d) Three or more are red.

44. Two dice are rolled. John gets $5 if they show the same num-
ber; he pays $1 if they show different numbers. What is the
expected value of this game?

CHAPTER 9 | Review 663
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664

C H A P T E R  9 T E S T

1. Alice and Bill have four grandchildren, and they have three framed pictures of each grand-
child. They wish to choose one picture of each grandchild to display on the piano in their liv-
ing room, arranged from oldest to youngest. In how many ways can they do this?

2. A hospital cafeteria offers a fixed-price lunch consisting of a main course, a dessert, and a
drink. If there are four main courses, three desserts, and six drinks to pick from, in how many
ways can a customer select a meal consisting of one choice from each category?

3. An Internet service provider requires its customers to select a password consisting of four let-
ters followed by three digits. Find how many such passwords are possible in each of the fol-
lowing cases:

(a) Repetition of letters and digits is allowed.

(b) Repetition of letters and digits is not allowed.

4. Over the past year, John has purchased 30 books.

(a) In how many ways can he pick four of these books and arrange them, in order, on his
nightstand bookshelf?

(b) In how many ways can he choose four of these books to take with him on his vacation at
the shore?

5. A commuter must travel from Ajax to Barrie and back every day. Four roads join the two
cities. The commuter likes to vary the trip as much as possible, so she always leaves and re-
turns by different roads. In how many different ways can she make the round-trip?

6. A pizza parlor offers four sizes of pizza and 14 different toppings. A customer may choose
any number of toppings (or no topping at all). How many different pizzas does this parlor 
offer?

7. An anagram of a word is a rearrangement of the letters of the word.

(a) How many anagrams of the word LOVE are possible?

(b) How many different anagrams of the word KISSES are possible?

8. A board of directors consisting of eight members is to be chosen from a pool of 30 candi-
dates. The board is to have a chairman, a treasurer, a secretary, and five other members. In
how many ways can the board of directors be chosen?

9. One card is drawn from a deck. Find the probability of each event.

(a) The card is red.

(b) The card is a king.

(c) The card is a red king.

10. A jar contains five red balls, numbered 1 to 5, and eight white balls, numbered 1 to 8. A ball
is chosen at random from the jar. Find the probability of each event.

(a) The ball is red.

(b) The ball is even-numbered.

(c) The ball is red or even-numbered.

11. Three people are chosen at random from a group of five men and ten women. What is the
probability that all three are men?

12. Two dice are rolled. What is the probability of getting doubles?

13. In a group of four students, what is the probability that at least two have the same astrologi-
cal sign?

14. An unbalanced coin is weighted so that the probability of heads is 0.55. The coin is tossed
ten times.

(a) What is the probability of getting exactly 6 heads?

(b) What is the probability of getting less than 3 heads?

15. You are to draw one card from a deck. If it is an ace, you win $10; if it is a face card, you
win $1; otherwise, you lose $0.50. What is the expected value of this game?
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A good way to familiarize ourselves with a fact is to experiment with it. For instance, to
convince ourselves that the earth is a sphere (which was considered a major paradox at
one time), we could go up in a space shuttle to see that it is so; to see whether a given
equation is an identity, we might try some special cases to make sure there are no obvi-
ous counterexamples. In problems involving probability, we can perform an experiment
many times and use the results to estimate the probability in question. In fact, we often
model the experiment on a computer, thereby making it feasible to perform the experi-
ment a large number of times. This technique is called the Monte Carlo method, named
after the famous gambling casino in Monaco.

E X A M P L E  1 The Contestant’s Dilemma

In a TV game show, a contestant chooses one of three doors. Behind one of them is a
valuable prize; the other two doors have nothing behind them. After the contestant has
made her choice, the host opens one of the other two doors—one that he knows does
not conceal a prize—and then gives her the opportunity to change her choice.

Should the contestant switch or stay, or does it matter? In other words, by switching
doors, does she increase, decrease, or leave unchanged her probability of winning? At
first, it may seem that switching doors doesn’t make any difference. After all, two doors
are left—one with the prize and one without—so it seems reasonable that the contestant
has an equal chance of winning or losing. But if you play this game many times, you
will find that by switching doors, you actually win about of the time.

The authors modeled this game on a computer and found that in one million games
the simulated contestant (who always switches) won 667,049 times—very close to of
the time. Thus it seems that switching doors does make a difference: Switching in-
creases the contestant’s chances of winning. This experiment forces us to reexamine our
reasoning. Here is why switching doors is the correct strategy:

1. When the contestant first made her choice, she had a chance of winning. If 
she doesn’t switch, no matter what the host does, her probability of winning 
remains .

2. If the contestant decides to switch, she will switch to the winning door if she had
initially chosen a losing one or to a losing door if she had initially chosen the
winning one. Since the probability of having initially selected a losing door is ,
by switching the probability of winning then becomes .

We conclude that the contestant should switch, because her probability of winning is
if she switches and if she doesn’t. Put simply, there is a much greater chance that she

initially chose a losing door (since there are more of these), so she should switch. ■

An experiment can be modeled by using any computer language or programmable cal-
culator that has a random-number generator. This is a command or function (usually
called Rnd or Rand) that returns a randomly chosen number x with 0 � x � 1. In the next
example we see how to use this to model a simple experiment.

E X A M P L E  2 Monte Carlo Model of a Coin Toss

When a balanced coin is tossed, each outcome—“heads” or “tails”—has probability .
This doesn’t mean that if we toss a coin several times, we will necessarily get exactly
half heads and half tails. We would expect, however, the proportion of heads and of tails
to get closer and closer to as the number of tosses increases. To test this hypothesis,
we could toss a coin a very large number of times and keep track of the results. But this
is a very tedious process, so we will use the Monte Carlo method to model this process.

To model a coin toss with a calculator or computer, we use the random-number gen-
erator to get a random number x such that 0 � x � 1. Because the number is chosen
randomly, the probability that it lies in the first half of this interval is theA0 � x � 1

2B

1
2

1
2

1
3

2
3

2
3

2
3

1
3

1
3

2
3

2
3

F O C U S  O N  M O D E L I N G

The Monte Carlo Method

Contestant: “Oh no, what should I do?”

Contestant: “I choose door number 2.”
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same as the probability that it lies in the second half . Thus we could model
the outcome “heads” by the event that and the outcome “tails” by the event
that .

An easier way to keep track of heads and tails is to note that if 0 � x � 1, then 
0 � 2x � 2, and so �2x�, the integer part of 2x, is either 0 or 1, each with probability .
(On most programmable calculators, the function Int gives the integer part of a num-
ber.) Thus we could model “heads” with the outcome “0” and “tails” with the outcome
“1” when we take the integer part of 2x. The program in the margin models 100 tosses
of a coin on the TI-83 calculator. The graph in Figure 1 shows what proportion p of the
tosses have come up “heads” after n tosses. As you can see, this proportion settles down
near 0.5 as the number n of tosses increases—just as we hypothesized.

■

In general, if a process has n equally likely outcomes, then we can model the process
using a random-number generator as follows: If our program or calculator produces the
random number x, with 0 � x � 1, then the integer part of nx will be a random choice
from the n integers 0, 1, 2, . . . , n � 1. Thus we can use the outcomes 0, 1, 2, . . . , n � 1
as models for the outcomes of the actual experiment.

P R O B L E M S
1. Winning Strategy In a game show like the one described in Example 1, a prize is con-

cealed behind one of ten doors. After the contestant chooses a door, the host opens eight los-
ing doors and then gives the contestant the opportunity to switch to the other unopened door.

(a) Play this game with a friend 30 or more times, using the strategy of switching doors
each time. Count the number of times you win, and estimate the probability of winning
with this strategy.

(b) Calculate the probability of winning with the “switching” strategy using reasoning simi-
lar to that in Example 1. Compare with your result from part (a).

2. Family Planning A couple intend to have two children. What is the probability that they
will have one child of each sex? The French mathematician D’Alembert analyzed this prob-
lem (incorrectly) by reasoning that three outcomes are possible: two boys, or two girls, or
one child of each sex. He concluded that the probability of having one of each sex is , mis-
takenly assuming that the three outcomes are equally likely.

(a) Model this problem with a pair of coins (using “heads” for boys and “tails” for girls), or
write a program to model the problem. Perform the experiment 40 or more times, count-
ing the number of boy-girl combinations. Estimate the probability of having one child of
each sex.

(b) Calculate the correct probability of having one child of each sex, and compare this with
your result from part (a).

3. Dividing a Jackpot A game between two players consists of tossing a coin. Player A gets
a point if the coin shows heads, and player B gets a point if it shows tails. The first player to
get six points wins an $8000 jackpot. As it happens, the police raid the place when player A
has five points and B has three points. After everyone has calmed down, how should the

1
3

100 500 1000

p

0 n

0.5

1.0
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Number of tosses

1
2

1
2 � x � 1

0 � x � 1
2

A12 � x � 1B
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PROGRAM:HEADTAIL

:0SJ:0SK

:For(N,1,100)

:randSX

:int(2X)SY

:J+(1�Y)SJ

:K+YSK

:END

:Disp"HEADS=",J

:Disp"TAILS=",K

F I G U R E  1 Relative frequency 
of “heads”
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jackpot be divided between the two players? In other words, what is the probability of A
winning (and that of B winning) if the game were to continue?

The French mathematicians Pascal and Fermat corresponded about this problem, and both
came to the same correct conclusion (though by very different reasonings). Their friend
Roberval disagreed with both of them. He argued that player A has probability of winning,
because the game can end in the four ways H, TH, TTH, TTT, and in three of these, A wins.
Roberval’s reasoning was wrong.

(a) Continue the game from the point at which it was interrupted, using either a coin or a
modeling program. Perform this experiment 80 or more times, and estimate the probabil-
ity that player A wins.

(b) Calculate the probability that player A wins. Compare with your estimate from part (a).

4. Long or Short World Series? In the World Series the top teams in the National League
and the American League play a best-of-seven series; that is, they play until one team has
won four games. (No tie is allowed, so this results in a maximum of seven games.) Suppose
the teams are evenly matched, so the probability that either team wins a given game is .

(a) Use a coin or a modeling program to model a World Series, in which “heads” represents
a win by Team A and “tails” represents a win by Team B. Perform this experiment at
least 80 times, keeping track of how many games are needed to decide each series. Esti-
mate the probability that an evenly matched series will end in four games. Do the same
for five, six, and seven games.

(b) What is the probability that the series will end in four games? Five games? Six games?
Seven games? Compare with your estimates from part (a).

(c) Find the expected value for the number of games until the series ends. [Hint: This will
be .]

5. Estimating P In this problem we use the Monte Carlo method to estimate the value 
of p. The circle in the figure has radius 1, so its area is p, and the square has area 4. If we
choose a point at random from the square, the probability that it lies inside the circle will be

The Monte Carlo method involves choosing many points inside the square. Then we have

Thus 4 times this ratio will give us an approximation for p.
To implement this method, we use a random-number generator to obtain the coordinates

of a random point in the square and then check to see whether it lies inside the circle
(that is, we check if x2 � y2 � 1). Note that we need to use only points in the first quadrant,
since the ratio of areas is the same in each quadrant. The program in the margin shows a way
of doing this on the TI-83 calculator for 1000 randomly selected points.

Carry out this Monte Carlo simulation for as many points as you can. How do your results
compare with the actual value of p? Do you think this is a reasonable way to get a good ap-
proximation for p?

0 x

y

1

1

_1

_1

1x, y 2

number of hits inside circle

number of hits inside square
�
p

4

area of circle

area of square
�
p

4

P1four games 2 � 4 � P1five 2 � 5 � P1six 2 � 6 � P1seven 2 � 7

1
2

3
4

The Monte Carlo Method 667

PROGRAM:PI

:0SP

:For(N,1,1000)

:randSX:randSY

:P+((X2+Y2)�1)SP

:End

:Disp "PI IS 

APPROX",4*P/N
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6. Areas of Curved Regions The Monte Carlo method can be used to estimate the area
under the graph of a function. The figure below shows the region under the graph of

, above the x-axis, between x � 0 and x � 1. If we choose a point in the square
at random, the probability that it lies under the graph of is the area under the
graph divided by the area of the square. So if we randomly select a large number of points
in the square, we have

Modify the program from Problem 5 to carry out this Monte Carlo simulation and approxi-
mate the required area. 

7. Random Numbers Choose two numbers at random from the interval . What is the
probability that the sum of the two numbers is less than 1?

(a) Use a Monte Carlo model to estimate the probability.

(b) Calculate the exact value of the probability. [Hint: Call the numbers x and y. Choos-
ing these numbers is the same as choosing an ordered pair in the unit square

. What proportion of the points in this square corresponds
to x � y being less than 1?]

0 � x � 1, 0 � y � 165 1x, y 2 0
1x, y 2

30, 1 2

0 x

y

1

1

y=≈

number of hits under graph

number of hits in square
�

area under graph

area of square

f1x 2 � x 
2

f1x 2 � x 
2
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The“contestant’s dilemma” problem
discussed on page 665 is an example of
how subtle probability can be.This prob-
lem was posed in a nationally syndicated
column in Parade magazine in 1990.The
correct solution was presented in the
column,but it generated considerable
controversy,with thousands of letters ar-
guing that the solution was wrong.This
shows how problems in probability can
be quite tricky.Without a lot of
experience in probabilistic thinking, it’s
easy to make a mistake.Even great
mathematicians such as D’Alembert and
Roberval (see Problems 2 and 3) made
mistakes in probability.Professor David
Burton writes in his book The History of
Mathematics,“Probability theory
abounds in paradoxes that wrench the
common sense and trip the unwary.”
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1. For each sequence, find the seventh term and the 20th term.

(a)

(b)

(c) The arithmetic sequence with initial term and common difference d � 3.

(d) The geometric sequence with initial term a � 12 and common ratio 

(e) The sequence defined recursively by a1 � 0.01 and an � �2an�1.

2. Calculate the sum.

(a)

(b)

(c)

(d)

3. Mary and Kevin buy a vacation home for $350,000. They pay $35,000 down and take out a
15-year mortgage for the remainder. If their annual interest rate is 6%, how much will their
monthly mortgage payment be?

4. A sequence is defined inductively by a1 � 1 and an � an�1 � 2n � 1. Use mathematical
induction to prove that an � n2.

5. (a) Use the Binomial Theorem to expand the expression 

(b) Find the term containing x4 in the binomial expansion of 

6. When students receive their e-mail accounts at Oldenburg University they are assigned a ran-
domly selected password, which consists of three letters followed by four digits (for exam-
ple, ABC1234).

(a) How many such passwords are possible?

(b) How many passwords consist of three different letters followed by four different digits?

(c) The system administrator decides that in the interest of security, no two passwords can
contain the same set of letters and digits (regardless of the order), and no character can
be repeated in a password. What is the maximum number of users the system can accom-
modate under these rules?

7. Toftree is a game in which players roll three dice and receive points based on the outcome.
Find the probability of each of the following outcomes.

(a) All three dice show the same number.

(b) All three dice show an even number.

(c) The sum of the numbers showing is 15.

8. An alumni association holds a “Vegas night” at its annual homecoming event. At one booth,
participants play the following dice game: The player pays a fee of $5, rolls a pair of dice,
and then gets back $15 if both dice show the same number or $7 if the dice show numbers
that differ by one (such as 2 and 3, or 5 and 4). What is the expected value of this game?

9. A weighted coin has probability p of showing heads and q � 1 � p of showing tails when
tossed.

(a) Find the binomial expansion of If this coin is tossed five times in a row,
what event has the probability represented by the term in this binomial expansion that
contains p3?

(b) If the probability of heads is , find the probability that in five tosses of the coin there are 
2 heads and 3 tails.

2
3

1  p � q 2 5.

A2x � 1
2B

12.

A2x � 1
2B

5.

6 � 2 � 2
3 � 2

9 � 2
27 � 2

81 � p

a
9

n�0
 
5

2n

3 � 9 � 27 � 81 � p � 310

3
5 � 4

5 � 1 � 6
5 � 7

5 � 8
5 � p � 19

5 � 4

r � 5
6.

a � 1
2

an �
2n2 � 1

n3 � n � 4

1
3, 

2
5, 

3
7, 

4
9, 

5
11, . . .
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10. An insect species has white wings that, when closed, cover the insect’s back, like the wings of
a ladybug. Some individual insects have black spots on their wings, arranged randomly, with
a total of one to five spots. The probability that a randomly selected insect has n spots is 

(a) What event has probability ? Calculate this sum.

(b) What is the probability that a randomly selected insect has no spots?

a
5

n�1
A14B  

n

where n � 1, 2, 3, 4, or 5.
A14B  

n
, 
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671

A P P E N D I X  A Calculations and Significant Figures

Most of the applied examples and exercises in this book involve approximate values. For
example, one exercise states that the moon has a radius of 1074 miles. This does not mean
that the moon’s radius is exactly 1074 miles but simply that this is the radius rounded to
the nearest mile.

One simple method for specifying the accuracy of a number is to state how many signifi-
cant digits it has. The significant digits in a number are the ones from the first nonzero digit
to the last nonzero digit (reading from left to right). Thus 1074 has four significant digits, 1070
has three, 1100 has two, and 1000 has one significant digit. This rule may sometimes lead to
ambiguities. For example, if a distance is 200 km to the nearest kilometer, then the number
200 really has three significant digits, not just one. This ambiguity is avoided if we use scien-
tific notation—that is, if we express the number as a multiple of a power of 10:

2.00 �102

When working with approximate values, students often make the mistake of giving a
final answer with more significant digits than the original data. This is incorrect because
you cannot “create” precision by using a calculator. The final result can be no more ac-
curate than the measurements given in the problem. For example, suppose we are told that
the two shorter sides of a right triangle are measured to be 1.25 and 2.33 inches long. By
the Pythagorean Theorem, we find, using a calculator, that the hypotenuse has length

� 2.644125564 in.

But since the given lengths were expressed to three significant digits, the answer cannot
be any more accurate. We can therefore say only that the hypotenuse is 2.64 in. long,
rounding to the nearest hundredth.

In general, the final answer should be expressed with the same accuracy as the least-
accurate measurement given in the statement of the problem. The following rules make
this principle more precise.

21.252 � 2.332

RULES FOR WORKING WITH APPROXIMATE DATA

1. When multiplying or dividing, round off the final result so that it has as many
significant digits as the given value with the fewest number of significant digits.

2. When adding or subtracting, round off the final result so that it has its last
significant digit in the decimal place in which the least-accurate given value
has its last significant digit.

3. When taking powers or roots, round off the final result so that it has the same
number of significant digits as the given value.
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672 A P P E N D I X  A | Calculations and Significant Figures

E X A M P L E  1 Working with Approximate Data

A rectangular table top is measured to be 122.64 in. by 37.3 in. Find the area and
perimeter.

S O L U T I O N Using the formulas for area and perimeter, we get the following.

Area � length � width � 122.64 � 37.3 � 4570 in2

Perimeter � 2Ólength � widthÔ � 2Ó122.64 � 37.3Ô � 319.9 in. Tenths digit

So the area is approximately 4570 in2, and the perimeter is approximately 319.9 in.
■

Note that in the formula for the perimeter, the value 2 is an exact value, not an ap-
proximate measurement. It therefore does not affect the accuracy of the final result. In
general, if a problem involves only exact values, we may express the final answer with as
many significant digits as we wish.

Note also that to make the final result as accurate as possible, you should wait until the
last step to round off your answer. If necessary, use the memory feature of your calcula-
tor to retain the results of intermediate calculations.

Three significant
digits

1–10 ■ Evaluate the expression. Round your final answer to the
appropriate number of decimal places or significant figures.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11–12 ■ Use the geometric formulas on the inside back cover of
the book to solve these problems.

11. The Measures of a Circle Find the circumference and area
of a circle whose radius is 5.27 ft.

11.361 � 107 2 14.7717 � 10�5 2

1.281876

15.10 � 10�3 2 112.4 � 107 2 16.007 � 10�6 2

701

1.27 � 10.5
3.31642.75 � 66.787 2

2427.311.36 2 3

201,186

5238
28.36 � 501.375

102.68 � 26.73.27 � 0.1834

12. Volume of a Cone Find the volume of a cone whose height is
52.3 cm and whose radius is 4.267 cm.

13–14 ■ Newton's Law of Gravity The gravitational force F (in
newtons) between two objects with masses and (in kilograms),
separated by a distance r (in meters), is given by Newton's Law of 
Gravity:

where /kg2. 

13. Find the gravitational force between two satellites in stationary
earth orbit, 57.2 km apart, each with a mass of 11,426 kg.

14. The sun and the earth are m apart, with masses
kg, and kg, respectively. 

(a) Find the gravitational force between the sun and the earth.
(b) Convert your answer in part (a) from newtons to pounds, us-

ing the fact that .1 N � 0.225 lb

5.972 � 10241.9891 � 1030
1.50 � 1011

G � 6.67428 � 10�11 Nm2

F � G 
m 1m 2

r 2

m 2m 1

A  E X E R C I S E S
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A graphing calculator is a powerful tool for graphing equations and functions. In this ap-
pendix we give general guidelines to follow and common pitfalls to avoid when graphing
with a graphing calculator. See Appendix C for specific guidelines on graphing with the
TI-83/84 graphing calculators.

▼ Selecting the Viewing Rectangle
A graphing calculator or computer displays a rectangular portion of the graph of an equa-
tion in a display window or viewing screen, which we call a viewing rectangle. The de-
fault screen often gives an incomplete or misleading picture, so it is important to choose
the viewing rectangle with care. If we choose the x-values to range from a minimum value
of Xmin � a to a maximum value of Xmax � b and the y-values to range from a mini-
mum value of Ymin � c to a maximum value of Ymax � d, then the displayed portion of
the graph lies in the rectangle

as shown in Figure 1. We refer to this as the by viewing rectangle.
The graphing device draws the graph of an equation much as you would. It plots points

of the form for a certain number of values of x, equally spaced between a and b. If
the equation is not defined for an x-value or if the corresponding y-value lies outside the
viewing rectangle, the device ignores this value and moves on to the next x-value. 
The machine connects each point to the preceding plotted point to form a representation
of the graph of the equation.

E X A M P L E  1 Choosing an Appropriate Viewing Rectangle

Graph the equation y � x2 � 3 in an appropriate viewing rectangle.

S O L U T I O N Let’s experiment with different viewing rectangles. We start with the
viewing rectangle by , so we set

Xmin � �2 Ymin � �2

Xmax � 2 Ymax � 2

The resulting graph in Figure 2(a) (on the next page) is blank! This is because x2 � 0,
so x2 � 3 � 3 for all x. Thus the graph lies entirely above the viewing rectangle, so this
viewing rectangle is not appropriate. If we enlarge the viewing rectangle to by

, as in Figure 2(b), we begin to see a portion of the graph.3�4,  4 4
3�4,  4 4

3�2,  2 43�2,  2 4

1x, y 2

3c, d 43a, b 4

3a, b 4 � 3c, d 4 � 5 1x, y 2  0  a � x � b, c � y � d6

(a, d) (b, d)

(a, c) (b, c)

y=d

y=c

x=a x=b

F I G U R E  1 The viewing rectangle 
3a, b4 by 3c, d 4

A P P E N D I X  B Graphing with a Graphing Calculator
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Now let’s try the viewing rectangle by . The graph in Figure 2(c)
seems to give a more complete view of the graph. If we enlarge the viewing rectangle
even further, as in Figure 2(d), the graph doesn’t show clearly that the y-intercept is 3.

So the viewing rectangle by gives an appropriate representation
of the graph.

■

E X A M P L E  2 Graphing a Cubic Equation

Graph the equation .

S O L U T I O N Let's experiment with different viewing rectangles. If we start with the
viewing rectangle 

by 

we get the graph in Figure 3. On most graphing calculators the screen appears to be
blank, but it is not quite blank because the point has been plotted. It turns out that
for all other x-values that the calculator chooses, the corresponding y-value is greater
than 5 or less than , so the resulting point on the graph lies outside the viewing 
rectangle. 

Let's use the zoom-out feature of a graphing calculator to change the viewing rectan-
gle to the larger rectangle 

by 

In this case we get the graph shown in Figure 4(a), which appears to consist of vertical
lines, but we know that cannot be true. If we look carefully while the graph is being
drawn, we see that the graph leaves the screen and reappears during the graphing
process. That indicates that we need to see more of the graph in the vertical direction, so
we  change the viewing rectangle to  

by 

The resulting graph is shown in Figure 4(b). It still doesn't reveal all the main features 
of the equation. It appears that we need to see still more in the vertical direction. So we
try the viewing rectangle 

by 

The resulting graph is shown in Figure 4(c). Now we are more confident that we 
have arrived at an appropriate viewing rectangle. In Chapter 3, where third-degree 

��200, 200���10, 10�

��100,100���10, 10�

��10, 10���10, 10�

�5

10, 0 2

��5, 5���5, 5�

y � x 3 � 49x

3�5,  30 43�10,  10 4

3�5,  30 43�10,  10 4
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(a) (b) (c) (d)

4

_4

_4 4

2

_2

_2 2

30

_5

_10 10

1000

_100
_50 50

F I G U R E  2 Graphs of y � x2 � 3

5

_5

_5 5

F I G U R E  3
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polynomials are discussed, we learn that the graph shown in Figure 4(c) does indeed re-
veal all the main features of the equation.

■

▼ Interpreting the Screen Image
Once a graph of an equation has been obtained by using a graphing calculator, we some-
times need to interpret what the graph means in terms of the equation. Certain limitations
of the calculator can cause it to produce graphs that are inaccurate or need further modi-
fications. Here are two examples. 

E X A M P L E  3 Two Graphs on the Same Screen

Graph the equations y � 3x2 � 6x � 1 and y � 0.23x � 2.25 together in the viewing 
rectangle by . Do the graphs intersect in this viewing rectangle?

S O L U T I O N Figure 5(a) shows the essential features of both graphs. One is a parab-
ola, and the other is a line. It looks as if the graphs intersect near the point .
However, if we zoom in on the area around this point as shown in Figure 5(b), we see
that although the graphs almost touch, they do not actually intersect.

■

You can see from Examples 1, 2, and 3 that the choice of a viewing rectangle makes a
big difference in the appearance of a graph. If you want an overview of the essential fea-
tures of a graph, you must choose a relatively large viewing rectangle to obtain a global
view of the graph. If you want to investigate the details of a graph, you must zoom in to
a small viewing rectangle that shows just the feature of interest.

F I G U R E  5

1.5

_2.5

_1 3

(a)

_1.85

_2.25
0.75 1.25

(b)

11, �2 2

3�2.5,  1.5 43�1,  3 4
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200

_200

100

_100

10

_10

_10 10 _10 10 _10 10

(a) (b) (c)

F I G U R E  4 Graphing of y � x3 � 49x
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E X A M P L E  4 Avoiding Extraneous Lines in Graphs

Graph the equation .

S O L U T I O N Figure 6(a) shows the graph produced by a graphing calculator with
viewing rectangle 

by 

In connecting successive points on the graph, the calculator produced a steep line seg-
ment from the top to the bottom of the screen. That line segment should not be part of
the graph. The right side of the equation is not defined for , so the calculator con-
nects points on the graph to the left and right of , and this produces the extraneous
line segment. We can get rid of the extraneous near-vertical line by changing the graph-
ing mode on the calculator. If we choose the DOT mode, in which points on the graph
are not connected, we get the better graph in Figure 6(b). The graph in Figure 6(b) has
gaps so we have to interpret it as having the points connected but without creating the
extraneous line segment. 

■

▼ Graphing Equations That Are Not Functions
Most graphing calculators can only graph equations in which y is isolated on one side of
the equal sign. Such equations are ones that represent functions (see page 185). The next
example shows how to graph equations that don't have this property.

E X A M P L E  5 Graphing a Circle

Graph the circle x2 � y2 � 1.

S O L U T I O N We first solve for y, to isolate it on one side of the equal sign:

Subtract x2

Take square roots

Therefore the circle is described by the graphs of two equations:

The first equation represents the top half of the circle (because y � 0), and the second
represents the bottom half of the circle (because y � 0). If we graph the first equation in

y � 21 � x2  and  y � �21 � x2

 y � �21 � x2

 y2 � 1 � x2

5

_5

5

_5

_5 5 _5 5

(a) (b)

x � 1
x � 1

��5, 5���5, 5�

y �
1

1 � x
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F I G U R E  6 Graphing y �
1

1 � x

The graph in Figure 7(c) looks 
somewhat flattened. Most graphing 
calculators allow you to set the scales
on the axes so that circles really look
like circles. On the TI-83, from the

menu, choose ZSquare to set
the scales appropriately. (On the TI-86
the command is Zsq.)

ZOOM
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the viewing rectangle by , we get the semicircle shown in Figure 7(a).
The graph of the second equation is the semicircle in Figure 7(b). Graphing these semi-
circles together on the same viewing screen, we get the full circle in Figure 7(c).

■

3�2,  2 43�2,  2 4
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2

_2

_2 2

2

_2

_2 2

2

_2

_2 2

(a) (b) (c)

F I G U R E  7 Graphing the equation x2 � y2 � 1

1–6 ■ Use a graphing calculator or computer to decide which
viewing rectangle (a)–(d) produces the most appropriate graph
of the equation.

1. y � x4 � 2

(a) 3�2, 24 by 3�2, 24

(b) 30, 44 by 30, 44

(c) 3�8, 84 by 3�4, 404

(d) 3�40, 404 by 3�80, 8004

2. y � x2 � 7x � 6

(a) 3�5, 54 by 3�5, 54

(b) 30, 104 by 3�20, 1004

(c) 3�15, 84 by 3�20, 1004

(d) 3�10, 34 by 3�100, 204

3. y � 100 � x2

(a) 3�4, 44 by 3�4, 44

(b) 3�10, 104 by 3�10, 104

(c) 3�15, 154 by 3�30, 1104

(d) 3�4, 44 by 3�30, 1104

4. y � 2x2 � 1000

(a) 3�10, 104 by 3�10, 104

(b) 3�10, 104 by 3�100, 1004

(c) 3�10, 104 by 3�1000, 10004

(d) 3�25, 254 by 3�1200, 2004

5. y � 10 � 25x � x3

(a) 3�4, 4] by 3�4, 44

(b) 3�10, 104 by 3�10, 104

(c) 3�20, 204 by 3�100, 1004

(d) 3�100, 1004 by 3�200, 2004

6.

(a) 3�4, 44 by 3�4, 44

(b) 3�5, 54 by 30, 1004

(c) 3�10, 104 by 3�10, 404

(d) 3�2, 104 by 3�2, 64

7–18 ■ Determine an appropriate viewing rectangle for the equa-
tion, and use it to draw the graph.

7. y � 100x2 8. y � �100x2

9. y � 4 � 6x � x2 10. y � 0.3x2 � 1.7x � 3

11. 12.

13. y � 0.01x3 � x2 � 5 14.

15. 16.

17. y � 1 � 18. y � 2x �

19–26 ■ Do the graphs intersect in the given viewing rectangle? If
they do, how many points of intersection are there?

19. , ; 3�4, 44 by 3�1, 34

20. , ; 3�8, 84 by 3�1, 84

21. y � 6 � 4x � x2, y � 3x � 18; 3�6, 24 by 3�5, 204

22. y � x3 � 4x, y � x � 5; 3�4, 44 by 3�15, 154

23. Graph the circle x2 � y2 � 9 by solving for y and graphing
two equations as in Example 3.

24. Graph the circle by solving for y and
graphing two equations as in Example 3.

25. Graph the equation 4x2 � 2y2 � 1 by solving for y and
graphing two equations corresponding to the negative and
positive square roots. (This graph is called an ellipse.)

26. Graph the equation y2 � 9x2 � 1 by solving for y and graph-
ing the two equations corresponding to the positive and nega-
tive square roots. (This graph is called a hyperbola.)

1y � 1 2 2 � x2 � 1

y � 1
5 141 � 3x 2y � 249 � x2

y � 27 � 7
12 x2y � �3x2 � 6x � 1

2

0 x2 � 5 00 x � 1 0

y �
x

x2 � 25
y �

1

x 2 � 2x

y � x1x � 6 2 1x � 9 2

y � 212x � 17y � 24 256 � x2

y � 28x � x2
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A TI-83 or TI-84 graphing calculator is a powerful tool that can draw graphs as well as
do many of the other calculations that we study in this book. Here we give some of the
basic calculator operations. When you master these you'll be able to easily use the calcu-
lator to do many other tasks. 

▼ 1. Set the Mode 
Make sure the calculator is in the “mode” that you want. 

STEP 1 Find the Mode Menu To get the mode menu, press the key. 
STEP 2 Make the Appropriate Selections Use the cursor to highlight a selection,

then press to make the selection. For example, choose Normal for dec-
imal notation, Sci for scientific notation, Func to graph functions in rectangu-
lar coordinates, Real to work with real numbers, or a+bi to work with com-
plex numbers. The standard choices are shown here.

NOTE: Press to exit this menu (or to exit any other menu).

▼ 2. Graph an Equation 
To graph one or more equations on the same screen, first express each equation in func-
tion form, with y on one side of the equation (see page 185). Let's graph and

.

STEP 1 Enter the Equation Press the key, and then enter the equations as shown.

STEP 2 Choose the Window Press the key, and then enter the values for
Xmin, Xmax, Ymin, and Ymax that you want.

STEP 3 Get the Graph To get the graph, press the key. GRAPH

WINDOW

Y=

y � �x � 2
y � x 3 � 1

Normal

Radian

Connected
Func

Degree

Sci Eng
Float 0 1 2 3 4 5 6 7 8 9

Par Pol Seq
Dot

Sequential Simul
Real a+bi re^i��
Full Horiz G-T

QUIT2nd

ENTER

MODE

A P P E N D I X  C Using the TI-83/84 Graphing Calculator
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Plot1 Plot2 Plot3

\Y2=-x+2

\Y6=
\Y5=

\Y3=
\Y4=

\Y1=x^3+1

\Y7=

WINDOW
Xmin=-1.5

Ymax=5
Ymin=-1
Xscl=1
Xmax=2.5

Yscl=1
Xres=1

5

_1

_1.5 2.5
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▼ 3. Zoom in on a Graph
To zoom in on a portion of a graph, first draw the graph(s) by following the steps in Part
2. With the graph(s) on the screen, follow these steps.

STEP 1 Choose the Zoom Menu Press the key to obtain the zoom menu.
Choose ZBox, and press . (You can experiment with other choices also.)

STEP 2 Draw the Zoom Box Move the cursor to the location of the bottom left corner
of the rectangle (or box) that you want to zoom in on, then press . Then
move the cursor to the location of the top right corner of the zoom box.

STEP 3 Zoom In Press to zoom in on the portion of the graph that is in the
zoom box.

▼ 4. Trace a Graph 
Once a graph has been drawn on the calculator screen, you can find the coordinates of any
point on the graph.

STEP 1 Graph an Equation Graph an equation (or several equations) as in Part 2.
Keep the graph(s) on the calculator screen.

STEP 2 Choose the Command Go to the trace command by pressing the key.
A cursor ( ) appears on the screen. 

STEP 3 Trace the Graph Move the cursor along the curve by using the left or right ar-
row keys. You can jump from one curve to another by using the up or down ar-
row keys. The numbers at the bottom of the screen give the coordinates of the
location of the cursor. 

▼ 5. Find Points of Intersection of Two Graphs
To find the point of intersection of the graphs of two equations, first graph the two equa-
tions on the same screen as in Part 2.

STEP 1 Choose the Calc Menu Press  to obtain the menu. Choose the
intersect command, and press . (You can also experiment with the
other commands on this menu.)

STEP 2 Choose the Two Curves Use the up and down keys to display the equations
you have entered (they appear at the top of the screen). Select the first equation
you want by pressing . Use the up and down keys again, and select the
second equation. A cursor appears on one of the graphs. The numbers at the
bottom of the screen give the coordinates of the cursor.

ENTER

ENTER

CALC2nd

TRACE

ENTER

ENTER

ENTER

ZOOM
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X=1.1382979 Y=2.4749176

Y1=x̂ 3+1

X=1.1382979 Y=.86170213

Y2=-x+2
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STEP 3 Get the Intersection Point Now Guess? appears on the screen. Move the
cursor to a point near the point of intersection that you want to find (this is your
guess). Press . The point of intersection is displayed at the bottom of the
screen.

▼ 6. Make a Table of Values of a Function
To make a table of values of a function, first enter the function. Let's work with the func-
tion .

STEP 1 Enter the Function Press the key, and then enter the definition of the
function as shown.

STEP 2 Set the Table Properties Press , and then select the value at
which you want the table to start (TblStart) and the step size ( Tbl).

STEP 3 Get the Table Press to obtain the table. Scroll up or down to see
more of the table.

▼ 7. Graph an Inequality
To graph an inequality in two variables, first enter the corresponding equation as in Part
2. We illustrate the process with the inequalities and .

STEP 1 Enter the Equation(s) Enter the equation(s) as in Part 2 and set the window. 
STEP 2 Choose the Inequalities For each equation, use the left arrow key to move

the cursor to the very left of the equation. Press repeatedly to cycle
through the inequality options ( ■ and ■ ). When the desired inequality appears,
move on to the next equation. 

STEP 3 Get the Graph To get the graph, press the key. GRAPH

ENTER

y � �x � 2y � x 3 � 1

TABLE2nd

¢
TBLSET2nd

Y=

y � x 2

ENTER
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CALCULATE
1:value

6:dy/dx
5:intersect
4:maximum
3:minimum
2:zero

7: f(x)dx First curve?
X=.5 Y=1.125

Y1=x̂ 3+1

Intersection
X=.6823278 Y=1.3176722

Plot1 Plot2 Plot3

\Y2= 

\Y6=
\Y5=

\Y3=
\Y4=

\Y1=x^2

\Y7=

TABLE SETUP
TblStart=0
�Tbl=.5

Indpnt:Auto  Ask
Depend:Auto  Ask

X

.5
1
1.5
2
2.5
3

X=0

0
.25
1
2.25
4
6.25
9

0

Y1

Plot1 Plot2 Plot3

\Y6=
\Y5=

\Y3=
\Y4=

Y1=x^3+1

\Y7=

Y2=-x+2
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▼ 8. Enter Data 
To enter data such as a list of one-variable data or a list of two-variable data into the cal-
culator, we use the menu.

STEP 1 Go to the Statistics Menu Press the key. From the top menu choose
EDIT, then 1:Edit, and then press . 

STEP 2 Enter the Data Enter the data in one or more of the columns labeled L1, L2,
L3, . . . . For example, for two-variable data enter the x-coordinates of the data
points in L1 and the y-coordinates in L2.

▼ 9. Find the Curve of Best Fit 
To find the curve that best fits a given set of two-variable data, we first enter the data.

STEP 1 Enter the Data Enter the two-variable data in two columns, say L1 and L2, as
in Part 8. 

STEP 2 Choose the Regression Command Press the key again. From the top
menu choose CALC, then select the type of curve you want (LinReg(ax+b),
QuadReg, ExpReg, PwrReg, . . .) and press .

STEP 3 Obtain the Regression Line Now select the columns in which you stored the
data. For example, enter L1 and L2 separated by a comma, as in the middle
graph. Note that the column names are located at and . Press

again. The regression equation with the values of the coefficients ap-
pears on the screen.

▼ 10. Enter a Matrix
To enter a matrix into the calculator, we start with the menu.  

STEP 1 Go to the Matrix Menu Press the key to obtain the matrix
menu. From the top menu choose EDIT, then select a matrix name (e.g., [A]),
and press .

STEP 2 Enter the Matrix Now enter the dimension of the matrix you want, (e.g.,
), and press . A matrix with the desired dimension appears. Key in

the entries of the matrix, pressing after inputting each entry. Press 
when you have completed entering the matrix.

STEP 3 Enter Another Matrix Press the key again, and repeat the
process in Step 2 to enter another matrix [B].  

MATRIX2nd

QUIT

2ndENTER

ENTER3 � 4

ENTER

MATRIX2nd

MATRIX

ENTER

L22ndL12nd

ENTER

STAT

ENTER

STAT

STAT
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EDIT CALC TESTS

1:Edit

2 :SortA(
3 :SortD(
4 :ClrList
5: SetUpEditor

L1 L2 L3 2
0
10
20
30
40
50

L2(6)=6.9

- - - - - -29.2
26
20
12.6
9.2 
6.9

- - - - - - - - - - - -

CALCEDIT TESTS

4:

1-Var Stats
2: 2-Var Stats
3: Med-Med

1:

LinReg(ax+b)
5:QuadReg

0:ExpReg
A PwrReg

LinRegLinReg(ax+b) L1, L2
y=ax+b

r2
b=29.40952381
a=-.4837142857

=.9738750529
r=-.9868510794
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▼ 11. Find the (Reduced) Row-Echelon Form of a Matrix
To find the row-echelon form or the reduced row echelon form of a matrix, we first enter
the matrix.  

STEP 1 Enter the Matrix Enter a matrix as in Part 10. 
STEP 2 Choose the Form Press the key again. From the top menu

choose MATH, then select rref (or ref) and press . (You can also ex-
periment with the other commands on this menu.) Press the key
yet again.  From the top menu choose NAMES, then select the name of the ma-
trix you want (e.g., [A]).

STEP 3 Obtain the (Reduced) Row-Echelon Form You now have rref([A]) on the
screen. Press to obtain the reduced row-echelon form of the matrix 
you stored in [A].

▼ 12. Perform Algebraic Operations on Matrices 
Before performing operations on matrices, store the matrices in the memory of the calcu-
lator with the names [A], [B], . . . as in Part 10.

STEP 1 Select a Matrix by Name To enter the name of a matrix on the screen, go to
. From the top menu choose NAMES, then select the name of the

matrix you want ([A], [B], . . .) and press .  
STEP 2 Choose the Operation To do algebraic operations on matrices, use the ordi-

nary arithmetic operation keys , , or . To multiply or add matrices,
enter [A]*[B] or [A]+[B]. For the inverse use the key to enter [B]-1. 

STEP 3 Obtain the Result On the screen you now have [A]*[B], [A]+[B], or
[B]-1. Press to obtain the result. 

NOTE: To obtain the result of any calculation as a fraction (as opposed to a
decimal), go to and select Frac (see the second screen below). ▼MATH

ENTER

X-1

X-1X+

ENTER

MATRIX2nd

ENTER

MATRIX2nd

ENTER

MATRIX2nd
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NAMES
1:[A]

EDITMATH

6:[F]
5:[E]
4:[D]
3:[C]
2:[B]

7 [G]

MATRIX [A]
[4   8  -4    4]
[3   8   5  -11]
[-2  1  12  -17]

3,4=-17

3X4 MATRIX [B]
[1   -2   -4]
[2   -3   -6]
[-3   6   15 ]

3,3=15

3X3

MATRIX [A]
[4   8  -4    4]
[3   8   5  -11]
[-2  1  12  -17]

3,4=-17

3X4 NAMES

A:ref(

MATH EDIT
1:det(

3:dim(
2: T

B rref(

4:Fill(

rref([A])

[[1  0  0  -3]
[0  1  0   1]
[0  0  1 -2]]

[A]

[[ 6 -12 -62   94]
[11 -14 -95  143]
[-24 39 222 -333]]

*[B]

[[-3   2     0]
[-4   1  -2/3]
[1    0  1/3]]

[B]-1 Frac
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▼ 13. Find the Determinant of a Matrix 
To find the determinant of a matrix, we must first store the matrix in the memory of the
calculator with a name [A], [B], . . . as in Part 10.

STEP 1 Select the Determinant Command Press to go to the matrix
menu. From the top menu select MATH, then choose det(, and then press

. The symbol det( appears on the screen. 
STEP 2 Choose the Name of a Matrix To find the determinant of the matrix B, press

. From the top menu choose NAMES, and then select [B].   
STEP 3 Obtain the Result On the screen you now have det([B]). Press to

obtain the value of the determinant.

▼ 14. Find a Term of a Sequence 
We can work with sequences on the calculator, but we must first put the calculator in the
proper mode by following the instructions in Part 1.

STEP 1 Select the Sequence Mode Press , then select seq and press .
This puts the calculator in sequence mode. Press to exit the mode
menu.

STEP 2 Enter the Sequence Press the key, and then enter the definition of the
sequence. For the sequence , enter u(n)=2n+1, as shown. We
must also enter the minimum value of n (in this case nMin=1) and the first
term of the sequence (in this case u(nMin)={3}). 

STEP 3 Obtain Results To find a term of the sequence, say , use the keypad to en-
ter u(10). Note that u is located at on the keypad.

▼ 15. Find a Term of a Recursive Sequence 
To find a term of a recursively defined sequence, first put the calculator in sequence mode.
We find the 20th term of the Fibonacci sequence.

STEP 1 Select the Sequence Mode Put the calculator in sequence mode as in Part 14.
Press to exit the mode menu.

STEP 2 Enter the Sequence Press the key, and then enter the definition of the
sequence. For the Fibonacci sequence, enter u(n)=u(n-1)+u(n-2), as
shown. We must also enter the minimum value of n (in this case nMin=1) and
the first two terms of the sequence (in this case u(nMin)={1,1}). 

Y=

QUIT2nd

u2nd

a10

an � 2n � 1
Y=

QUIT2nd

ENTERMODE

ENTER

MATRIX2nd

ENTER

MATRIX2nd
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STEP 3 Obtain Results To find a term of the sequence, say, , use the keypad to en-
ter u(20). Note that u is located at on the keypad.

▼ 16. List Terms of a Sequence
To list the terms of a sequence, we use the menu. We illustrate the process with the
sequence from to .

STEP 1 Get the Sequence Command Press . From the top menu choose
OPS, select seq(, and then press .

STEP 2 Define the Sequence Complete the seq( command as seq(1/N,N,1,5,1).
The entries have the following meaning: The formula is , the variable is N,
the starting point is 1, the ending point is 5, and the step size is 1.

NOTE: Get the letter N by pressing .
STEP 3 Obtain the List of Terms of the Sequence Press to obtain a list of the

terms of the sequence. 

NOTE: Use the  Frac command to obtain the result in fractions. (See the note
in Part 12.)

▼ 17. Make a Table of Values of a Sequence
To make a table of values of a sequence, first put the calculator in sequence mode (see
Part 1). Let's work with the sequence .

STEP 1 Enter the Sequence Press the key, and then enter the definition of the se-
quence as shown.

STEP 2 Set the Table Properties Press , and then select the value of n at
which you want the table to start (TblStart) and the step size ( Tbl) to be 1.

STEP 3 Get the Table Press to obtain the table. Scroll up or down to see
more of the table.

TABLE2nd

¢
TBLSET2nd

Y=

u1n 2 � n2

▼

ENTER

NALPHA

1/N

ENTER

LIST2nd

n � 5n � 1an � 1/n
LIST

u2nd

F20

A P P E N D I X  C | Using the TI-83/84 Graphing Calculator 685

Unless otherwise noted, all content on this page is © Cengage Learning.
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n
n
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NAMES
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3:dim(
2:SortD(

4:Fill(

1:SortA(
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{1 .5 .33333 .25...
Ans  Frac
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Min=1
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▼ 18. Graph a Sequence
To graph a sequence, first put the calculator in sequence mode (see Part 1). Let's work
with the sequence .

STEP 1 Enter the Sequence Press the key, and then enter the definition of the se-
quence. To obtain a sequence graph where the dots are not connected, use the
left arrow key to move the cursor to the very left of the equation. Press 
repeatedly to obtain the dots (...)  to the left of the equation, as shown. 

STEP 2 Choose the Window Press the key, and then enter the required val-
ues. Make sure you scroll down far enough to enter the values for Xmin, Xmax,
Ymin, and Ymax that you want.

STEP 3 Get the Graph Press to obtain the graph.

▼ 19. Find a Partial Sum of a Sequence
To find a partial sum of a sequence, we use the LIST menu. We work with the sequence
of odd numbers from to . 

STEP 1 Find a Sum of a Sequence Press . From the top menu choose
MATH, select sum(, and then press . Key in the sequence as in Part 16:
sum(seq(2N-1,N,1,5,1)). Press to get the sum.

STEP 2 Find the Partial Sums Press . From the top menu choose OPS, se-
lect cumsum(, and then press . Key in the sequence as in Part 16:
cumsum(seq(2N-1,N,1,5,1)). Press to get the sequence of 
partial sums.

ENTER

ENTER

LIST2nd

ENTER

ENTER

LIST2nd

n � 5n � 1an � 2n � 1

GRAPH

WINDOW

ENTER

Y=

u1n 2 � n/ 1n � 1 2
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2:SortD(
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35. (a) (b) 6 37. (a) � (b) � (c) � 39. (a) True
(b) False 41. (a) False (b) True 43. (a) False (b) False
45. (a) x � 0 (b) t � 4 (c) a � p (d) �5 � x �
(e) 47. (a) {1, 2, 3, 4, 5, 6, 7, 8} (b) {2, 4, 6}
49. (a) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} (b) {7}
51. (a) (b)
53. �3 � x � 0 55. 2 � x � 8

57. x � 2 59.

61.

63.

65. (a) (b) 67. (a) (b)
69. (a) (b)

71. 73.

75.

77. (a) 100 (b) 73 79. (a) 2 (b) �1 81. (a) 12 (b) 5
83. 5 85. (a) 15 (b) 24 (c) 87. (a) (b) (c)
89. Distributive Property 91. (a) Yes, no (b) 6 ft

SECTION P.3 ■ PAGE 23

1. 56 2. Yes 3. Base, exponent 4. Add, 39 5. Subtract, 33

6. Multiply, 38 7. (a) (b) (c) 2 (d) 8
8. Scientific; 9. (a) �9 (b) 9
(c) �8 11. (a) (b) (c) 16 13. (a) 625 (b) 9

(c) 64 15. (a) 1 (b) 1 (c) �1 17. (a) 25 (b) 1000

(c) 19. (a) (b) (c) 21. (a) (b)

(c) 23. (a) (b) (c) 25. (a)

(b) 27. (a) (b) 29. (a) (b)

31. (a) (b) 33. (a) (b) 35. (a)

(b) 37. (a) (b) 39. (a) 6.93 � 107

(b) 7.2 � 1012 (c) 2.8536 � 10�5 (d) 1.213 � 10�4

41. (a) 319,000 (b) 272,100,000 (c) 0.00000002670
(d) 0.000000009999

s3

q 7r 4

b3
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x 6y3

4a8
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√10
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a19b

c9
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2x 4y
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8b 6
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x 7
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27a14

b 7

25
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3a7b 5

6x 3y520x 8a18a6y3
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„
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8.3 � 106; 3.27 � 10�5

1
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1
2

19
33
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45

7
9

67
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−4 4

0 6−2 1

1�q,  5 23�5, q 2
31,  4 23�4,  �1 21�3,  5 43�3,  5 4

−1
1�1,  q 2

−2 1
1�2,  1 4

12

1�q,  1 4

82−3 0

5x 0  �1 � x � 465x 0  x � 56

0 p � 3 0 � 5

1
3

8
3PROLOGUE ■ PAGE P4

1. It can’t go fast enough. 2. 40% discount 3. 427, 3n 	 1
4. 57 min 5. No, not necessarily 6. The same amount 7. 2p
8. The North Pole is one such point; there are infinitely many 
others near the South Pole.

CHAPTER P
SECTION P.1 ■ PAGE 5

1. 48 2. C � 3.5x 3. T � $7.20 5. $90 7. 245 mi
9. (a) 30 mi/gal (b) 7 gal 11. (a) 38 km3 (b) 2 km3

13. (a) (b) 34 ft

15. N � 7„ 17. 19. C � 3.50x

21. d � 60t 23. (a) $15 (b) C � 12 	 n (c) 4
25. (a) (i) C � 0.04x (ii) C � 0.12x (b) (i) $400
(ii) $1200 27. (a) $2 (b) C � 1.00 	 0.10t (c) 12 min
(d) C � F 	 rt

SECTION P.2 ■ PAGE 15

1. Answers may vary. Examples: (a) 2 (b) �3 (c) (d)
2. (a) ba; Commutative (b) ; Associative
(c) ; Distributive 3. (a) (b) (2, 7)
4. A includes �2 and 5; B does not 5. absolute value; positive
6. distance 7. (a) None (b) �3, 0, �1000
(c) �3, 0, , 3.14, �1000, (d)
9. Commutative Property for addition
11. Associative Property for multiplication
13. Distributive Property 15. Associative Property for addition
17. Distributive Property
19. Commutative Property for multiplication
21. 3 	 x 23. 4A 	 4B 25. 3x 	 3y 27. 8m
29. �5x 	 10y 31. (a) (b) 33. (a) 3 (b) 25

72
9
20

17
30

17, �p�2
52.76,22

7

5x 0  2 � x � 76ab 	 ac
1a 	 b 2 	 c

123
2

A �
a 	 b

2

A1

A N S W E R S to Selected Exercises and Chapter Tests

Depth (ft) Pressure (lb/in2)

0 14.7
10 19.2
20 23.7
30 28.2
40 32.7
50 37.2
60 41.7
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7. 9. 11.
13. 15. 17.

19. 21. 23.
25. 27.
29. 31. 33. 35.
37. 39.
41. 43.
45. 47. 49.
51. 53.
55. 57.
59. 61. 63.
65. 67. 69.
71. 73.
75. 77. 79.
81. 83.
85. 87. 89.

91. 93.

95. 97. 4ab

99. 101.

103. 105.
107. 109.

111.

113. (d)

SECTION P.7 ■ PAGE 50

1. (a), (c) 2. numerator; denominator; 

3. (a) False (b) True

4. (a) numerators; denominators; 

(b) invert; 5. (a) 3 (b) (c)

6. (a) False (b) True 7. � 9. 11.

13. 15. 17.

19. 21. 23. 25. 27.

29. 31. 33. 35.

37. 39. 41.

43. 45. 47. 49.

51. 53. 55.

57. 59. 61.

63. 65. 67.

69. 71. 73.
1x 	 1 22

x2 	 2x � 1

x 21y � 1 2

y21x � 1 2

x � 1

x 	 1

2x

x � 1
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1x 	 1 2 1x 	 2 2 1x � 3 2
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1x � 3 2 1x 	 5 2
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12x 	 1 2 12x � 1 2

1x 	 5 2 2
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41x � 2 2
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y � 1
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x

5x 0  x � �365x 0  x 
 �1, x 
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5x 0  x 
 465x 0  x 
 06

�2x2 	 1

x1x 	 1 2 2
x1x 	 1 2 2

3x 	 6

x2 	 5x

2x

x2 	 4x 	 3

x 	 1

x 	 3

1a 	 b 	 c 2 1a 	 b � c 2 1a � b 	 c 2 1b � a 	 c 2

1x2 	 3 2�4/3113x
2 	 3 2

12x � 1 2 21x 	 3 2�1/217x 	 35
2 216x21x � 3 2 15x � 9 2

1a 	 2 2 1a � 2 2 1a 	 1 2 1a � 1 2y41y 	 2 2 31y 	 1 2 2
31x � 1 2 1x 	 2 21x 	 3 2 1x � 3 2 1x 	 1 2 1x � 1 2

12x2 	 1 2 1x 	 2 2

1y 	 2 2 1y � 2 2 1y � 3 21x2 � 2y 2 1x4 	 2x2y 	 4y2 2

x2y31x 	 y 2 1x � y 2x21x 	 3 2 1x � 1 2x1x 	 1 2 2
12x � 5 2 14x2 	 10x 	 25 21t 	 1 2 1t2 � t 	 1 2

12x 	 y 2 21t � 3 2 217 	 2y 2 17 � 2y 2

1x 	 6 2 1x � 6 213x 	 2 2 12x � 3 2

91x � 5 2 1x 	 1 212x 	 3 2 1x 	 1 21y � 3 2 1y � 5 2

1x � 4 2 1x 	 2 23y312y � 5 26x12x2 	 3 2

x1/31x � 2 2�1/31�3x � 4 21x2 	 3 2 1x2 	 1 2�1/2

x�3/21x 	 1 2 2x1/21x 	 1 2 1x � 1 2

1x 	 1 2 1x2 	 1 212x 	 1 2 1x2 � 3 21x 	 4 2 1x2 	 1 2

1u � √2 2 1u2 	 u√2 	 √4 213x 	 y 2 19x 2 � 3xy 	 y2 2

12a � 1 2 14a2 	 2a 	 1 21x 	 3 2 1x 2 � 3x 	 9 2

13u � √ 2 212t � 5 2 21z � 6 2 21x 	 5 2 2
1x 	 3 � y 2 1x 	 3 	 y 214y � z 2 14y 	 z 2

17 � 2z 2 17 	 2z 21x � 5 2 1x 	 5 213x 	 4 2 13x 	 8 2

13x � 1 2 1x � 5 21x 	 5 2 1x � 3 21x � 1 2 1x 	 3 2
1y � 6 2 1y 	 9 2xy12x � 6y 	 3 22x1�x2 	 8 243. (a) 5.9 � 1012 mi (b) 4 � 10�13 cm

(c) 3.3 � 1019 molecules 45. 1.3 � 10�20 47. 1.429 � 1019

49. 7.4 � 10�14 53. 2.5 � 1013 mi 55. 1.3 � 1021 L
57. 4.03 � 1027 molecules 59. $470.26, $636.64, $808.08

SECTION P.4 ■ PAGE 29

1. 51/3 2. 3. No 4.

5. 6. 7. 7�1/2 9.

11. 53/5 13. 15. 17. (a) 4 (b) 2 (c)

19. (a) (b) (c) 21. (a) 14 (b) 4

(c) 6 23. (a) 6 (b) 4 (c) 25. 27.

29. 2x2 31. 33. 35. 37.

39. 41. 43. 45.

47. 49. 51. (a) 2 (b) �5

(c) 53. (a) 4 (b) (c) 55. (a) 5 (b) (c) 4

57. 5 59. 14 61. (a) x2 (b) y2 63. (a) 16b3/4 (b) 45a2

65. (a) „5/3 (b) 4s9/2 67. (a) 4a4b (b) 8a9b12

69. (a) (b) 71. (a) (b) 73.

75. y3/2 77. 10x7/12 79. 2st11/6 81. x 83.

85. 87. y1/2 89. (a) (b) (c)

91. (a) (b) (c) 93. (a)

(b) (c) 95. 41.3 mi 97. (a) Yes (b) 3292 ft2

SECTION P.5 ■ PAGE 35

1. (a), (d), (f) 2. like, 11x2 	 x 	 5 3. like, x3 	 8x2 � 5x 	 2
4. FOIL, x2 	 5x 	 6 5. A2 	 2AB 	 B2, 4x2 	 12x 	 9
6. A2 � B2, 25 � x2 7. Trinomial; x2, �3x, 7; 2
9. Monomial; �8; 0 11. Four terms; �x4, x3, �x2, x; 4
13. 15. 17. 7x 	 5
19. x3 	 3x2 � 6x 	 11 21. 2x2 � 2x 23. x3 	 3x2

25. t2 	 4 27. 7r3 � 3r2 � 9r 29. 2x4 � x3 	 x2

31. x2 	 2x � 15 33. 2s2 	 15s 	 18 35. 21t2 � 26t 	 8
37. 6x2 	 7x � 5 39. 2x2 	 5xy � 3y2 41. 6r2 � 19rs 	 10s2

43. x2 	 10x 	 25 45. 9y2 � 6y 	 1 47. 4u2 	 4u√ 	 √2

49. 4x2 	 12xy 	 9y2 51. x4 	 2x2 	 1 53. x2 � 25
55. 9x2 � 16 57. x2 � 9y2 59. x � 4 61. y3 	 6y2 	 12y 	 8
63. 1 � 6r 	 12r2 � 8r3 65. x3 	 4x2 	 7x 	 6
67. 2x3 � 7x2 	 7x � 5 69. x3/2 � x 71. y 	 y2

73. x4 	 2x2y2 	 y4 75. x4 � a4 77. a � b2 79. 1 � x4/3

81. �x4 	 x2 � 2x 	 1 83. 4x2 	 4xy 	 y2 � 9
85. (b) 4x3 � 32x2 	 60x; 3 (c) 32, 24
87. (a) 2000r3 	 6000r2 	 6000r 	 2000; 3
(b) $2122.42, $2185.45, $2282.33, $2382.03, $2662.00

SECTION P.6 ■ PAGE 41

1. (a) 3; 2x5, 6x4, 4x3 (b)

2. 10, 7; 2, 5; 3. ;
4. 5. 51a � 4 21A 	 B 2 2; 1x 	 5 2 212x 	 5 2 12x � 5 2

1A 	 B 2 1A � B 21x 	 2 2 1x 	 5 2

2x3; 2x31x2 	 3x 	 2 2

x 2 	 3x � 39x 	 4

27 x4

x

26 x

x

23 x2

x
425 16

24 27

3

23 2

2

323
322

2

26

6

4u

√2

x1/4y1/4

2

x 5/9
8y8

x2

1
x

1

u4/3√2

1

4y2

25 38
27

3
2

1
3

12a � 3 223 2a21x 	 2 223 x

13a � 1 22a13 4215712

2 0  x 0ab25 ab26 0 r 0 t 2x13 y

2y25 y0 x 01
4

323

2

22

3
623 2

1
2y4/325 a2

23 422
3

113
 �  

113
# 1313

 �  
13

3

141/2 2 3 � 8, 143 2 1/2 � 815

A2 Answers to Selected Exercises and Chapter Tests
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39. (a) 71/3 (b) 74/5 41. (a) x5/6 (b) x9/2 43. 12x5y4

45. 9x3 47. x2y2 49. 51. 7.825 � 1010

53. 1.65 � 10�32 55. 57.
59. 61.
63. 65.
67. 69. 71. x2

73. 6x2 � 21x 	 3 75. 4a4 � 4a2b 	 b2

77. 8x3 	 12x2 	 6x 	 1 79. 2x3 � 6x2 	 4x

81. 83. 85. 87.

89. 91. 93. 6x 	 3h � 5 95.

97. 99.

101. 103. 105. No
107. Yes 109. No 111. 4 113. 5 115. 117. �6
119. 0 121. No solution 123. �12 125. 3 127. �5

129. �27 131. 625 133. x � 2A � y 135.

CHAPTER P TEST ■ PAGE 66

1. (a) C � 9 	 1.50x (b) $15 2. (a) Rational, natural 
number, integer (b) Irrational (c) Rational, integer
(d) Rational, integer 3. (a) 50, 1, 56 (b)

4. (a)

(b) Intersection [0, 2)

Union [�4, 3] (c)

5. (a) �64 (b) 64 (c) (d) (e) (f) (g)

(h) 6. (a) 1.86 � 1011 (b) 3.965 � 10�7 7. (a)

(b) (c) 48a5b7 (d) (e) (f) 5x3

(g) 8. (a) 11x � 2 (b) 4x2 	 7x � 15 (c) a � b

(d) 4x2 	 12x 	 9 (e) x3 	 6x2 	 12x 	 8 (f) x4 � 9x2

9. (a) (b)
(c) (d)

(e) (f) 10. (a)

(b) (c) (d) 11. (a)

(b) 12. (a) 5 (b) (c) 512 (d)

(e) 13.

FOCUS ON MODELING ■ PAGE 71

1. (a) C � 5800 	 265n (b) C � 575n
(c)

c � B E

m
�26 � 1

15
2�5

2216 � 312

313 2�1x 	 y 2
1

x � 2

x � 1

x � 3

x 	 2

x � 2
xy1x � 2 2 1x 	 2 212x � y � 5 2 2

x1x 	 3 2 1x 
2 � 3x 	 9 21x � 3 2 1x � 2 2 1x 	 2 2

12x � 3 2 1x 	 4 212x � 5 2 12x 	 5 2

x

9y 
7

4x 2y223y62227y3/2

a3

b 4
1

27

9
16

1
2

4
9

1
49

1
64

0 �4 � 2 0 � 6
3−4

20

302−4

5�2, 0, 12, 1, 3, 5, 76

t �
11

6J

15
2

5x 0 x � 0 and x 
 465x 0 x 
 �106

x12x � 2 2

x � 4
6 	 623

27

7
� 

1

2x

1

x 	 1

x 	 1

1x � 1 2 1x 
2 	 1 2

x 	 1

x � 4

31x 	 3 2

x 	 4

x � 3

2x 	 3

1x � 2 2 14x 
2 	 3 212x 	 y 

2 2 14x 
2 � 2xy 

2 	 y 
4 2

ab 
21a 	 b 2 1a 

2 � ab 	 b 
2 215 � 4t 2 15 	 4t 2

14t 	 3 2 1t � 4 213x 	 1 2 1x � 1 2
1x � 6 2 1x � 3 22xy1x � 3y 2

4r 
5/2

s 
7

75. 77. �xy 79.

81. 83. 85.

87. 89. 91.

93. 95. 97.

99. 101. 103.

105. 107. True 109. False 111. False

113. True 115. (a) (b)

SECTION P.8 ■ PAGE 59

1. Solution 2. 3. (a), (c) 4. (a) Equation
contains a square of the variable. (b) Equation contains a square
root of the variable. (c) Equation contains a square of the variable.
5. (a) True (b) False (because quantity could be 0) (c) False
6. cube, 5 7. (a) No (b) Yes 9. (a) Yes (b) No
11. (a) No (b) Yes 13. (a) Yes (b) No 15. 17. �4

19. �8 21. �9 23. �3 25. 12 27. 29. 31. 30

33. 35. 37. 39. 41. 43. �20 45.

47. 49. No solution 51. No solution 53. �7 55.

57. 59. No solution 61. �4, 0 63. 3 65. �2
67. No solution 69. �5, 1 71. 8 73. 125 75. �8

77. 3.13 79. 5.06 81. 43.66 83. 1.60 85.

87. 89. 91.

93. 95. 97.

99. (a) 0.00055, 12.018 m (b) 234.375 kg/m3

101. (a) 8.6 km/h (b) 14.7 km/h

CHAPTER P REVIEW ■ PAGE 63

1. (a) T � 250 � 2x (b) 190 (c) 125
3. (a) rational, natural number, integer
(b) rational, integer (c) rational, natural number, integer
(d) irrational (e) rational, neither (f) rational, integer
5. Commutative Property for addition
7. Distributive Property 9. (a) (b) 11. (a) (b)

13. �2 � x � 6

15. x � 4

17.

19.

21. (a) (b) 23. (a) 51, 26 (b)

25. 3 27. 6 29. 31. 33. 11 35. �5
37. (a) (b) 0 3 � 1�5 2 0 � 80 3 � 5 0 � 2

1
6

1
72

512, 165165�1, 0, 12, 1, 2, 3, 46

5−1
1�1, 5 4

5
35, q 2

4

−2 6

25
32

9
2

1
6

3
2

x �
2d � b

a � 2c
i � �100 � 100 BA

P
r � B3 3V

4p

r � � B 3V

ph
„ �

1P � 2l 2

2
R �

PV

nT

M �
12
r

�2 12

�2 163
97

13
3

13
6� 

1
3

14
13

4
3

1
17

32
9� 

3
4

�7
3

3x � 6; x � 2; 2

20
3 � 6.7 ohms

R1R2

R1 	 R2

12x 
2 	 1 	 x

r � 2

5A2r � 22B

�4

3A1 	 25B

y23 � y2y

3 � y

2127 � 22 2

5
2 	 23

2x 	 3

1x 	 1 2 4/3

x 	 2

1x 	 1 2 3/2

1x 	 2 2 21x � 13 2

1x � 3 2 3
121 � x2

�2x � h

x21x 	 h 2 2
� 

1

11 	 x 	 h 2 11 	 x 2

1

1 � x

x2 	 y2

xy1x 	 y 2

4x � 7

1x � 1 2 1x � 2 2 1x 	 2 2

Answers to Chapter P Focus on Modeling A3

Unless otherwise noted, all content on this page is © Cengage Learning.

n Purchase Rent

12 8,980 6,900
24 12,160 13,800
36 15,340 20,700
48 18,520 27,600
60 21,700 34,500
72 24,880 41,400
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19. 21.

23. (a) (b) 25. (a) 10 (b)
27. (a) 29. (a)

(b) 10 (c) (b) 25 (c)
31. (a) 33. (a)

(b) (c) (b) 5 (c)
35. (a) 37. 24

(b) 10 (c)
39. Trapezoid, area � 9

41. 43. 47. (b) 10 51. 53. A1, 72B10, �4 2Q1�1, 3 2A16, 7 2

y

0 x3

5

_3

_5

D C

A B

10, 0 2

y

0 x3

5

_3

_5

A(1, 3) B(5, 3)

C(1, _3) D(5, _3)

y

0 x5

5

_5

_5
(_3, _4)

(3, 4)

A9, 92BA52, 
1
2B174

y 

x 4 

(7, 3) 
(11, 6) 

0 

4 

y

0 x_4 4

_4

4

(6, _2)

(_1, 3)

A12, 6B13, 12 2

6

(−3, −6)

(4, 18)

−6

6

y

0 x8

(0, 8)

(6, 16)

−8

8

y

0 x

11, 0 2A32, 1B113

2

1
0

y

x1

2

0

y

x

(d) 19 months 3. (a) C � 8000 	 22x (b) R � 49x
(c) P � 27x � 8000 (d) 297
5. (a) Design 2 (b) Design 1
7. (a)

(b) , ,
(c) 550 minutes: A � $55, B � $55,

C � $65; 975 minutes: A � $267.50, B � $182.50, C � $107.50;
1200 minutes: A � $380, B � $250, C � $130
(d) (i) 550 minutes (ii) 575 minutes

CHAPTER 1
SECTION 1.1 ■ PAGE 77

1. 2. IV 3.

4.

5. , , , , , ,
,

7. 9.

11. 13.

15. 17.

y

0 x5

5

_5

_5

y

0 x5

5

_5

_5

1

1
0

y

x1

1
0

y

x

5−5 0

−5

5

y

x

(0, 5)

( ),

1

1(_1, 0)

(_1, _2)
0

y

x

1
2

2
3

H12, �2 2G1�1, �3 2
F1�2, 0 2E1�4, �1 2D1�6, 2 2C1�2, 6 2B11, 2 2A15, 1 2

¢a 	 c

2
, 

b 	 d

2
≤; 14, 6 2

21c � a 2 2 	 1d � b 2 2; 101�2, 4 2

C � 60 	 0.101x � 500 2
B � 40 	 0.301x � 500 2A � 30 	 0.501x � 500 2

A4 Answers to Selected Exercises and Chapter Tests

Unless otherwise noted, all content on this page is © Cengage Learning.

Minutes used Plan A Plan B Plan C

500 $30 $40 $60
600 $80 $70 $70
700 $130 $100 $80
800 $180 $130 $90
900 $230 $160 $100

1000 $280 $190 $110
1100 $330 $220 $120
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25. 27.

29. 31.

33. 35.

37. 39.

41. 43.

45. x-intercept 3; y-intercept �3
47. x-intercepts �3; y-intercept �9
49. x-intercept ; y-intercept 1
51. x-intercept �1; y-intercept 1
53. x-intercepts �2; y-intercepts �5
55. x-intercepts 0, 4; y-intercept 0
57. x-intercepts �2; y-intercepts �4

1
2

_0.2

0.2

_50 50

_1

20

_1 10

_2000

2000

_100 150

y

0 x4

4

− 4

y

0 x− 4

−2

1

4

y

0 x

5

5

−5

−2

2

1
0

y

x

y

0 x5

3

−5

y

0 x− 4 4

− 4

4

5−5 0

3

−3

y

x

55. 57. (a)

(b)

59. (a) 5 (b) 31; 25 (c) Points P and Q must be on either the
same street or the same avenue. 61. ; the y-value of the
midpoint is the pressure experienced by the diver at a depth of 66 ft.

SECTION 1.2 ■ PAGE 87

1. 2; 3; No

2. y; x; �1 3. 4.
5. (a) (b) (c)
6. (a) and 3; �1 and 2 (b) y-axis 7. Yes, no, yes
9. No, yes, yes 11. Yes, yes, yes
13. 15.

17. 19.

21. 23.

2

5

0

y

x1

1
0

y

x

y

0 x5−5

−5

1
4−4

2

−4

y

0 x

1

1
0

y

x

2−2

2

−2

y

0 x

�3
1�a, �b 21�a,  b 21a, �b 2

11, 2 2 ; 3x; y; 12

166, 45 2

A52, 3B, A
5
2, 3B

y

0 x_4 4

_4

4

A

B

C
D

y

0 x5

2

_5

R(4, 2)Q(1, 1)

P(_1, _4)
(2, _3)

12, �3 2

Answers to Section 1.2 A5

Unless otherwise noted, all content on this page is © Cengage Learning.

x y

�2

�1 0

0

1 1

2 3
2

1
2

�1
2

1

1

0

y

x
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75.

77.

79.

81. 83. , 4

85. 87.

89. 91.

93. Symmetry about y-axis
95. Symmetry about origin
97. Symmetry about x-axis, y-axis, and origin
99. 101.

103. (a) 14%, 6%, 2% (b) 1975–1976, 1978–1982
(c) Decrease, increase (d) 14%, 1%

SECTION 1.3 ■ PAGE 100

1. y; x; 2 2. (a) 3 (b) 3 (c) 3.
4. 0; y � 3 5. Undefined; x � 2 6.
7. 9. 11. 13. 15. �2, , 3,

17. x 	 y � 4 � 0 19. 3x � 2y � 6 � 0
21. 3x � y � 2 � 0 23. 5x � y � 7 � 0
25. 2x � 3y 	 19 � 0 27. 5x 	 y � 11 � 0
29. 8x 	 y 	 11 � 0 31. 3x � y � 3 � 0 33. y � 3
35. x � 2 37. 3x � y � 1 � 0 39. y � 5
41. x 	 2y 	 11 � 0 43. x � �1
45. 5x � 2y 	 1 � 0 47. x � y 	 6 � 0
49. (a)

(b) 3x � 2y 	 8 � 0

(−2, 1)

1

−3

5

y

0 x

� 
1
4

1
2� 

9
2�1

2�1
3� 

4
3

6; 4; �2
3 x 	 4

y � 2 � 31x � 1 2�1
3

y

0 x

y

0 x

y

0 x3

3

_3 _1

(_3, 6)

y

0 x4

10

_10

(_2, 5)

A14, � 
1
4B, 

1
2A� 

1
2, 0B, 

1
2

12, �5 211, �2 2 , 2

1x 	 2 2 2 	 1y � 2 2 2 � 4

1x � 7 2 2 	 1y 	 3 2 2 � 9

1x � 2 2 2 	 1y � 5 2 2 � 2559. (a)

(b) x-intercepts 0, 1; y-intercept 0

61. (a)

(b) No x-intercept; y-intercept �2

63. (a)

(b) x-intercept 0; y-intercept 0

65. 67.

69.

71.

73. x2 	 y2 � 65

1x � 2 2 2 	 1y 	 1 2 2 � 9

y 

x 2 0 

2 

1�3, 4 2 , 5

y 

x 2 0 
1

y 

x 1 0 
1

13, 0 2 , 410, 0 2 , 3

_2

2

_5 5

_3

1

_5 5

_1

1

_2 2

A6 Answers to Selected Exercises and Chapter Tests

Unless otherwise noted, all content on this page is © Cengage Learning.
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71. �2, 3 73.

75. Parallel 77. Perpendicular 79. Neither
81. (a)

(b) y � 3x 	 10
87. x � y � 3 � 0
89. (b) 4x � 3y � 24 � 0
91. 16,667 ft
93. (a) 8.34; the slope represents the increase in dosage for a one-
year increase in age. (b) 8.34 mg
95. (a)

(b) The slope represents production cost per toaster; the 
y-intercept represents monthly fixed cost.

97. (a) (b) 76 �F
99. (a) P � 0.434d 	 15, where P is pressure in lb/in2 and d is
depth in feet
(b)

(c) The slope is the rate of increase in water pressure, and the 
y-intercept is the air pressure at the surface. (d) 196 ft

50

5

y

x

t � 5
24 n 	 45

0 500 1000 1500

3000

6000

9000

12000

y

x

2 4 6 8

4
8

12
16
20
24
28
32

0

y

x

1

4

0

y

x

1

1

0

y

x

�2
3, 451. They all have the same slope. 

53. They all have the same x-intercept. 

55. �1, 3 57. 2, 7

59. 61.

63. 65. 0, 4 

67. Undefined, none 69. 2, 5

1

1
0

y

x1

1

0

y

x

5−5

5

y

0 x
20

2

y

x

� 
3
5, 6

5−5 0

−3

3

y

x
5−5

−2

2

y

0 x

�4
5, 2� 

1
3, 0

1

1
0

y

x1

1

0

y

x

−5

5

−2 8

m = 1.5

m = −1.5

m = 0.75

m = 0.25
m = 0

m = −0.25

m = −0.75

−8

8

−5 5

b = −6 b = −1
b = −3

b = 0
b = 1
b = 3

b = 6

Answers to Section 1.3 A7

Unless otherwise noted, all content on this page is © Cengage Learning.
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SECTION 1.6 ■ PAGE 129

1. (a) (b)

2. (a) Factor into and use the Zero-Product
Property. (b) Add 5 to each side, then complete the square by
adding 4 to both sides. (c) Insert coefficients into the Quadratic
Formula. 3. b2 � 4ac; two distinct real; exactly one real; no real
5. �3, 4 7. 3, 4 9. , 2 11. , 3 13.

15. 17. �20, 25 19. 21.

23. , 25. �21, �1 27. 29.

31. �3, 5 33. 2, 5 35. , 1 37.

39. 41. 43. 45. No real solution

47. 49. 51. No real solution

53. �0.248, 0.259 55. No real solution

57. 59.

61.

63. 2 65. 1 67. No real solution 69.

71. �2, 3 73. �3 75. No solution 77. k � �20
79. 19 and 36 81. 25 ft by 35 ft 83. 60 ft by 40 ft
85. 48 cm 87. 13 in. by 13 in. 89. 120 ft by 126 ft
91. 50 mi/h (or 240 mi/h) 93. 6 km/h 95. 4.24 s
97. (a) After 1 s and s (b) Never (c) 25 ft (d) After s
(e) After s 99. (a) After 17 yr, on Jan. 1, 2019
(b) After 18.612 yr, on Aug. 12, 2020 101. 30 ft; 120 ft by 180 ft
103. Irene 3 h, Henry h 105. 215,000 mi

SECTION 1.7 ■ PAGE 139

1. (a) factor (b) 0, 4 2. (a) (b) 2x � x2

(c) 0, 2 (d) 0 3. quadratic; x 	 1; W2 � 5W 	 6 � 0

4. quadratic; x3; W2 	 7W � 8 � 0 5. �8, 0, 8 7. 0, �3

9. 11. �2, 0 13. 0, 2, 3 15. 0,

17. 19. , 5 21. 2 23. 1

25. , 2 27. �50, 100 29. �4 31. �4,

33. 35. 7 37. 4 39. 2 41. 4 43. 5

45. 6 47. �7, 0 49. 51.

53. No real solution 55. �1, 3

57. 59. �1, 0, 3 61. No solution 63. 27, 729

65. 67. 20 69. �3, 71. 2 73. �1.41, 1.41

75. �5.20, �2.83, 2.83, 5.20 77. 79.
81. 50 83. 89 days 85. 7.52 ft 87. 4.63 mm
89. 16 mi; No 91. 49 ft, 168 ft, and 175 ft 93. 132.6 ft

2a2 	 36�1a, �21a

1 � 113

2
� 

1
2

�3 13, �2 12

�2 12, �15� 
3
2, � 

3
4

�5 � 4 12

7

�7
3�7

5

�12�5
2, �

1
2, 

3
2

�2 � 120, 33 5
2

12x � �x

4 
1
2

2 
1
2

1 
1
41 

1
2

�1
a

s �
�1a 	 b � 2c 2 � 2a2 	 b2 	 4c2 � 2ab

2

x �
�2h � 24h2 	 2A

2
t �

�√0 � 2√ 
2
0 	 2gh

g

8 � 114

10

15 � 1

2

� 
9
2, 

1
2

3
4

�3 � 2 16

3

�6 � 3 17� 
3
2

�
7

4
�
217

4
�2 �

114

2
� 

3
2

1
2

3 � 2 15�1 � 16� 
4
3, 

1
2

� 
5
6, 

9
2� 

1
2� 

1
3

1x 	 1 2 1x � 5 2

1
2, �1, �4; 4, �2

�b � 2b2 � 4ac

2a

101. (a)
(b) $635
(c) The slope represents 
cost per mile.
(d) The y-intercept represents 
monthly fixed cost. 

103. (a), (b) T � �1.8h 	 212

(c) 177.2°F (d) The rate at which the boiling point of water
changes as the elevation above sea level increases

SECTION 1.4 ■ PAGE 108

1. (a) x (b) 2. x � 1, 4 3. �4 5.
7. �4 � �5.7 9. No solution 11.
13.
15. 3.00, 4.00 17. 1.00, 2.00, 3.00 19. 4 21. 1.62
23. 4, 9 25. �1.00, 0.00, 1.00 27. 2.55 29. �2.05, 0, 1.05
31. 2.27
33. (a)

(b) 101 cooktops

SECTION 1.5 ■ PAGE 116

2. principal; interest rate; time in years 3. (a) x2 (b) l„

(c) 4. 1.6 5. 6. 7. 3n 	 3

9. 3n 	 6 11. 13. 0.025x 15. 5„2 17.

19. 21. 400 miles 23. 86%

25. $9000 at % and $3000 at 4%
27. 7.5% 29. $7400 31. 8 h 33. 40 years old
35. 9 pennies, 9 nickels, 9 dimes 37. 45 ft
39. 120 ft by 120 ft 41. 8.94 in. 43. 4 in. 45. 5 m
47. 200 mL 49. 18 g 51. 0.6 L 53. 35% 55. 37 min 20 s
57. 3 h 59. 4 h 61. 500 mi/h 63. 6.4 ft from the fulcrum
65. 120 ft 67. 18 ft

4 
1
2

25

x 	 3

d

55

160 	 s

3

r �
d

t
; t �

d

r

1
x

pr2

0 450

−5000

20,000

5 	 2 14 5 � 7.99, 5 � 2 14 5 � 2.01
2.5, �2.512

5
14�1, 0, 1, 3

1 2 3 54

204

206

208

210

214

0

212

T (�F)

h (�1000 ft)

500 10000

500

1000

y

x

C � 1
4d 	 260
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71. 73.

75.

77.

79. 81. 83.

85. 87. 89. x � �2 or x � 7

91. (a) (b)

93. 68 � F � 86 95. More than 200 mi
97. Between 12,000 mi and 14,000 mi
99. (a) (b) From $215 to $290
101. Distances between 20,000 km and 100,000 km
103. From 0 s to 3 s 105. Between 0 and 60 mi/h
107. Between 20 and 40 ft

SECTION 1.9 ■ PAGE 154

1. 3, �3 2. [ �3, 3] 3. 4. (a) � 3

(b) � 3 5. �6 7. �5 9. 1, 5 11. �4.5, �3.5 13. �4,

15. �3, �1 17. �8, �2 19. 21. 23. [�4, 4]

25. 27. 29.

31. 33. 35.

37. 39. 41.

43. 45.

47. 49. 51.

53. 55. 57. (a)

(b) 0.017 � x � 0.023

CHAPTER 1 REVIEW ■ PAGE 157

1. (a)

(b) 5 (c)

(d) ; point-slope: ;
slope-intercept: ;

1

20

y

x

y � 4
3x 	 3

y � 7 � 4
3 1x � 3 2m � 4

3

A32, 5B

P(0, 3)

Q(3, 7)

0 1
1

y

x

0 x � 0.020 0 � 0.0030 x 0 � 30 x 0 � 2

0 x � 7 0 � 50 x 0 � 3A�15
2 , �7B � A�7, �13

2 B

3�4, �1 4 � 31, 4 4A�q, � 
1
2B � A13, q B

3� 
1
2, 

3
2 41�6, 2 21�6.001, �5.999 2

1�4, 8 231.3, 1.7 41�q, �7 4 � 3�3, q 2

1�q, �2 4 � 30, q 232, 8 4A�q, � 
7
2B � A72, q B

� 
3
2, � 

1
4� 

25
2 , 35

2

1
2

1�q, �3 4 , 33, q 2

�1
3 P 	 560

3

a � c

b
� x �

2a � c

b
x �

c

a
	

c

b

�4
3 � x � 4

31�q, 0 2

1�1, 0 2 � 11, q 21�q, 1 4 � 32, 3 43�2, 5 4

1−1

1�q, �1 2 � 11, q 2

−2 21

1�q, �2 4 � 31, 2 2 �  12, q 2

− 1
2

2−3310−2

A�3, �1
2B � 12, q 23�2, 0 2 � 11, 3 4SECTION 1.8 ■ PAGE 149

1. (a) � (b) � (c) � (d) � 2.
�7 and 2; and 

3. 4. 5. 546 7. 5 , 2, 46

9. 546 11. 5�2, �1, 2, 46 13. 5�2, , 2, 46

15. 17.

19. 21.

23. 25.

27. 29.

31. 33.

35. 37.

39. 41.

43. 45.

47. 49.

51. 53.

55. 57.

59. 61.

63. 65.

67. 69.

10−1−220−2

3�2, �1 2 � 10, 1 41�2, 0 2 � 12, q 2

1653
2

−

1�q, 5 2 � 316, q 21�q, �3
2 2

3−120−2

1�q, �1 2 � 33, q 21�2, 0 2 � 12, q 2

−1 34−2

3�1, 3 41�q, �2 2 � 1�2, 4 2

3−2 12−2

1�q, �2 4 � 31, 3 41�2, 2 2

−3 64−1

1�q, �3 2 � 16, q 21�1, 4 2

1
2

−16−3

1�q, �1 4 � 3 12, q 23�3, 6 4

0− 7
2

−2 3

1�q, � 
7
2 4 � 30, q 21�2, 3 2

11
2

5
2

9
2

5

152, 
11
2 43 92, 5 2

62−1−3

12, 6 23�3, �1 2

−1 0−18

1�q, �1 41�q, �18 2

16
3

1

A16
3 , q B31, q 2

1
2

−2

A�q, � 
1
2B1�q, 2 4

47
2

14, q 21�q, 72 4

12

1211, 4 23�1, 0 4 � 31, 3 4
3�7, 2 4

12, q 21�7, 2 2 ,1�q, �7 2 ,1x 	 7 2 1x � 2 2 � 0;
x 2 	 5x � 14 � 0;
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Interval 11�qq, 722 11�7, 222 112, qq22

Sign of x � 7 � 	 	
Sign of x � 2 � � 	

Sign of 1x � 72 1x � 22 	 � 	
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11. (a) Circle
(b) Center , radius 1

13. (a) No graph
15. 17.

19. 21.

23.

25. (a) Symmetry about y-axis
(b) x-intercepts �3, 3; y-intercept 9
27. (a) Symmetry about y-axis
(b) x-intercept 0; y-intercepts 0, 2
29. (a) Symmetry about x- and y-axes and the origin
(b) x-intercepts �4, 4; no y-intercept
31. (a) Symmetric about origin
(b) x-intercepts �1, 1; y-intercepts �1, 1
33. (a)

(b) x-intercepts 0, 6; y-intercept 0

8_2

10

_10

y

0 x2

2

0 x3_3
_4

y

4

y

0 x5

2

_5

_5

y

0 x7

_7

7

y

0 x_2 2

_2

2

y 

x 1 0 
1 

1�1, 3 2
(e)

3. (a)

(b) (c)

(d) ;

point-slope: ;

slope-intercept: ;

(e)

5.

7. B 9. 1x 	 5 2 2 	 1y 	 1 2 2 � 26

y

0 x5

3

8

(−6, 2)

(4, −14)

−8

8

−8

y

0 x

1x 	 6 2 2 	 1  y � 2 2 2 � 356

4

40

y

x

y � �8
5 x � 38

5

y 	 14 � �8
5 1x � 4 2

m � �8
5

1�1, �6 22 189

4

4

Q(4, −14)

P(−6, 2)

0

y

x

2

2

(0, 3)

(3, 7)

y

0 x

x2 	 1y � 3 2 2 � 25
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45. (a) y � �2x (b)
(c)

47. Parallel 49. (a) The slope represents the amount the spring
lengthens for a one-pound increase in weight. The S-intercept repre-
sents the unstretched length of the spring. (b) 4 in.
51. �1, 6 53. 55.
57. �1, 7 59. �2.72, �1.15, 1.00, 2.87 61.
63.
65. x2 	 y2 � 169, 5x � 12y 	 169 � 0 67. 2, 7

69. 71. 73. 75.

77. �3 79. 1 81. 3, 11 83. �2, 7
85. 20 lb raisins, 30 lb nuts
87. � 3.78 mi/h
89. $5475 at 1.5%, $1525 at 2.5%
91. 12 cm, 16 cm 93. 23 ft by 46 ft by 8 ft

95. 97.

99. 101.

103. 105.

107.

109. (a) (b)

CHAPTER 1 TEST ■ PAGE 160

1. (a)

(b) 10 (c) (d) (e)
(f) 1x � 4 2 2 	 1y � 1 2 2 � 25

y � �3
4x 	 44

314, 1 2

y 

x 2 

Q(7, 5) 

P(1, _3) 

0 

2

10, 1 23�3, 83 4

−1 0

1�q, �1 4  �  30, q 2

8242−2

32, 8 41�q, �2 2 � 12, 4 4

−1−4−6 2

3�4, �1 21�q, �6 2 � 12, q 2

−1−3−3

1�3, �1 41�3, q 2

1
4 11329 � 3 2

3 � 16

3

�2 � 17

3
0, �5

2�1, 12

1�1.85, �0.60 2 � 10.45, 2.00 2
31, 3 4

1�q, 0 4 � 34, q 23�1, 6 4

2

2

0

y

x

2x 	 y � 035. (a)

(b) x-intercepts �1, 0, 5; y-intercept 0
37. (a) (b)

(c)

39. (a) (b)
(c)

41. (a) x � 3 (b) x � 3 � 0
(c)

43. (a) (b)
(c)

1

1

0

y

x

2x � 5y 	 3 � 0y � 2
5 x 	 3

5

1

1

0

y

x

2

1
0

y

x

2x � 3y � 16 � 0y � 2
3 x � 16

3

1

2

0

y

x

2x � y 	 6 � 0y � 2x 	 6

6_3

10

_25
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5. (a) 3x 	 y � 3 � 0 (b) 2x 	 3y � 12 � 0
6. (a) 4 �C (b)

(c) The slope is the rate of change in temperature, the x-intercept
is the depth at which the temperature is 0 �C, and the T-intercept is
the temperature at ground level.
7. (a) 0, 3 (b)
(c) 0, 2 (d)
8. (a) �2.94, �0.11, 3.05 (b)

9. 150 km 10. (a) �3, 4 (b) (c) 3

(d) 1, 16 (e) 0, �4 (f) 11. 50 ft by 120 ft

12. (a) (b)

(c) (d)

13. 41�F to 50�F 14. 0 � x � 4

FOCUS ON MODELING ■ PAGE 167

1. (a)

(b) y � 1.8807x 	 82.65 (c) 191.7 cm
3. (a)

(b) y � 6.451x � 0.1523 (c) 116 years

y

0 x

Regression line

Diameter (in.)

A
ge

 (
yr

)

100

80

60

40

20

161412108642

Regression line

Femur length (cm)

H
ei

gh
t (

cm
)

0

150

160

170

180

x

y

35 40 45 50 55

_4 _11 5

3�4, �1 211, 5 2

2105
2− 3

10, 1 2 � 12, q 21� 
5
2, 3 4

2
3, 

22
3

�1 �
 110

2

3�1.07, 3.74 4
30, 4 4
1�q, 0 2 � 13, q 2

1

100100

T

x

2. (a) (b)

(c)

3. (a) symmetry about x-axis; x-intercept 4; y-intercepts �2, 2

(b) No symmetry; x-intercept 2; y-intercept 2

4. (a) x-intercept 5; y-intercept �3

(b)

(c) (d) (e) �5
3

3
5y � 3

5 x � 3

y 

x 2 0 

2

y 

x 1 0 
1

y 

x 1 0 
1

y 

x 1 0 
1

1�3, 1 2 ; 2

y 

x 3 0 

3

y 

x 1 0 
1

13, 0 2 ; 310, 0 2 ; 52
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CHAPTER 2
SECTION 2.1 ■ PAGE 181

1. (a) (b) (c)
2. domain, range 3. (a) f and g (b)
4. (a) square, add 3

(b)

5. 7. 9. Square, then add 2

11. Subtract 4, then divide by 3
13. 15.

17. 19. 3, �3, 2, 2a 	 1, �2a 	 1, 2a � 1

21. 0, 15, 3, a2 	 2a, x2 � 2x,

23.

25. �4, 10, , 2x2 	 7x 	 1, 2x2 � 3x � 4, 2x6 	 3x3 � 4

27. 6, 2, 1, 2, , 29. 4, 1, 1, 2, 3
31. 8, , �1, 0, �1 33. x2 	 4x 	 5, x2 	 6
35. x2 	 4, x2 	 8x 	 16 37. 12 39. �21
41. 3a 	 2, , 3

43. 5, 5, 0 45.

47. 3 � 5a 	 4a2, 3 � 5a � 5h 	 4a2 	 8ah 	 4h2,
�5 	 8a 	 4h 49. 51. 3�1, 54

53. 55. 57.

59. 61. 63.

65. 67. 69.

71. (a)

(b) (c)

x 

y 

1 0 
1

f 1x 2 �
x

3
	

2

3

A12, q B14, q 21�q, 0 4 � 36, q 2
3�2, 3 2 � 13, q 23 52, q B1�q, q 2

35, q 25x 0 x 
 �165x 0 x 
 36

1�q, q 2

a

a 	 1
, 

a 	 h

a 	 h 	 1
, 

1

1a 	 h 	 1 2 1a 	 1 2

31a 	 h 2 	 2

� 
3
4

21x2 	 1 22 0 x 0

312

� 

1

3
, undefined, 

1

3
, 

1 � a

1 	 a
, 

2 � a

a
, 

2 � x 2

x 2

1

a2 	
2
a

3, 3, �6, �23
4

1 0

2 1

25

subtract 1,
take square root

subtract 1,
take square root

subtract 1,
take square root

(input) (output)

f 1x 2 � 4x � 1f 1x 2 �
x � 2

5

f 15 2 � 10, g15 2 � 0
f 12 2 � f 1�1 2 � 9f 12 2 � 9f 1�1 2 � 0

5. (a)

(b) y � 4.857x � 220.97 (c) 265 chirps/min

7. (a)

(b) y � �0.168x 	 19.89 (c) 8.13%

9. (a)

(b) y � 0.2708x � 462.9 (c) 80.3 years

11. (a) Men: y � �0.1703x 	 64.61,
women y � �0.2603x 	 78.27; x represents years since 1900

(b) 2052

20 40 60
Years since 1900

80 100

R
ec

or
d 

tim
e 

(s
)

50

60

70

80

y

0 x

1920 1940 1960 1980 2000

L
if

e 
ex

pe
ct

an
cy

 (
ye

ar
s)

55

60

65

70

80

75

y

0 x

Regression line

10 20 30 80 9060 7040 50 100

Flow rate (%)

M
os

qu
ito

 p
os

iti
ve

 r
at

e 
(%

)

15

20

5

10

25

Regression line

y

0 x

50 60 70 80 90

Temperature (°F)

C
hi

rp
in

g 
ra

te
 (

ch
ir

ps
/m

in
)

50

100

150

200

y

x0

Regression line
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x 0 2 4 6

f 11x22 19 7 3 7

x f 11x22

�1 8
�0 2
�1 0
�2 2
�3 8

x f 11x22

2
4 2
6

8 10
3

8
3

4
3
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89.

SECTION 2.2 ■ PAGE 191

1.

2. 3 3. 3 4. (a) IV (b) II (c) I (d) III
5. 7.

9.

11.
y
2

_5

0
x5_5

y

x20

2

_2
_2

1

1
0

y

x1

1
0

y

x

1

1

0

y

x

f 1x 2 , x 2 � 2, 7, 7

Years

19901985 20001995

Population
(× 1000)

700

750

800

850

900

t

P73. (a)

(b) (c)

75. (a)
(b) The cost of producing 10 yd and 100 yd
(c)
77. (a) 50, 0 (b) is the volume of the full tank,
and is the volume of the empty tank, 20 minutes later.

(c) (d) �50 gal

79. (a)
(b) Flow is faster near central axis.

(c)

(d) �4440 cm/s
81. (a) 8.66 m, 6.61 m, 4.36 m
(b) It will appear to get shorter.
83. (a) $90, $105, $100, $105
(b) Total cost of an order, including shipping

85. (a)

(b) $150, $0, $150
(c) Fines for violating the speed limits
87. T

t0

F1x 2 � •
15140 � x 2 if 0 � x � 40

0 if 40 � x � 65
151x � 65 2 if x � 65

√10.1 2 � 4440, √10.4 2 � 1665

V120 2
V10 2

C10 2 � 1500

C110 2 � 1532.1, C1100 2 � 2100

x

y

2

2

0

T1x 2 � 0.08x
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x T 11x22

2 0.16
4 0.32
6 0.48
8 0.64

x V11x22

0 50
5 28.125
10 12.5
15 3.125
20 0

r √√ 11r22

0 4625
0.1 4440
0.2 3885
0.3 2960
0.4 1665
0.5 0

x f 11x22 � x2 � 2

�2 2
�1 �1
�0 �2
�1 �1
�2 2
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31. (a) (b)

(c) (d)

Graph (c) is the most appropriate.
33. (a) (b)

(c) (d)

Graph (c) is the most appropriate.
35. 37.

39. 41.

y

0 x
3

3

_3

_2

y

0 x3

3

_3

_3

y

0 x5

4

_5

y

0 x5

2

_5
_2

−10

10

−10 10

−10

5

−3 3

−10

10

−3 3

−2

2

−2 2

−100

100

−10 10

−5

20

−2 10

−10

10

−10 10

−5

5

−5 5

13. 15.

17. 19.

21. 23.

25. 27.

29.
y

0 x5

5

_5

y

0 x5

5

_5

_5

y

0 x5

5

_5
_2

x 

y 

2 0 
1 

x 

y 

1 0 
1 

x 

y 

3 0 

3 

y

0 x4_4
_4

4

1

1

0

y

x

y 

x 

5 

0 1 
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(c) Graphs of even roots are similar to ; graphs of odd roots are
similar to . As c increases, the graph of becomes steeper
near 0 and flatter when x � 1.
77. , �2 � x � 4

79. , �3 � x � 3

81.

83. (a)

(b)

85.

SECTION 2.3 ■ PAGE 200

1. a, 4, 1, 2.
3. (a) increase, (b) decrease,
4. (a) largest, 7, 2 (b) smallest, 2, 4 5. (a) 1, �1, 3, 4
(b) Domain 3�3, 44 , range 3�1, 44 (c)
(d) and x � 4 (e) 1 7. (a) 3, 2, �2, 1, 0
(b) Domain 3�4, 44 , range 3�2, 34
9. (a) 11. (a)

(b) Domain , (b) Domain 3�2, 24,
range range 3�3, 141�q, q 2

1�q, q 2
_5

5

_3 3

−3

3

−3 3

�3 � x � 2
�3, 2, 4

32, 4 4 , 35, 6 431, 2 4 , 34, 5 4
x, y, 31, 6 4 , 31, 7 4f 13 2 � f 11 2 � 3

P (dollars)

x (oz)1 2 3 40
0.10

0.50

1.00

P1x 2 � d 
0.44 if 0 � x � 1
0.64 if 1 � x � 2
0.84 if 2 � x � 3
1.04 if 3 � x � 3.5

1000

10

x (kWh)

E (dollars)

E1x 2 � e
6 � 0.10x 0 � x � 300

36 � 0.061x � 300 2 , x � 300

0

0.005

10 100

f 1x 2 � 29 � x2

f 1x 2 � � 
7
6 x � 4

3

y �
c1x13 x

1x43. 45.

47. 49.

51.

53. (a) Yes (b) No (c) Yes (d) No
55. Function, domain 3�3, 24, range 3�2, 24 57. Not a function
59. Yes 61. No 63. No 65. Yes 67. Yes 69. Yes
71. (a) (b)

(c) If c � 0, then the graph of is the same as the
graph of y � x2 shifted upward c units. If c � 0, then the graph of

is the same as the graph of y � x2 shifted down-
ward c units.
73. (a) (b)

(c) If c � 0, then the graph of is the same as the
graph of y � x3 shifted to the right c units. If c � 0, then the
graph of is the same as the graph of y � x3

shifted to the left units.
75. (a) (b)

2

�2

�3 3

c=1
5

c=1
3

c=1

�1

3

�1 4

c=1
2

c=1
4

c=1
6

0 c 0
f 1x 2 � 1x � c 2 3

f 1x 2 � 1x � c 2 3

10

10_10

_10

c=0c=_2
c=_4

c=_6

10

10_10

_10

c=0 c=2
c=4

c=6

f 1x 2 � x2 � c

f 1x 2 � x2 � c

10

5_5

_10

c=0 c=_2
c=_4

c=_610

5_5

_10

c=6 c=4
c=2

c=0

f 1x 2 � •
�2 if x � �2
x if �2 � x � 2
2 if x � 2

7

7_7

_7

y

0 x1

1

y

0 x5

5

_5

y

0 x5

5

_5
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35. (a) Local maximum 2 when x � 0; local minimum �1 when 
x � �2, local minimum 0 when x � 2 (b) Increasing on

; decreasing on 
37. (a) Local maximum 0 when x � 0; local maximum 1 when 
x � 3, local minimum �2 when x � �2, local minimum �1 when 
x � 1 (b) Increasing on ; decreasing on

39. (a) Local maximum � 0.38
when x � �0.58; local minimum � �0.38 when x � 0.58
(b) Increasing on ; decreasing on

41. (a) Local maximum � 0 when x � 0; local
minimum � �13.61 when x � �1.71, local minimum � �73.32
when x � 3.21 (b) Increasing on ; 
decreasing on 43. (a) Local maximum
� 5.66 when x � 4.00 (b) Increasing on ; decreasing
on 45. (a) Local maximum � 0.38 when x � �1.73;
local minimum � �0.38 when x � 1.73 (b) Increasing on

; decreasing on 
47. (a) 500 MW, 725 MW (b) Between 3:00 A.M. and 4:00 A.M.
(c) Just before noon (d) �100 MW 49. (a) Increasing on

; decreasing on (b) He went on a
crash diet and lost weight, only to regain it again later. (c) 100 lb
51. (a) Increasing on ; decreasing on

(b) Local maximum when ; local minimum
when (c) �50 ft 53. Runner A won the race. All run-
ners finished. Runner B fell but got up again to finish second.
55. (a)

(b) Increases
57. 20 mi/h 59. r � 0.67 cm

SECTION 2.4 ■ PAGE 208

1. 50 mi/h 2. 3.

4. (a) secant (b) 3 5. (a) 2 (b) 7. (a) �4 (b)
9. (a) 3 (b) 3 11. (a) �5 (b) �1 13. (a) 25 (b) 5
15. (a) 600 (b) 60 17. (a) (b)

19. (a) (b) 21. (a) (b)

23. (a) 25. �0.25 ft/day 27. (a) 245 persons/yr
(b) �328.5 persons/yr (c) 1997–2001 (d) 2001–2006
29. (a) 7.2 units/yr (b) 8 units/yr (c) �55 units/yr
(d) 2000–2001, 2001–2002 31. First 20 minutes: �4.05°F/min,
next 20 minutes: �1.5°F/min; first interval

SECTION 2.5 ■ PAGE 219

1. (a) up (b) left 2. (a) down (b) right 3. (a) x-axis
(b) y-axis 4. (a) II (b) I (c) III (d) IV 5. (a) Shift 
upward 3 units (b) Shift to the left 3 units 7. (a) Reflect in the
x-axis (b) Reflect in the y-axis 9. (a) Shift to the right 5 units,
then upward 2 units (b) Shift to the left 1 unit, then downward 
1 unit 11. (a) Reflect in the x-axis, then shift upward 5 units
(b) Stretch vertically by a factor of 3, then shift downward 5 units

1
2

 

�2

a1a 	 h 2

�2h

a1a 	 h 2
� 

1
a

1 � a

a

12 	 3h12h 	 3h2

� 
4
5

2
3

25 � 1

5 � 1
� 6

f 1b 2 � f 1a 2
b � a

100 miles

2 hours
�

100

480

0
300

x � 300
x � 1503150, 300 4

30, 150 4 � 3300, q 2

330, 32 430, 30 4 � 332, 68 4

10, 1.73 43�1.73, 0 2 �1�q, �1.73 4 � 31.73, q 4

34.00, 6.00 4
1�q, 4.00 4

1�q, �1.71 4 � 30, 3.21 4
3�1.71, 0 4 � 33.21, q 2

3�0.58, 0.58 4
1�q, �0.58 4 � 30.58, q 2

1�q, �2 4 � 30, 1 4 � 33, q 2
3�2, 0 4 � 31, 3 4

1�q, �2 4 � 30, 2 43�2, 0 4 � 32, q 2

13. (a) 15. (a)

(b) Domain , (b) Domain ,
range {4} range 

17. (a) 19. (a)

(b) Domain , (b) Domain 3�4, 44,
range range 30, 44

21. (a)
(b) Domain ,

range 

23. (a) Domain , range (b) Increasing on 
and , decreasing on 
25. (a) Domain , range (b) Increasing on

and , decreasing on , and 
27. (a) 29. (a)

(b) Domain , (b) Domain ,
range range 
(c) Increasing on ; (c) Increasing on ,
decreasing on ; decreasing on 3�1, 24
31. (a) 33. (a)

(b) Domain , (b) Domain ,
range range 
(c) Increasing on (c) Increasing on ; 

, ; decreasing on 
decreasing on 3�1.55, 0.224

1�q, 0 430.22, q 21�q, �1.55 4
30, q 2

30, q 21�q, q 2
1�q, q 21�q, q 2

5

_5

10_10

3

_3

5_5

32, q 21�q, 2.5 4
1�q, �1 432.5, q 2

1�q, q 23�6.25, q 2
1�q, q 21�q, q 2

20

_25

5_3

10

_10

7_2

32, 3 43�1, 1 4 ,3�3, �2 431, 2 43�2, �1 4
3�2, 2 43�3, 3 4

31, 2 432, 4 4
3�1, 1 43�1, 3 43�1, 4 4

30, q 2
31, q 2

−1

3

−1 9

3�1, q 2
1�q, q 2

−0.8

4.8

−4.75 4.75

_3

10

_6 2

1�q, 4 4
1�q, q 231, 3 4

−12

5

−4 4

50

5
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39. 41.

43. 45.

47. 49.

51. 53.

55. 57.

59. 61.

63. 65.

67. (a) 3 (b) 1 (c) 2 (d) 4

69. (a) (b)

(c) (d)

x 

y 

1 

1 

0 x 

y 

1 
1 
0 

x 

y 

1 

1 

0 x 

y 

1 

1 

0 

g1x 2 � �1x 	 2g1x 2 � 0 x 	 1 0 	 2

g1x 2 � 1x � 2 2 2f 1x 2 � 21x � 3 2 2 � 2

f 1x 2 � 24 �x 	 1f 1x 2 � 0 x � 3 0 	 1

f 1x 2 � 1x 	 2f 1x 2 � x2 	 3

x

y

40
1

x 

y 

2 0 
2 

x 

y 

2 0 

2 

x 

y 

1 0 
2 

x 

y 

2 0 
2 

x 

y 

1 0 
1 

13. (a) Shift to the left 1 unit, stretch vertically by a factor of 2,
then shift downward 3 units (b) Shift to the right 1 unit, stretch
vertically by a factor of 2, then shift upward 3 units
15. (a) Shrink horizontally by a factor of (b) Stretch horizon-
tally by a factor of 4 17. (a) Shift to the left 2 units
(b) Shift upward 2 units 19. (a) Shift to the left 2 units,
then shift downward 2 units (b) Shift to the right 2 units,
then shift upward 2 units
21. (a) (b)

(c) (d)

23. II 25. I

27. 29.

31. 33.

35. 37.

x 

y 

2 0 

1 
x 

y 

1 0 

5 

x 

y 

2 0 

4 

x

y

10

5

x 

y 

1 0 
1 

x 

y 

1 0 
1 

x 

y 

1 0 
1 

x 

y 

2 0 
1 

x 

y 

1 0 
1 

x 

y 

1 0 

2 

1
4
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81. Even 83. Neither

85. Odd 87. Neither

89. (a) (b)

91. To obtain the graph of g, reflect in the x-axis the part of the
graph of f that is below the x-axis.
93. (a) (b)

95. (a) Shift upward 4 units, shrink vertically by a factor of 0.01
(b) Shift to the left 10 units; 

SECTION 2.6 ■ PAGE 228

1. 8, �2, 15, 2. 3. Multiply by 2, then add 1; 
Add 1, then multiply by 2 4.

5.

7.

1�q, 0 2 � 10, q 2a
f
g
b 1x 2 �

1
x

,

1fg 2 1x 2 � x 3, 1�q, q 2 ;1f � g 2 1x 2 � x � x 2, 1�q, q 2 ;

1f 	 g 2 1x 2 � x 	 x 2, 1�q, q 2 ;

1�q, 0 2 � 10, q 2a
f
g
b 1x 2 �

1

2
,

1fg 2 1x 2 � 2x 2, 1�q, q 2 ;1f � g 2 1x 2 � �x, 1�q, q 2 ;
1f 	 g 2 1x 2 � 3x, 1�q, q 2 ;

x 	 1, 2x, 2x 	 1, 21x 	 1 2
f 1g1x 2 2 , 123

5

g1t 2 � 4 	 0.011t 	 10 2 2

_5

y

0 x5

5

y

0 x5

5

_5

_3

y

x2−2

2

0

y

x2−2

3

−2

0

y

0 x5

3

_5

_3

x

y 

1 0 
1 

(e) (f)

71. (a) (b)

73.

75. For part (b) shift the graph in
(a) to the left 5 units; for part
(c) shift the graph in (a) to the
left 5 units and stretch verti-
cally by a factor of 2; for part
(d) shift the graph in (a) to the
left 5 units, stretch vertically
by a factor of 2, and then shift
upward 4 units.

77. For part (b) shrink the graph
in (a) vertically by a factor of
; for part (c) shrink the graph

in (a) vertically by a factor of
and reflect in the x-axis; for 

part (d) shift the graph in (a)
to the right 4 units, shrink ver-
tically by a factor of , and
then reflect in the x-axis.

79. The graph in part (b) is shrunk
horizontally by a factor of 
and the graph in part (c) is
stretched by a factor of 2.

1
2

4

5_5

_4

1 2 4

(b) (a) (c)

1
3

1
3

1
3

4

6_4

_4

(a) (b)

(c) (d)

8

8_8

_2

(a)

(b)

(c)

(d)

y

0 x3

3

_3

_3

y

0 x6

2

y

0 x6

2

x 

y 

1 

1 

0 x 

y 

1 

2 

0 
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43. ; 

; 

; 

45. ; 

; 

47. ; 

; 

49.

51.

53.

55.

57.

59.

61.

63.

65. (a) (b)

(c)

67. 69. (a)
(b) (c)

: first rebate, then discount,
g � f: first discount, then rebate, g � f is the better deal

SECTION 2.7 ■ PAGE 237

1. different, Horizontal Line 2. (a) one-to-one,

(b) 3. (a) Take the cube root, subtract 5, then 

divide the result by 3. (b)

4. Yes, 4, 5 5. 6. (a) False (b) True 7. No 9. Yes
11. No 13. Yes 15. Yes 17. No 19. No 21. No
23. (a) 2 (b) 3 25. 1 27. (a) 6 (b) 2 (c) 0
41. 43.

45. 47.

49. 51.

53.

55.

57. 59.

61. 63. ; x � 0f�11x 2 � 14 xf�11x 2 � x2 � 2x, x � 1

f�11x 2 � 1x � 4 2 3f�11x 2 � 14 � x, x � 4

f�11x 2 � 1
5 1x

2 � 2 2 , x � 0

f�11x 2 � 15x � 1 2 / 12x 	 3 2

f �11x 2 �
7x 	 5

x � 2
f �11x 2 �

4x

1 � x

f�11x 2 � 11/x 2 � 2f�11x 2 � 23 1
4 15 � x 2

f�11x 2 � 1
4 1x � 7 2f�11x 2 � 1

2 1x � 1 2

14, 3 2

f 1x 2 � 13x 	 5 2 3, f �11x 2 �
x1/3 � 5

3

g�11x 2 � x1/3

g1x 2 � x3

1g � f 2 1x 2 � 0.9x � 100, f � g
1f � g 2 1x 2 � 0.9x � 90,g1x 2 � x � 100

f 1x 2 � 0.9xA1t 2 � 16pt2

1f � g 2 1t 2 � 3600pt 2

f 1r 2 � pr2g1t 2 � 60t

R1x 2 � 0.15x � 0.000002x2

h1x 2 � 13 x, g1x 2 � 4 	 x, f 1x 2 � x 
9

h1x 2 � x2, g1x 2 � x 	 1, f 1x 2 � 1/x

g1x 2 � 1 � x 3, f 1x 2 � 0 x 0

g1x 2 � x2, f 1x 2 � x/ 1x 	 4 2

g1x 2 � x � 9, f 1x 2 � x 
5

1f � g � h 2 1x 2 � 11x � 5 2 4 	 1

1f � g � h 2 1x 2 � 2x � 1 � 1

1g � g 2 1x 2  �  x, x 
 0

1f � f 2 1x 2 �
x

2x 	 1
, x 
 �1, x 
 �1

2

x 
 �1, x 
 0;1g � f 2 1x 2 �
x 	 1

x
, 

1f � g 2 1x 2 �
1

x 	 1
, x 
 �1, x 
 0

1g � g 2 1x 2 � 4x � 3, 1�q, q 2

1f � f 2 1x 2 �
x

2x 	 1
, x 
 �1, x 
 � 

1
2

1g � f 2 1x 2 �
2x

x 	 1
� 1, x 
 �1;

1f � g 2 1x 2 �
2x � 1

2x
, x 
 0

1g � g 2 1x 2 � 4x 	 9, 1�q, q 2
1f � f 2 1x 2 � 0 x 0 , 1�q, q 2
1g � f 2 1x 2 � 2 0 x 0 	 3, 1�q, q 2
1f � g 2 1x 2 � 0 2x 	 3 0 , 1�q, q 29. ; 

; 

; 

11. ; 

; 

; 

13. ; 

;

; 

15. 30, 14 17.

19. 21.

23.

25. (a) 1 (b) �23 27. (a) �11 (b) �119
29. (a) �3x2 	 1 (b) �9x2 	 30x � 23
31. 4 33. 5 35. 4
37. ;

; ;

39. ; 

; ; 

41. ; 

, 1g � g 2 1x 2 � 4x 	 12, 1�q, q 21f � f 2 1x 2 � x, x 
 0

1g � f 2 1x 2 �
2
x

	 4, x 
 01f � g 2 1x 2 �
1

2x 	 4
, x 
 �2;

1g � g 2 1x 2 � x 	 2, 1�q, q 2
1f � f 2 1x 2 � x4, 1�q, q 21g � f 2 1x 2 � x2 	 1, 1�q, q 2

1f � g 2 1x 2 � 1x 	 1 2 2, 1�q, q 2
1g � g 2 1x 2 � 16x � 5, 1�q, q 2

1f � f 2 1x 2 � 4x 	 9, 1�q, q 21g � f 2 1x 2 � 8x 	 11, 1�q, q 2
1f � g 2 1x 2 � 8x 	 1, 1�q, q 2

3

3_3

_2

f

g

f+g

3

3_3

_1

fg

f+g

1_1

1

1

0

y

x

g

f

f+g

13, q 2

a
f
g
b 1x 2 �

x 	 4

2x
, x 
 �4, x 
 0

1fg 2 1x 2 �
8

x2 	 4x
, x 
 �4, x 
 0

1f � g 2 1x 2 �
�2x 	 8

x2 	 4x
, x 
 �4, x 
 0

1f 	 g 2 1x 2 �
6x 	 8

x2 	 4x
, x 
 �4, x 
 0

a
f
g
b 1x 2 � B4 � x2

1 	 x
, 1�1, 2 4

1fg 2 1x 2 � 2�x3 � x2 	 4x 	 4, 3�1, 2 4

1f � g 2 1x 2 � 24 � x2 � 21 	 x, 3�1, 2 4

1f 	 g 2 1x 2 � 24 � x2 	 21 	 x, 3�1, 2 4

a
f
g
b 1x 2 �

x � 3

x2 , 1�q, 0 2 � 10, q 2

1fg 2 1x 2 � x3 � 3x2, 1�q, q 2
1f � g 2 1x 2 � �x2 	 x � 3, 1�q, q 2
1f 	 g 2 1x 2 � x2 	 x � 3, 1�q, q 2
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85. (a) (b) , the num-
ber of hours worked as a function of the fee (c) 9; if he charges 

$1220, he worked 9 h 87. (a)

(b) 0.498; at a distance 0.498 from the central axis the velocity 
is 30 cm/s 89. (a) ; the Celsius temperature
when the Fahrenheit temperature is x (b) ; when the
temperature is 86�F, it is 30�C

91. (a)

(b)

If you pay x euros (€) in taxes, your income is .
(c) 93. A pizza
costing x dollars has toppings.

CHAPTER 2 REVIEW ■ PAGE 242

1. 3. Add 10, then multiply the result by 3.

5.

7. (a) , (b) The costs
of printing 1000 and 10,000 copies of the book (c) ; 
fixed costs (d) $171,000
9. 6, 2, 18, a2 � 4a 	 6, a2 	 4a 	 6, x2 � 2x 	 3, 4x2 � 8x 	 6
11. �6 13. (a) Not a function (b) Function (c) Function,
one-to-one (d) Not a function 15. Domain , range

17.

19. 21. 23.

25. 27.

29. 31.

y

0 x1_1 5

1

y

0 x5

5

_5

_5
(3, _3)

y

0 5

2

_5

_5

t

y

0 x5

3

_5

_3

1�q, �1 4 � 31, 4 45x 0  x 
 �2, �1, 063�4, q 2
1�q, q 230, q 2

3�3, q 2

C10 2 � 5000
C110,000 2 � 205,000C11000 2 � 34,000

f 1x 2 � x2 � 5

f �11x 2
f�11x 2 � 1

2 1x � 7 2 .f�1110,000 2 � € 60,000
f�11x 2

f�11x 2 � e
10x if 0 � x � 2000
10,000 	 5x if x � 2000

f 1x 2 � e
0.1x if 0 � x � 20,000
2000 	 0.21x � 20,000 2 if x � 20,000

F�1186 2 � 30
F�11x 2 � 5

9 1x � 32 2

√�11t 2 � B0.25 �
t

18,500

f�11x 2 � 1
80 1x � 500 2f 1x 2 � 500 	 80x65. (a) (b)

(c)

67. (a) (b)

(c)

69. Not one-to-one 71. One-to-one

73. Not one-to-one 75. (a)

(b)

77. (a)
(b)

79. 81.

83.
y

x1

1

0

x � �2, h�11x 2 � 1x � 2x � 0, f�11x 2 � 24 � x

4

4_4

_4

g

g−1

g�11x 2 � x2 � 3, x � 0

4

4_4

_4

f

f _1

10

15_5

_10

f�11x 2 � x � 2

20

16_4

_20

3

2_2

_3

f �11x 2 � x2 � 1, x � 0

y

0 x2

2

_2
_1

f–¡

y

0 x2

2

_2
_1

f

f�11x 2 � 1
3 1x 	 6 2

y

0 x3

5

_5
_2

f–¡

y

0 x5

2

_5

_5

f
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57. 10, 5 59.

61. (a) , ; the populations in 1995
and 2005 (b) 203 people/yr; average annual population increase
63. (a) (b) Yes, because it is a linear function 65. (a) Shift
upward 8 units (b) Shift to the left 8 units (c) Stretch vertically
by a factor of 2, then shift upward 1 unit (d) Shift to the right 2
units and downward 2 units (e) Reflect in y-axis (f) Reflect in 
y-axis, then in x-axis (g) Reflect in x-axis (h) Reflect in line y � x
67. (a) Neither (b) Odd (c) Even (d) Neither
69. 71. 68 ft 73. Local maximum � 3.79 when 
x � 0.46; local minimum � 2.81 when x � �0.46

75.

77. (a) (b)
(c)
(d)
(e) (f)
79. , ; 

, ; ,
; ,

81. 83. Yes 85. No

87. No 89. 91.

93. Yes, 1, 3

95. (a), (b)

(c)

CHAPTER 2 TEST ■ PAGE 245

1. (a) and (b) are graphs of functions, (a) is one-to-one
2. (a) 2/3, , (b)
3. (a)

(b) (c)

x 

y 

1 0 
2 

f 1x 2 � 1x � 2 2 3
3�1, 0 2 � 10, q 21a/ 1a � 1 216/5

f�11x 2 � 1x 	 4

y

0 x5

3

_5

_3
f

f –¡

f�11x 2 � 13 x � 1f�11x 2 �
x 	 2

3

1f � g � h 2 1x 2 � 1 	 1x
1�q, q 21g � g 2 1x 2 � �x4 	 4x3 � 6x2 	 4x1�q, q 2

1f � f 2 1x 2 � 9x � 41�q, q 21g � f 2 1x 2 � �9x2 	 12x � 3
1�q, q 21f � g 2 1x 2 � �3x2 	 6x � 1
1g � f 2 1x 2 � �3x2 	 9x � 21f � g 2 1x 2 � 9x2 � 15x 	 6

1f/g 2 1x 2 � 1x2 � 3x 	 2 2 / 14 � 3x 2
1fg 2 1x 2 � �3x3 	 13x2 � 18x 	 8

1f � g 2 1x 2 � x 
2 � 21f 	 g 2 1x 2 � x 

2 � 6x 	 6

−2

10

f(x)

g(x)(f+g)(x)
−4 4

g1�1 2 � �7

1
2, 

1
2

P120 2 � 7040P110 2 � 5010

�
h

313 	 h 2
, 

�1

313 	 h 2

33. 35.

37. 39.

41.

43. No 45. Yes 47. (iii)
49. (a) 51. (a)

(b) Domain , (b) Domain , ,
range range 

53. (a)

(b) Domain
,

range 

55. Increasing on ,
; decreasing on 

30, 2.674
32.67, q 2

1�q, 0 410

6_2

_10

30, q 2
3�2.11, 0.25 4 � 31.86, q 2

_1

5

_5 5

5�2630, 3 4
3�2, 3 43�3, 3 4

_3

1

_4 5

_1

4

_4 4

y

0 x1

3

_5

y

0 x5

5

_5

y

0 x3

1

_3

y

0 x3

2

_3

_2

y

0 x5

3

_5

_3
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15. 5, 16. 0, 4
17.

18. (a) (b) No

(c) Local minimum � �27.18 when x � �1.61; 
local maximum � �2.55 when x � 0.18; 
local minimum � �11.93 when x � 1.43
(d) (e) Increasing on ;
decreasing on 

FOCUS ON MODELING ■ PAGE 252

1. 3.

5.

7.

9.
11.

13. 15.

17.
19. (b) (c) 9.5, 9.5
21. (b) (c) 600 ft by 1200 ft
23. (a) (b) Width along road is 30 ft,
length is 40 ft (c) 15 ft to 60 ft

25. (a)

(b) Width � 8.40 ft, height of rectangular part � 4.20 ft 
27. (a)
(b) Height  � 1.44 ft, width � 2.88 ft

29. (a) (b) 10 m by 10 m

31. (b) To point C, 5.1 mi from B

CHAPTER 3
SECTION 3.1 ■ PAGE 263

1. square 2. (a) 1h, k2 (b) upward, minimum (c) downward,
maximum 3. upward, 13, 52, 5, minimum
4. downward, 13, 52, 5, maximum
5. (a) (b) maximum 4 (c)
7. (a) (b) minimum �3 (c) �, 3�3, q 211, �3 2

�, 1�q, 4 413, 4 2

A1x 2 � 2x 	
200

x

A1x 2 � x 
2 	 (48/x)

A1x 2 � 15x � a
p 	 4

8
b x 

2

f  1„ 2 � 8„ 	 (7200/„)
A1x 2 � x12400 � 2 x 2
p1x 2 � x119 � x 2

A1h 2 � 2h2100 � h 
2, 0 � h � 10

A1b 2 � b14 � b, 0 � b � 4D1t 2 � 25t, t � 0

S1x 2 � 2 x 
2 	 (240/x), x � 0

r1A 2 � 1A/p, A � 0

A1x 2 � 113/4 2x 
2, x � 0

A1x 2 � 10x � x 
2, 0 � x � 10

V1„ 2 � 1
2  
„ 

3, „ � 0A1„ 2 � 3„ 
2, „ � 0

1�q, �1.61 4 � 30.18, 1.43 4
3�1.61, 0.18 4 � 31.43, q 23�27.18, q 2

20

4_4

_30

y

x0 1

1

5
4

(d) By the Horizontal Line Test; take the cube root, then add 2
(e) 4. (a) Local minimum ,
local maxima and (b) Increasing on

and , decreasing on and 

5. (a) ; total sales revenue with prices
of $2 and $4
(b) Revenue increases until price

reaches $3, then decreases

(c) $4500; $3 6. 15, 5
7. (a) (b)

8. (a) Shift to the right 3 units, then shift upward 2 units
(b) Reflect in y-axis 9. (a) 3, 0
(b)

10. (a) (b) (c)
(d) (e) 1 (f) 4 (g)
11. (a)

(b)

12. Domain 30, 64, range 31, 74 13. 1, 3
14.

1

1

0

y

x

y=f(x)+2

y=f(x-2)f

y

0 x5

3

_5

_3

f

f –¡

f�11x 2 � 3 � x2, x � 0
x � 9x 2 	 x � 2

x 2 � 5x 	 7x 2 	 4x 2 	 2x � 2

x 

y 

1 0 

3 

y

0 x5

3

_5

_3

y

0
x5

3

_5

_3

0

5000

5

R12 2 � 4000, R14 2 � 4000

33, q 23�4, �1 43�1, 3 41�q, �4 4
f 13 2 � 4f 1�4 2 � �1

f 1�1 2 � �4f�11x 2 � x1/3 	 2
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25. (a)

(b) Vertex ; x-intercepts ;
y-intercept 1
(c)

27. (a) 29. (a)

(b) (b)

(c) Minimum (c) Minimum 
31. (a) 33. (a)
(b) (b)

(c) Maximum (c) Minimum 
35. (a)
(b) 

(c) Maximum 

37. Minimum 39. Maximum 
41. Minimum 43. Minimum 
45. Maximum 47.

49. , 51. ,
53. (a) �4.01 (b) �4.011025 55. 25 ft
57. $4000, 100 units 59. 30 times
61. 50 trees per acre 63. 600 ft by 1200 ft
65. Width 8.40 ft, height of rectangular part 4.20 ft
67. (a) (b) 600 ft by 600 ft
69. (a) (b) $9.50 (c) $19.00R1x 2 � x157,000 � 3000x 2

f 1x 2 � x11200 � x 2

3� 
23
2 , q B1�q, q 21�q, 1 41�q, q 2

f 1x 2 � 2x2 � 4xf 1�1 2 � 7
2

h1�2 2 � �8f 10.6 2 � 15.64
f 1�3.5 2 � 185.75f A� 

1
2B � 3

4

hA� 
1
2B � 5

4

y

0 x2

2

_4

_2

!_   ,    @1
2

5
4

h1x 2 � �Ax 	 1
2B

2 	 5
4

g12 2 � 1f A�3
2B � 21

4

y

0 x6

10

(2, 1)

y

0 x3

3

_3
_2

!_   ,      @3
2

21
4

g1x 2 � 31x � 2 2 2 	 1f 1x 2 � �Ax 	 3
2B

2 	 21
4

f 11 2 � �2f 1�1 2 � �2

x

y

10

2

(1, −2)

y

0 x2

3

_3
_2(_1, _2)

f 1x 2 � 31x � 1 2 2 � 2f 1x 2 � 1x 	 1 2 2 � 2

x

y

10
1

�3
2 � 210

2 , �3
2 	 210

2A�3
2, 10B

f 1x 2 � �4Ax 	 3
2B

2
	 109. (a) 11. (a)

(b) Vertex (b) Vertex 
no x-intercepts x-intercepts 0, 6
y-intercept 3 y-intercept 0
(c) (c)

13. (a) 15. (a)
(b) Vertex (b) Vertex 
x-intercepts �2, 0 x-intercepts 0, 6
y-intercept 0 y-intercept 0
(c) (c)

17. (a) 19. (a)
(b) Vertex (b) Vertex 
x-intercepts �1, �3 x-intercepts 
y-intercept 3 y-intercept 4
(c) (c)

21. (a) 23. (a)
(b) Vertex (b) Vertex 
no x-intercept no x-intercept
y-intercept 3 y-intercept 57
(c) (c) y

0 x5

7

_2

y

0 x3

3

_3

15, 7 21�1, 1 2
f 1x 2 � 21x � 5 2 2 	 7f 1x 2 � 21x 	 1 2 2 	 1

20−2

2

x

y

2−2

6

x

y

3 � 113
13, 13 21�2, �1 2

f 1x 2 � �1x � 3 2 2 	 13f 1x 2 � 1x 	 2 2 2 � 1

x

y

1

10

x

y

10

1

13, 9 21�1, �3 2
f 1x 2 � �1x � 3 2 2 	 9f 1x 2 � 31x 	 1 2 2 � 3

30−3

−3

3

x

y

x

y

10
1

13, �9 211, 2 2
f 1x 2 � 1x � 3 2 2 � 9f 1x 2 � 1x � 1 2 2 	 2
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23. 25.

27.

29. 31.

33. 35.

37.

39.

y

0 x2

5

16

_2

P1x 2 � 1x � 2 2 21x2 	 2x 	 4 2

y

0 x2
1
2

3

910

_2
_3

_20

P1x 2 � 12x � 1 2 1x 	 3 2 1x � 3 2

y

0 x1

1

_1

_1

y

0 x1 2

1

_1

_1

P1x 2 � 1x 	 1 2 21x � 1 2P1x 2 � x21x � 1 2 1x � 2 2

y

0 x1

4
10

_1
_3

_10

y

0 x4
3

4

_4
_2 _4

P1x 2 � �x1x 	 3 2 1x � 4 2P1x 2 � x1x 	 2 2 1x � 3 2

y

0 x1

10

_1

_30

3

y

0 x4

4
3

_4

y

x0 1

50 5

_300

_4
_3SECTION 3.2 ■ PAGE 277

1. II 2. (a) (b) 3. (a) 0 (b) factor
(c) x 4. (a)
5. (a) (b)

(c) (d)

7. (a) (b)

(c) (d)

9. (a) (b) III

11. (a) (b) V

13. (a) (b) VI

15. 17.

19. 21.

x

y

2

0 1
1 0

x

y

1

1
2

3

_3 _1

0
1

y

0 x

10

2 3−2

y

0 x

1

1−2

y � q as x � q, y � q as x � �q
y � �q as x � q, y � q as x � �q

y � q as x � q, y � �q as x � �q

y

0 x1

4

_1

y

0 x1

4

_2

_8

y

0 x_3 _9

27

y

0 x2

4

_2

_8

y

0 x

8

_1 2

y

0 x

2

_1 1

_2

y

0 x4

16

_2

y

0 x2

2

_2

_4

�q, �qq, �q
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75. Increasing the value of c
causes a deeper dip in the
graph in the fourth quadrant
and moves the positive
x-intercept to the right.

77. (a)

(b) Three (c)
79. (d) , where 

and 
81. (a) Two local extrema

83. (a) 26 blenders (b) No; $3276.22

85. (a) (b) 0 � x � 10
(c) Maximum volume � 1539.6 cm3 

SECTION 3.3 ■ PAGE 285

1. quotient, remainder 2. (a) factor (b) k

3. 5.

7. 9.

11.

13.

In answers 15–37 the first polynomial given is the quotient, and
the second is the remainder.
15. x � 2, �16 17. 2x2 � 1, �2 19. x � 2, 8x � 1
21. 3x � 1, 7x � 5 23. x4 � 1, 0 25. x � 2, �2
27. 3x � 23, 138 29. x2 � 2, �3 31. x2 � 3x � 1, �1
33. x4 � x3 � 4x2 � 4x � 4, �2 35. 2x2 � 4x, 1
37. x2 � 3x � 9, 0 39. �3 41. 12 43. �7 45. �483
47. 2159 49. 51. �8.279 57.
59. x3 � 3x2 � x � 3 61. x4 � 8x3 � 14x2 � 8x � 15

�1 � 167
3

1x2 � 3 2 1x2 � x � 3 2 � 17x � 11 2

12x � 3 2 1x2 � 1 2 � 3

1x � 3 2 13x � 4 2 � 82x2 � x � 1 �
4x � 4

x2 � 4

2x �
1

2
�

 � 
15
2

2x � 1
x � 1 �

�11

x � 3

1600

100

V1x 2 � 4x3 � 120x2 � 800x

10

61

−12

PE1x 2 � �x2 � 5PO1x 2 � x5 � 6x3 � 2x
P1x 2 � PO1x 2 � PE1x 2

10, 2 2 , 13, 8 2 , 1�2, �12 2

y

0 x3

10

_3

_10

10

4_2

_40

c=0
c=1

c=8
c=27

41.

43. y � q as x � q, y � �q as x � �q
45. y � q as x � �q
47. y � q as x � q, y � �q as x � �q
49. (a) x-intercepts 0, 4; y-intercept 0 (b) Maximum (2, 4)
51. (a) x-intercepts �2, 1; y-intercept �1
(b) Minimum (�1, �2), maximum (1, 0)
53. local maximum 

55. 57.

local maximum , local minimum 
local minimum 
59.

local maximum ,
local minimum 
61. One local maximum, no local minimum
63. One local maximum, one local minimum
65. One local maximum, two local minima
67. No local extrema
69. One local maximum, two local minima
71. 73.

Increasing the value of c
moves the graph up.

5

1.5_1.5

_3

c=2
c=1
c=0
c=_1

5

1_1

_5

c=5

c=2

c=1
2

c=1

11, 1 2
1�1, 5 2

10

3_3

_5

12, �7 2
1�3, �27 21�2, 25 2

30

5_5

_30

30

5_5

_30

14, 16 230

12_4

_50

0 x1
2

2

_1 _2

_4

_2

y

P1x 2 � 1x2 � 1 2 1x � 2 2 1x � 2 2
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65. (a) �1, 2 (b)

67. 1 positive, 2 or 0 negative; 3 or 1 real 69. 1 positive,
1 negative; 2 real 71. 2 or 0 positive, 0 negative; 3 or 1 real (since
0 is a zero but is neither positive nor negative) 81. 3, �2

83. 3, �1 85. �2, , �1 87. , 89. �2, 1, 3, 4

95. �2, 2, 3 97. , �1, 1, 4 99. �1.28, 1.53 101. �1.50
105. 11.3 ft 107. (a) It began to snow again. (b) No
(c) Just before midnight on Saturday night 109. 2.76 m
111. 88 in. (or 3.21 in.)

SECTION 3.5 ■ PAGE 302

1. �1 2. 3, 4 3. (a) 3 � 4i (b) 9 	 16 � 25 4. 3 � 4i
5. Real part 5, imaginary part �7 7. Real part , imaginary 
part 9. Real part 3, imaginary part 0 11. Real part 0, imagi-
nary part 13. Real part , imaginary part 2 15. 3 	 7i
17. 5 � i 19. 3 	 5i 21. 2 � 2i 23. �19 	 4i
25. �4 	 8i 27. �3 � 15i 29. 30 	 10i 31. �33 � 56i
33. 27 � 8i 35. �i 37. 39. �5 	 12i 41. �4 	 2i
43. 45. �i 47. �i 49. 243i 51. 1 53. 5i
55. �6 57. 59. 2 61.

63. �7i 65. 2 � i 67. 69.

71. 73. 75. 77. 1 � 3i

SECTION 3.6 ■ PAGE 310

1. 5, �2, 3, 1 2. (a) x � a (b) 3. n 4. a � bi
5. (a) 0, �2i (b)
7. (a) 0, 1 � i (b)
9. (a) �i (b)
11. (a) �2, �2i (b)
13. (a)
(b)

15. (a)

(b) �

In answers 17–33 the factored form is given first, then 
the zeros are listed with the multiplicity of each in parentheses.
17.

19.

21.

23.

25.

27.

29.

31. 2i 11 2 , �2i 11 21x � 1 2 1x 	 1 2 1x � 2i 2 1x 	 2i 2 ; 1 11 2 , �1 11 2 ,

1x � i 221x 	 i 2 2; i 12 2 , �i 12 2

1x 	 1 2 1x � 3i 2 1x 	 3i 2 ; �1 11 2 , 3i 11 2 , �3i 11 2

16Ax � 3
2B Ax 	 3

2B Ax � 3
2 iB Ax 	 3

2 iB; 32 11 2 , � 
3
2 11 2 , 

3
2 i 11 2 , � 

3
2 i 11 2

1x � 1 2 1x 	 1 2 1x � i 2 1x 	 i 2 ; 1 11 2 , �1 11 2 , i 11 2 , �i 11 2

x1x � 2i 2 1x 	 2i 2 ; 0 11 2 , 2i 11 2 , �2i 11 2

3x � 1�1 	 i 2 4 3x � 1�1 � i 2 4 ; �1 	 i 11 2 , �1 � i 11 2

1x � 5i 2 1x 	 5i 2 ; �5i 11 2

Ax 	 1
2 	 1

2 i 13BAx 	 1
2 � 1

2 i 13B

Ax � 1
2 	 1

2 i 13B1x � 1 2 1x 	 1 2 Ax � 1
2 � 1

2 i 13B

�1, 12 � 1
2 i 13, � 

1
2 � 1

2 i 13

1x 	 2 2 Ax � 1 � i 13B Ax � 1 	 i 13B
�2, 1 � i 13

1x � 2 2 1x 	 2 2 1x � 2i 2 1x 	 2i 2
1x � i 2 21x 	 i 2 2

x1x � 1 � i 2 1x � 1 	 i 2
x21x � 2i 2 1x 	 2i 2

1x � a 2m

�6 � 16 i

6
� 

3

2
�
13

2
 i1

2 � 1
2 i

� 

1

2
�
13

2
 i�1 � 2i

�i 1213 	 15 2 	 13 � 15 2 i
2 � 4

3 i

8
5 	 1

5 i

13� 
2
3

� 
5
3

� 
2
3

� 
3
2

� 15� 
1
2

1
2

y

0 x1

5

_1

_5

63. 65.
67.

SECTION 3.4 ■ PAGE 294

1.

2. 1, 3, 5; 0 3. True 4. False 5. �1, �3 7. �1, �2, �4,

�8, 9. �1, �7, , , , 11. (a) �1,

(b) �1, 1, 13. (a) �1, �3, , (b) , 1, 3

15. �1, 2, 3; 

17.

19. 21.

23.

25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

47.

49. �2, 51. �1, 4,

53. 3, 55. , 57. �1, ,

59. (a) �2, 2, 3 (b)

61. (a) , 2 (b)

63. (a) �1, 2 (b) y

0 x2

5

_1
_5

y

0 x2

20

_20

� 
1
2

y

0 x1

5

_1

�3 � 110� 
1
2

1 � 13

2
1
2

1 � 15

2

3 � 213

2
�1 � 12

�1, �1
3, 2, 5; P1x 2 � 1x 	 1 2 21x � 2 2 1x � 5 2 13x 	 1 2

�3, �2, 1, 3; P1x 2 � 1x 	 3 2 1x 	 2 2 21x � 1 2 1x � 3 2

�1, 12, 2; P1x 2 � 1x 	 1 2 1x � 2 2 212x � 1 2

�1
2, 

2
5, 

1
2; P 1x 2 � 12x � 1 2 15x � 2 2 12x 	 1 2

�5
2, �1, 32; P1x 2 � 1x 	 1 2 12x 	 5 2 12x � 3 2

�3
2, 

1
2, 1; P1x 2 � 1x � 1 2 12x 	 3 2 12x � 1 2

�1, �1
2; P1x 2 � 1x 	 1 2 12x � 1 2 12x 	 1 2

�2, 13, 3; P1x 2 � 1x � 2 2 1x 	 2 2 1x � 3 2 13x � 1 2

�2, �3
2; P1x 2 � 1x � 2 2 1x 	 2 2 12x � 3 2 12x 	 3 2

�4, �2, �1, 1; P1x 2 � 1x 	 4 2 1x 	 2 2 1x � 1 2 1x 	 1 2

�1, � 2; P1x 2 � 1x � 2 2 1x 	 2 2 1x � 1 2 1x 	 1 2

�3, �1, 1; P1x 2 � 1x 	 3 2 1x 	 1 2 1x � 1 2

�1, 2, 3; P1x 2 � 1x 	 1 2 1x � 2 2 1x � 3 2

2; P1x 2 � 1x � 2 23�3, 2; P1x 2 � 1x 	 3 2 21x � 2 2

�2, 1; P1x 2 � 1x 	 2 2 21x � 1 2

P1x 2 � 1x 	 1 2 1x � 2 2 1x � 3 2

� 
1
2� 

3
2� 

1
2

1
5

� 
1
5� 

7
4� 

1
4� 

7
2� 

1
2� 

1
2

a0, an, �1, �1
2, �

1
3, �

1
6, �2, �2

3, �5, �5
2, �

5
3, �

5
6, �10, �10

3

1x 	 2 2 21x � 1 2 2
1x 	 1 2 1x � 1 2 1x � 2 2� 

3
2 x3 	 3x2 	 15

2  x � 9
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33. Vertical horizontal y � 3

35. Vertical horizontal y �

37. Vertical x � 0; horizontal y � 3 39. Vertical x � 1

41. x-intercept 1
y-intercept �2
vertical x � �2
horizontal y � 4
domain 
range 

43. x-intercept 

y-intercept 

vertical x � �7

horizontal y � �3

domain 

range 

45. y-intercept 2
vertical x � 3
horizontal y � 0
domain 
range 

47. x-intercept 2
y-intercept 2
vertical x � �1, x � 4
horizontal y � 0
domain 
range 

49. y-intercept �1
vertical x � �1, x � 6
horizontal y � 0
domain 
range 

51. x-intercept �2

y-intercept 

vertical x � �4, x � 2

horizontal y � 0

domain 

range �

5x 0  x 
 �4, 26

� 
3
4

y

0
x3

2

5y 0  y � �0.5 or y � 06
5x 0  x 
 �1, 66

y

0 x
2

2

�

5x 0  x 
 �1, 46

y

0 x1

5

5y 0  y � 06
5x 0  x 
 36

y

0 x3

10

5y 0  y 
 �36

5x 0  x 
 �76

4
7

4
3y

0 x
5

5

_10
_5

5y 0  y 
 46
5x 0  x 
 �26

y

0
x4

5

_4
_5

5
3x � 1

3, x � �2;

x � 1
2, x � �1;33.

35. 37.
39.
41.
43. 45. �2, �2i

47. 49. 51.

53. �2, 1, �3i 55.
57. 3 (multiplicity 2), �2i 59.
61. 1 (multiplicity 3), �3i

63. (a) (b)
65. (a)
(b)

67. (a)
(b) �

69. (a) 4 real (b) 2 real, 2 imaginary (c) 4 imaginary

SECTION 3.7 ■ PAGE 323

1. 2. 2 3. �1, 2 4. 5. �2, 3 6. 1
7. (a) �3, �19, �199, �1999; 5, 21, 201, 2001; 
1.2500, 1.0417, 1.0204, 1.0020; 0.8333, 0.9615, 0.9804, 0.9980
(b)
(c) Horizontal asymptote y � 1
9. (a) �22, �430, �40,300, �4,003,000; �10, �370, �39,700,
�3,997,000; 0.3125, 0.0608, 0.0302, 0.0030; �0.2778, �0.0592,
�0.0298, �0.0030
(b)
(c) Horizontal asymptote y � 0
11. 13.

domain 
range 

15. 17.

domain domain 
range range 
19. x-intercept 1, y-intercept
21. x-intercepts �1, 2; y-intercept 
23. x-intercepts �3, 3; no y-intercept 25. x-intercept 3,
y-intercept 3, vertical x � 2; horizontal y � 2 27. x-intercepts �1,
1; y-intercept ; vertical x � �2, x � 2; horizontal y � 1
29. Vertical x � 2; horizontal y � 0 31. Horizontal y � 0

1
4

1
3

� 
1
4

5y 0  y 
 165y 0  y 
 26
5x 0  x 
 �365x 0  x 
 26

y

0 x2
−2

2

−3

y

0 x2

5

5y 0  y 
 06
5x 0  x 
 16

y

0 x_1

5

y

0 x1

1

r1x 2 � �q as x � 2�; r1x 2 � �q as x � 2	

r1x 2 � �q as x � 2�; r1x 2 � q as x � 2	

1
3�q, q

3x 	 A1 	 i 13B 4 3x 	 A1 � i 13B 4

1x � 2 2 1x 	 2 2 3x � A1 	 i 13B 4 3x � A1 � i 13B 4

1x � 2 2 1x 	 2 2 1x2 � 2x 	 4 2 1x2 	 2x 	 4 2

1x � 1 2 1x 	 1 2 1x � 3i 2 1x 	 3i 2
1x � 1 2 1x 	 1 2 1x2 	 9 2

1x � 5 2 1x � 2i 2 1x 	 2i 21x � 5 2 1x2 	 4 2

� 
1
2 1multiplicity 2 2 , �i

1, �2i, �i 13

� 
3
2, �1 � i 122, 

1 � i 13

2
1, 

1 � i 13

2

T 1x 2 � 6x4 � 12x3 	 18x2 � 12x 	 12

R1x 2 � x4 � 4x3 	 10x2 � 12x 	 5

P1x 2 � x3 � 2x2 	 x � 2

Q1x 2 � x3 � 3x2 	 4x � 12P1x 2 � x2 � 2x 	 2

xAx � i 13B2Ax 	 i 13B2; 0 11 2 , i 13 12 2 , �i 13 12 2
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domain 
range 5y 0  y 
 06

5x 0  x 
 �16
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65. slant y � x 	 2 
vertical x � 2

67. slant y � x � 2 
vertical x � 0

69. slant y � x 	 8 
vertical x � 3

71. slant y � x 	 1 
vertical x � 2, x � �2

73. vertical x � �3

75. vertical x � 260

10_10

_30

30

10_10

_30

y

0 x6

30

_6

y

0 x10

30

_10

_30_4 _1

y

0 x6

10

_6

_10

y

0 x6

10

_6

_10

53. x-intercepts �2, 1
y-intercept 
vertical x � �1, x � 3
horizontal y � 1
domain 
range 

55. x-intercept 1
y-intercept 1
vertical x � �1
horizontal y � 1
domain 
range 

57. x-intercepts �6, 1
y-intercept 2
vertical x � �3, x � 2
horizontal y � 2
domain 
range 

59. x-intercepts �2, 3
vertical x � �3, x � 0
horizontal y � 1
domain 
range 

61. y-intercept �2
vertical x � �1, x � 3
horizontal y � 3
domain 
range 

63. x-intercept 1
vertical x � 0, x � 3
horizontal y � 0
domain 
range �

5x 0  x 
 0, 36

y

0 x
21

5y 0  y � �1.5 or y � 2.46
5x 0  x 
 �1, 36

y

0 x6

10

_6

�

5x 0  x 
 �3, 06

y

0 x6

6

_6

_6

�

5x 0  x 
 �3, 26

y

0 x6

6

_6

_6

5y 0  y � 06
5x 0  x 
 �16

y

0 x6

6

_6

�

5x 0  x 
 �1, 36

2
3

y

0 x6

6

_6

_6
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49. (a) (b) quadruple the length l
51. (a) (b) Halves it
53.

CHAPTER 3 REVIEW ■ PAGE 335

1. (a) 3. (a)

(b) (b)

5. 7. 68 feet

9. 11.

13.

15. (a) 17. (a)

(b) (b)

19. (a) 0 (multiplicity 3),
2 (multiplicity 2)
(b)

x

y 

1 0 

1

x

y

16

0 5_5

100

_100

x

y

0 1

10

y � q as x � �qy � �q as x � �q
y � �q as x � q,y � q as x � q,

y

x1_1

100
31

_100

0

y

x1
_30(_1, _32)

200

_3

_200

y

0 x4

64

300

_4

_300

Minimum f 1�1 2 � �7

x

y 

1 0 

5 

x

y 

2 0 

2 

g1x 2 � �1x � 4 2 2 	 17f 1x 2 � 1x 	 2 2 2 � 3

3.47 � 10�14 Wm2

f � k/L
T � k 1l77. vertical x � �1.5

x-intercepts 0, 2.5
y-intercept 0, local 
maximum 
local minimum 
end behavior: y � x � 4

79. vertical x � 1 
x-intercept 0 
y-intercept 0 
local minimum 
end behavior: y � x2

81. vertical x � 3
x-intercepts 1.6, 2.7
y-intercept �2 
local maxima ,

,
local minima ,

end behavior y � x3

83. (a) (b) It levels off at 3000.

85. (a) 2.50 mg/L (b) It decreases to 0. (c) 16.61 h

87. If the speed of the train ap-
proaches the speed of sound,
then the pitch increases
indefinitely (a sonic boom).

SECTION 3.8 ■ PAGE 330

1. directly proportional; proportionality 2. inversely propor-
tional; proportionality 3. directly proportional; inversely 
proportional

4. 5. T � kx 7. √ � k/z 9. y � ks/t 11.

13. V � kl„h 15. 17. y � 7x 19. R � 12/s

21. M � 15x/y 23. W � 360/r2 25. C � 16l„h

27. 29. (a) (b) 31. (a)

(b) 864 33. (a) F � kx (b) 8 (c) 32 N 35. (a) P � ks3

(b) 0.012 (c) 324 37. 40 mi/h (for safety round down, not up)

39. 5.3 mi/h 41. (a) P � kT/V (b) 8.3 (c) 51.9 kPa

43. (a) (b) 7000 (c) (d) 4

45. (a) R � kL/d2 (b) (c) R � 137 � (d)
47. (a) 160,000 (b) 1,930,670,340

3
40.002916

1
4L �

k

d2

z � kx 3y527
4z � k

x3

y2s � 500/1t

R � k  

i

Pt

z � k1y1
2 xy

5000

4000

4000

300

13.4, 54.3 2
10.6, �2.3 2

12.4, 3.8 2
1�0.4, �1.8 2

100

5_5

_100

11.4, 3.1 2

10

3_3

_5

10.9, �0.6 2
1�3.9, �10.4 2

10

10_10

_20
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71. �2, 1 (multiplicity 3) 73. �2,

75. 1, 3, 77. x � �0.5, 3

79. x � �0.24, 4.24
81.

83. (a) Vertical asymptote 85. (a) Vertical asymptote 
x � �4, horizontal x �1, horizontal asymptote 
asymptote y� 0, y � 3, x -intercept ,
no x-intercept, y-intercept , y-intercept �4,
domain domain 
range range 

(b) (b)

87. 89.

91.

93. x-intercept 3
y-intercept �0.5
vertical x � �3
horizontal y � 0.5
no local extrema

95. x-intercept �2
y-intercept �4
vertical x � �1, x � 2
slant y � x 	 1
local maximum

local minimum 

97. , , ,
99. z � 192/y 101. 8 in. 103. 329.4 ft

15, 770 212, 68 211, 26 21�2, �28 2

14.216, 7.175 2
10.425, �3.599 2

30

6_6

_30

20

10_10

_20

y

0 x5
3

_5
_3

_9

2

y

0 x6

6

0.25

_6

_6

y

0 x5

4

310

_5

_20
_12

x

y

0
1

1
4
3

x

y

0.75

0 1

2

5y 0  y 
 365y 0  y 
 06
5x 0  x 
 165x 0  x 
 �46

3
4

4
3

2, P1x 2 � 1x � 2 2 1x2 	 2x 	 2 2

�1 � i 17

2

�1 � i 1321. x-intercepts �2.1, 0.3, 1.9
y-intercept 1 
local maximum 
local minimum 
y � q as x � q
y � �q as x � �q

23. x-intercepts �0.1, 2.1
y-intercept �1 
local minimum 
y � q as x � q
y � q as x � �q

25. (a) (b) 0 � x � 10

(c) (d) 5.8 in.

In answers 27–33 the first polynomial given is the quotient, and
the second is the remainder.
27. x � 1, 3 29. x2 	 3x 	 23, 94
31. x3 � 5x2 	 17x � 83, 422 33. 2x � 3, 12 35. 3
39. 8 41. (a) �1, �2, �3, �6, �9, �18
(b) 2 or 0 positive, 3 or 1 negative
43. (a) �4, 0, 4 45. (a) �2, 0 (multiplicity 2), 1

(b) (b)

47. (a) �2, �1, 2, 3 49. (a) , 1

(b) (b)

51. 3 	 i 53. 8 � i 55. 57. i 59. 2
61. 4x3 � 18x2 	 14x 	 12
63. No; since the complex conjugates of imaginary zeros will also
be zeros, the polynomial would have 8 zeros, contradicting the 
requirement that it have degree 4. 65. 1, �i 67. �3, 1, 5
69. �1 � 2i, �2 (multiplicity 2)

6
5 	 8

5 i

y

x1

10

_1
_10

y

x2

20

_2 _10
0

� 
1
2

y

x1

4

_2
_4

0

y

x4

30

_4 _30
0

6000

100

S � 13.8x1100 � x2 2

11.4, �14.5 2

30

_20

3_2

11.2, �2.1 2
1�1.2, 4.1 2

10

_10

3_3
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(e) x2 � 2x � 5 

13. (a) M � k„h2/L (b) 400 (c) 12,000 lb

FOCUS ON MODELING ■ PAGE 342

1. (a) y � �0.275428x2 	 19.7485x � 273.5523
(b)

(c) 35.85 lb/in2

3. (a) y � 0.00203708x3 � 0.104521x2 	 1.966206x 	 1.45576
(b)

(c) 43 vegetables (d) 2.0 s

5. (a) Degree 2
(b) y � �16.0x2 	 51.8429x 	 4.20714 

(c) 0.3 s and 2.9 s (d) 46.2 ft

CHAPTER 4
SECTION 4.1 ■ PAGE 351

1. 2. (a) III (b) I (c) II (d) IV
3. (a) downward (b) right 4. principal, interest rate per year,
number of times interest is compounded per year, number of years,
amount after t years; $112.65 5. 2.000, 7.103, 0.25, 1.587
7. 0.885, 0.606, 0.117, 1.837
9. y

0 x

1

_2 2

2

(2, 4)

5; 1
25, 1, 25, 15, 625

48

3.10

0

22

300

82

4625
48

60

10_10

_60

CHAPTER 3 TEST ■ PAGE 338

1.

2.

3. (a) 2500 ft (b) 1000 ft

4.

5. (a) x3 	 2x2 	 2, 9 (b) ,

6. (a) �1, �3, , (b)

(c) �1, , 3 (d)

7. (a) 7 	 i (b) �1 � 5i (c) 18 	 i (d)
(e) 1 (f) 6 � 2i
8. 3, �1 � i
9.
10. x4 	 2x3 	 10x2 	 18x 	 9
11. (a) 4, 2, or 0 positive; 0 negative
(c) 0.17, 3.93 

(d) Local minimum 
12. (a) r, u (b) s (c) s (d) y

0 x6
2

6
25

6

_6
_3

_6

12.8, �70.3 2

80

_80

5_3

1x � 1 2 21x � 2i 2 1x 	 2i 2

6
25 � 17

25 i

y

0 x

10
1

1
2

21x � 3 2 Ax � 1
2B 1x 	 1 2� 

3
2� 

1
2

15
2x3 	 2x2 	 1

2

y

x1

1940

_2

_40

0

Minimum f A�3
2B � �3

2

x 

y 

1 0 
1 

f 1x 2 � Ax � 1
2B

2 � 25
4
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37. (a)

(b) The graph of g is steeper
than that of f.

39.

41. (a)

The graph of f ultimately increases
much more quickly than that of g.

(b) 1.2, 22.4

43.
The larger the value of c, the
more rapidly the graph increases.

45. (a) Increasing on ; decreasing on 
(b)
47. (a) 1500 � 2t (b) 25,165,824,000
49. $5203.71, $5415.71, $5636.36, $5865.99, $6104.98, $6353.71
51. (a) $11,605.41 (b) $13,468.55 (c) $15,630.80
53. (a) $519.02 (b) $538.75 (c) $726.23
55. $7678.96 57. 8.30%

10,  1.78 4
30.50, q 21�q, 0.50 4

5

3_3

_1

c=4 c=2
c=1

c=0.2

c=0.5

10(iii) •

500

˝=x∞

Ï=2˛

10¶

250

˝=x∞

Ï=2˛
(ii)20

50

˝=x∞ Ï=2˛

(i)

y
g(x) = 3x

f (x) = x3

0 x2

200

y

0 x_2 2

2

˝=3(2˛)

Ï=2˛

11. 13.

15. 17.

19. 21. 23. II
25. 27.

29. 31.

33. 35.

(_1, _2)

1

1

x

y

(4, 2)

1

11

2

x

y

0

�, 1�q, 1 2 , y � 1�, 11, q 2 , y � 1

(0, 2)

1

1

x

y

0

y

0 x_2 2

(_3, 1)

1000

�, 11, q 2 , y � 1�, 10, q 2 , y � 0

y

0 x_2 2
_1

(1, _3)

y

0 x5

3

_5

_5

(1, _1)

�, 1�q, 0 2 , y � 0�, 1�3, q 2 , y � �3
f 1x 2 � A14B

xf 1x 2 � 3x

y

0 x_2 2

1
2

y=7˛
y=4˛

y

0 x2

1

−2

y=2x
y=2_x

(2, 5.07)

1
1 x0

yy

0 x_2 2

3

(_2, 9)

1
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19. Local minimum �
21. (a) 13 kg (b) 6.6 kg
23. (a) 0 (b) 113.8 ft/s, 155.6 ft/s
(c)

(d) 180 ft/s
25. (a) 100 (b) 482, 999, 1168 (c) 1200
27. (a) 11.79 billion, 11.97 billion
(b) (c) 12 billion

29. $7213.18, $7432.86, $7659.22, $7892.48, $8132.84, $8380.52
31. (a) $2145.02 (b) $2300.55 (c) $3043.92 33. (a) $768.05
(b) $769.22 (c) $769.82 (d) $770.42 35. (a) is best.
37. (a) (b)

(c) After 17.88 yr

SECTION 4.3 ■ PAGE 366

1. x

2.
3. (a) (b)
4. (a) III (b) II (c) I (d) IV

5.

7. (a) 52 � 25 (b) 50 � 1 9. (a) 81/3 � 2 (b)
11. (a) 3x � 5 (b) 72 � 3y 13. (a) 5 � e3y (b) t � 1� e�1

15. (a) log5 125 � 3 (b) log10 0.0001 � �4

2�3 � 1
8

52 � 25log5 125 � 3
9; 1, 0, �1, 2, 12

200

30000A1t 2 � 5000e0.09t

0

14

500

200

1000

10.27, 1.75 2SECTION 4.2 ■ PAGE 356

1. natural; 2.71828 2. principal, interest rate per year,
number of years; amount after t years; $112.75
3. 20.085, 1.259, 2.718, 0.135

5.

7. 9.

11. 13.

15. (a)

17. (a) (b) The larger the value of a,
the wider the graph.

5

3_3

_1

a=2

a=1
a=1.5

a=0.5

y

0 x2

5

_2

(0, e _3)

(_1, _2)

1

1

x

yy

0 x1

1 (2, 1)

�, 1�3, q 2 , y � �3�, 10, q 2 , y � 0

y

0 x_1 2

1
(_1, 1.72)

y

0 x_2 1
_1

(1, _2.72)

�, 1�1, q 2 , y � �1�, 1�q, 0 2 , y � 0

(0, 3)

1

1

x

y

0
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x y

�2 0.41
�1 1.10
�0.5 1.82
�0 3
�0.5 4.95

1 8.15
2 22.17

x 103 102 101 100 10�1 10�2 10�3 101/2

log x 3 2 1 0 �1 �2 �3 1
2

Logarithmic form Exponential form

log8 8 � 1 81 � 8

log8 64 � 2 82 � 64

82/3 � 4

log8 512 � 3 83 � 512

8�2 � 1
64log8  

1
64 � �2

8�1 � 1
8log8  

1
8 � �1

log8 4 � 2
3
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71. 73. 75.

77. domain 
vertical asymptotes x � 1,
x � �1 
local maximum 

79. domain 
vertical asymptote x � 0 
no maximum or minimum

81. domain 
vertical asymptote x � 0 
horizontal asymptote y � 0 
local maximum 
�

83.
85.

87. The graph of f grows more slowly than g.
89. (a) (b) The graph of

is 
the graph of

shifted
upward log c units.

91. (a) (b)

93. (a) (b)

95. 2602 yr 97. 11.5 yr, 9.9 yr, 8.7 yr 99. 5.32, 4.32

SECTION 4.4 ■ PAGE 373

1. sum; log5 25 	 log5 125 � 2 	 3
2. difference; log5 25 � log5125 � 2 � 3 3.

4. (a) (b)

5. 10, e; Change of Base; 6. True

7. 2 9. 3 11. �0.903 13. 15. 3 17. 200 19. 4

21. 1 	 log2 x 23. 25. 10 log 6

27. 29. 31.

33. log2 A 	 2 log2 B 35. 3 log x 	 4 log y � 6 log z
37.

39. 41.

43. 1
2 3 log1x2 	 4 2 � log1x2 	 1 2 � 2 log1x3 � 7 2 4

1
4 log1x2 	 y2 2ln x 	 1

2 1ln y � ln z 2

log2 x 	 log21x
2 	 1 2 � 1

2  log21x
2 � 1 2

101log2 x 	 log2 y 21
3  log51x

2 	 1 21
2 ln z

log2 x 	 log21x � 1 2

3
2

log7 12 �
log 12

log 7
� 1.277

log ¢x2y

z
≤2 log x 	  log y � log z

times; 10 #  log5 25

10, 1 2f�11x 2 � log2 a
x

1 � x
b

f�11x 2 � 102x
11, q 2

f 1x 2 � log1x 2

f 1x 2 � log1cx 2
2.6

100_10

_1

c=4
c=3
c=2
c=1

1g � f 2 1x 2 � log2 x � 2, 10, q 2
1f � g 2 1x 2 � log2 1x � 2 2 , 12, q 2 ;
1f � g 2 1x 2 � 2x	1, 1�q, q 2 ; 1g � f 2 1x 2 � 2x 	 1, 1�q, q 2

12.72, 0.37 2

10, q 21

20_1

_3

10, q 23

3_1

_6

10, 0 2

1�1, 1 21

2_2

_2

10, 2 21�q, �1 2 � 11, q 21�3, q 217. (a) (b) 19. (a)
(b) 21. (a) ln 2 � x (b) ln y � 3 23. (a) 1
(b) 0 (c) 2 25. (a) 2 (b) 2 (c) 10 27. (a) �3 (b)
(c) �1 29. (a) 37 (b) 8 (c) 31. (a) (b) 4
(c) �1 33. (a) 32 (b) 4 35. (a) e3 (b) 2 37. (a) 5
(b) 27 39. (a) 100 (b) 25 41. (a) 2 (b) 4
43. (a) 0.3010 (b) 1.5465 (c) �0.1761 45. (a) 1.6094
(b) 3.2308 (c) 1.0051
47. 49.

51. y � log5 x 53. y � log9 x 55. I

57.

59. 61.

63. 65.

67. 69.

y

0 x1

1

y

0 x2

1
(1, 1)

10, q 2 , 30, q 2 , x � 010, q 2 , �, x � 0

y

0 x1

1
(1, 2)

x

y

0 1

1

10, q 2 , �, x � 01�5, q 2 , �, x � �5

y

0 x1

1

y

0 x1
_1

1

1�q, 0 2 , �, x � 014, q 2 , �, x � 4

y

0 x5_2

_2

5 y=4˛

y=ø› x

x

y 

2 0 

1

x

y 

1 0 

1

� 
2
315

1
2

5 � log4 z
x � log5 3log2 

1
8 � �3log8 

1
8 � �1
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SECTION 4.6 ■ PAGE 394

1. (a) (b) (c) 14.9 
3. (a) 3125 (b) 317,480
(c)

5. (a) (b) 34,137 (c) 4.1
(d)

7. (a) 233 million (b) 181 million
9. (a) (b)
(c) (d) 38.85 years

11. (a) 20,000 (b) (c) About 48,000

(d) 14.68 years 13. (a) (b) About 11,600

(c) 4.6 h 15. (a) (b) 53.5 yr

(c) 38.55 million 17. (a)

(b) (c) 3.9 mg (d) 463.4 19. 18 yr

21. 149 h 23. 3560 yr 25. (a) 210 �F (b) 153 �F
(c) 28 min 27. (a) 137 �F (b) About 2 h 29. (a) 2.3
(b) 3.5 (c) 8.3 31. (a) 10�3 M (b) 3.2 � 10�7 M
33. 4.8 � pH � 6.4 35. log 20 � 1.3
37. Six times as intense 39. 73 dB 41. 25

CHAPTER 4 REVIEW ■ PAGE 399

1. 0.089, 9.739, 55.902 3. 0.269, 1.472, 12.527
5. 7.

y

0 x3

4

−3

y

0 x3

3

−3

�, 13, q 2 , y � 3�, 10, q 2 , y � 0

m1t 2 � 22e�0.000433t

m1t 2 � 22 # 2�t/1600

n1t 2 � 29.76e0.012936t million

n1t 2 � 8600e0.1508t

n1t 2 � 20,000e0.1096t

0 10 20 30 40 t

n (millions)

0.2

0.4

0.6

0.8

1.0

n1t 2 � 112,000e0.0385tn1t 2 � 112,000 # 2t/18

n(t)

t2007

20,000

2009 2011 2013

40,000

60,000

n1t 2 � 18,000e0.08t

0 10 20 30 5040 t (years)

n (millions)

0.2

0.4

0.6

0.8

1.0

1.06 � 108n1t 2 � 10 # 22t/3

45.

47. log3 160 49.

51. 53.

55. 57. 2.321928 59. 2.523719

61. 0.493008 63. 3.482892

65.

71. (a) P � c/Wk (b) 1866, 64
73. (a) M � �2.5 log B 	 2.5 log B0

SECTION 4.5 ■ PAGE 382

1. (a) ex � 25 (b) x � ln 25 (c) 3.219
2. (a) log 31x � 22 � log x (b) 31x � 22 � x (c) 3
3. 2 5. 7. �3 9. �1, 1 11. (a) 2 log 5 (b) 1.397940

13. (a) (b) �0.972955 15. (a)

(b) �0.584963 17. (a) (b) 1.203973

19. (a) (b) 14.005511

21. (a) (b) 0.076713

23. (a) (b) 2.149159

25. (a) (b) 1.934940

27. (a) (b) �29.342646

29. (a) (b) 0.019382

31. (a) (b) 6.212567

33. (a) (b) �2.946865 35. (a) �ln 11.5

(b) �2.442347 37. ln 2 � 0.6931, 0 39. ln 3 � 0.5493

41. 43. 0, 45. 5 47. 2, 4 49. 5 51. e10 � 22,026

53. 0.01 55. 57. �7 59. 4 61. 6 63. 65.

67. 69. 2.21 71. 0.00, 1.14

73. �0.57 75. 0.36 77. 2 � x � 4 or 7 � x � 9

79. log 2 � x � log 5 81.

83. 85. (a) $6435.09 (b) 8.24 yr

87. 6.33 yr 89. 8.15 yr 91. 13 days 93. (a) 7337

(b) 1.73 yr 95. (a) P � P0e
�h/k (b) 56.47 kPa

97. (a) (b) 0.218 st � � 
5
13 ln11 � 13

60 I 2

f 
�11x 2 � 2x 	 1

f 
�11x 2 �

ln x

2 ln 2

1/15 � 0.4472

3
2

13
12

95
3

4
3�1

1
2

�
log 2 	 2 log 3

3 log 2 � log 3

log 4

log 5 � log 4

1
5 1log 5 �  log 4 2

14 log 0.1

log 3

log 5

0.4 log 8

�1 	 ln 200

2

1 � ln 2

4

log 3

2 log 1.04

ln A10
3 B

1 �
log 3

log 2
�1

2 ln 7

3
2

2

4_1

_3

log ¢ x2

x � 3
≤

ln 

a2 � b2

c2 log a
x41x � 1 2 223 x2 	 1

b

ln15x21x2 	 5 2 3 2

3 ln x 	 1
2 ln1x � 1 2 � ln13x 	 4 2
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91. (a) $16,081.15 (b) $16,178.18 (c) $16,197.64
(d) $16,198.31 93. 1.83 yr 95. 4.341%
97. (a) (b) 55 (c) 19 yr
99. (a) 9.97 mg (b) 1.39 � 105 yr
101. (a) (b) 97.0 mg (c) 2520 yr
103. (a) (b) 7940
105. 7.9, basic 107. 8.0

CHAPTER 4 TEST ■ PAGE 402

1. (a) (b)

2. (a) (b)
3. (a) log6 25 � 2x (b) e3 � A
4. (a) 36 (b) 3 (c) (d) 3 (e) (f) 2
5. (a) (b)

(c)

6. (a) log(ab2) (b) (c)

7. (a) 25 (b) 1, 2 (c) 11.13 (d) 5.39
8. (a) 500 (b) (c) 0.774 (d) 2 9. 1.326
10. (a) (b) 22,627 (c) 1.3
(d)

11. (a) (b) $14,195.06

(c) 9.12 yr 12. (a) (b) m1t2 � 3e�0.0693t

(c) 0.047 g (d) after 3.6 min 13. 1995 times more intense

FOCUS ON MODELING ■ PAGE 409

1. (a)

(b) y � abt, where a � 3.334926 � 10�15, b � 1.019844, and 
y is the population in millions in the year t (c) 577.5 million
(d) 353.1 million (e) No

350

0
20201780

m1t 2 � 3 # 2�t/10

A1t 2 � 12,000 a1 	
0.056

12
b

12t

y

0 x

10,000

1 2

n1t 2 � 1000e2.07944t

2
3

log2 
32x 	 1

x 3ln1x � 5 2

1
3 3 log1x 	 2 2 � 4 log x � log1x2 	 4 2 4

1
2 ln x � 1

2 ln ylog x 	 3 log y � 2 log z

2
3

3
2

1�q, �1 2 � 11, q 2A32, q B

x

y 

1 0 

2 

x

y 

1 0 

4 

1�3, q 2 , �, x � �3�, 14, q 2 , y � 4

n1t 2 � 1500e0.1515t
n1t 2 � 150e�0.0004359t

n1t 2 � 30e0.15t

9. 11.

13. 15.

17. 19.
21. 210 � 1024 23. 10 y � x
25. log2 64 � 6 27. log 74 � x
29. 7 31. 45 33. 6 35. �3
37. 39. 2 41. 92 43.

45. log A 	 2 log B 	 3 log C

47.

49.

51. log 96 53.

55. 57. 5 59. 2.60

61. �1.15 63. �4, 2
65. 3 67. �15 69. 9
71. 0.430618 73. 2.303600
75. vertical asymptote 

x � �2 
horizontal asymptote 
y � 2.72
no maximum or minimum

77. vertical asymptotes
x � �1, x � 0, x � 1
local maximum 
�

79. 2.42 81. 0.16 � x � 3.15
83. Increasing on and , decreasing on 
85. 1.953445 87. �0.579352 89. log4 258

30, 1.10 431.10, q 21�q, 0 4

1�0.58, �0.41 2

1.5

2.5_1.5

_1.5

10

20_20
_1

log a
x2 � 42x2 	 4

b

log2 a
1x � y 2 3/2

1x2 	 y2 2 2
b

2 log5 x 	 3
2 log511 � 5x 2 � 1

2   log51x
3 � x 2

1
2 3 ln1x

2 � 1 2 � ln1x2 	 1 2 4

2
3

1
2

1�q, �2 2 � 12, q 2A�q,  
1
2B

y

0 x5

1

y

0 x1

1

(1, 2)

10, q 2 , �, x � 010, q 2 , �, x � 0

y

0 x5

1

_1

x

y

0 1

2

11, q 2 , �, x � 1�, 11, q 2 , y � 1
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CUMULATIVE REVIEW TEST FOR 

CHAPTERS 2, 3, AND 4 ■ PAGE 413

1. (a) (b) 3�4, q2 (c) 12, 0, 0, 2, , undefined
(d) x2 � 4, , �4 	 h2 (e)

(f) f � g1x 2 � x 	 4 � , g � f 1x 2 � ,
(g) g�11x 2 � x2 � 4, x � 0

2. (a) 4, 4, 4, 0, 1 (b)

3. (a) f 1x 2 � �21x � 222 	 13 (b) Maximum 13
(c) (d) Increasing on 1�q, 24; 

decreasing on 32, q2
(e) Shift upward 5 units
(f) Shift to the left 3 units

4. f, D; g, C; r, A; s, F; h, B; k, E
5. (a) �1, �2, �4, �8, � (b) 2, 4,
(c) (d)

6. (a) 1 1multiplicity 22; �1, 1 	 i, 1 � i 1multiplicity 12
(b)
(c)

7. x-intercepts 0, �2;          
y-intercept 0; 
horizontal 
asymptote y � 3; 
vertical asymptotes x � 2 
and x � �1 

8. (a) S � 187.5 x2 (b) $18,750.00 (c) 18 years

9.

10. (a) �4 (b)
11. (a) 4 (b) ln 2, ln 4 12. (a) $29,396.15
(b) After 6.23 years (c) 12.837 years
13. (a) (b) 917 (c) After 49.8 monthsP1t 2 � 120e0.0565t

5 log x 	 1
2  log1x � 1 2 �  log12x � 3 2

y

x

g
f 2

1

y

x

5

10

Q1x 2 � 1x � 1 2 21x 	 1 2 1x2 � 2x 	 2 2
Q1x 2 � 1x � 1 2 21x 	 1 2 1x � 1 � i 2 1x � 1 	 i 2

y

0 x

5

_5
1

P1x 2 � 21x � 2 2 1x � 4 2 Ax 	 1
2 B

�1
2

1
2

y

x

10

10

1

1

x

y

0 5

g1f 112 2 2 � 10f 1g112 2 2 � 0,
0 x � 2 041x 	 4

1
81x 	 6

2131�q, q 2

3. (a) Yes (b) Yes, the scatter plot appears linear.

(c) ln E � 4.618612 	 0.0881283t
(d) 101.353256eat, where a � 0.0881283
(e) 5347.50 billion dollars
5. (a) I0 � 22.7586444, k � 0.1062398
(b)

(c) 47.3 ft
7. (a) S � 0.14A0.64

(b)

(c) 4 species
9. (a)

(b)

(c) Exponential function
(d) y � abx where a � 0.057697 and b � 1.200236

11. (a) , where a � 49.10976596,

b � 0.4981144989, and c � 500.855793
(b) 10.58 days

y �
c

1 	 ae�bx

−3

.5

0 18

−3

.5

0 3

1.2

0 17

5500

8

14

0 45

8

4
40_1
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t ln E

0 4.3
10 5.5
15 6.1

�17 6.2
�20 6.5

22 6.7
24 6.8
26 6.9
28 7.0
30 7.2
31 7.3
38 7.8
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43. Impossible 45. 50 Midnight Mango, 60 Tropical Torrent,
30 Pineapple Power 47. 1500 shares of A, 1200 shares of B,
1000 shares of C

SECTION 5.3 ■ PAGE 439

1. (iii) 2. (ii) 3.

5. 7.

9.

11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33.

35. 37.

39. 41.

43. 45.

SECTION 5.4 ■ PAGE 443

1. 3. 5.

7. 9.

11.

13.

15. 17.

19. 21.

23. 25. No solution

27.

29. 31. 33.

35.

37.

39. 41. 12 cm by 15 cm

43. 45. 47. 112, 8 21400.50, 200.25 2 , 447.77 m15, 20

10.48, �1.19 21�2.30, �0.70 2 ,

1�0.35, �4.21 211.23, 3.87 2 ,

14.91, �0.97 21�4.51, 2.17 2 ,

1�8.00, 0 212.00, 20.00 2 ,A15, 
1
3BA3, �1

2B, A�3, �1
2B

115, 2 2 , 115, �2 2 , 1�15, 2 2 , 1�15, �2 2

16, 2 2 , 1�2, �6 2

1�2, �2 214, 0 2

10, 0 2 , 11, �1 2 , 1�2, �4 212, 4 2 , A�5
2, 

7
4B

1�1, 12 2 , 1�1, �12 2 , A12, 27
2B, A

1
2, �27

2B

1�2, �1 2 , 1�2, 1 2 , 12, �1 2 , 12, 1 2

1�3, 4 2  13, 4 21�25, 5 2 , 1�25, �5 2

12, �2 2 , 1�2, 2 214, 16 2 , 1�3, 9 214, 8 2 , 1�2, 2 2

B �
a � b

2
A �

a 	 b

2
,x 2 	

3

x � 2
�

x 	 1

x 2 	 1

1

x 2 	 1
�

x 	 2

1x 2 	 1 2 2
	

1
x

2x � 5

x2 	 x 	 2
	

5

x2 	 1

x 	 1

x 2 	 3
�

1
x

3

x 	 2
�

1

1x 	 2 2 2
�

1

1x 	 3 2 2

4

x 	 2
�

4

x � 1
	

2

1x � 1 2 2
	

1

1x � 1 2 3

2
x

�
1

x 3 �
2

x 	 2

1

2x 	 3
�

3

12x 	 3 2 2

2

x 	 1
�

1
x

	
1

x 2

2

x � 2
	

3

x 	 2
�

1

2 x � 1

�1
2

2x � 1
	

3
2

4x � 3

3

x � 4
�

2

x 	 2

1

x � 2
�

1

x 	 2

2

x � 3
�

2

x 	 3

1

x � 1
�

1

x 	 4

1

x � 1
�

1

x 	 1

Ex 	 F

x 2 	 2x 	 5
	

Gx 	 H

1x 2 	 2 x 	 5 2 2

A

x
	

B

2x � 5
	

C

12 x � 5 2 2
	

D

12 x � 5 2 3
	

Ax 	 B

x 2 	 1
	

Cx 	 D

x 2 	 2

A

x � 3
	

Bx 	 C

x 2 	 4

A

x � 2
	

B

1x � 2 2 2
	

C

x 	 4

A

x � 1
	

B

x 	 2

CHAPTER 5
SECTION 5.1 ■ PAGE 424

1. x, y; equation; 
2. substitution, elimination, graphical 3. no, infinitely many
4. infinitely many; 
5. 7. 9. 11. 13.
15. 17. No solution

19. Infinitely many solutions

21. 23. 25. 27. 29.
31. 33. 35. No solution 37.
39. 41. 43. 45.
47. No solution 49. 51.

53. 55.

57. 22, 12 59. 5 dimes, 9 quarters
61. 200 gallons of regular gas, 80 gallons of premium gas
63. Plane’s speed 120 mi/h, wind speed 30 mi/h
65. 200 g of A, 40 g of B 67. 25%, 10%
69. $14,000 at 5%, $6,000 at 8%
71. John h, Mary h 73. 25

SECTION 5.2 ■ PAGE 432

1. 2. 3. Linear 5. Nonlinear
7. (5, 1, �2) 9. 11.

13. 15.

17. 19. (1, �1, 5) 21. 23.
25. 27. 29. No solution 31. No solution
33. 35.
37. 39. $30,000 in short-term bonds, $30,000 in
intermediate-term bonds, $40,000 in long-term bonds
41. 250 acres corn, 500 acres wheat, 450 acres soybeans

11, �1, 1, 2 2
A2 � 2t, �2

3 	 4
3 t, tB13 � t, �3 	 2t, t 2

A14, 
1
2, �

1
2B10, 1, 2 2

15, 0, 1 211, 2, 1 212, 1, �3 2

c 

2x 	 y � 3z � 5

2x 	 3y 	 z � 13

�8y 	 8z � �8

c 

3x 	 y 	 z � 4

�y 	 z � �1

x � 2y � z � �1

A5, 2, �1
2B14, 0, 3 2

�3; 4y � 5z � �4x 	 3z � 1

2 
1
22 

1
4

a
1

a 	 b
, 

1

a 	 b
ba� 

1

a � 1
, 

1

a � 1
b

161.00, 20.00 213.87, 2.74 2
15, 10 2Ax, 5 � 5

6 xB1�3, �7 2Ax, 3 � 3
2 xB

Ax, 13 x � 5
3B12, 1 2110, �9 2

11, 3 213, 5 212, 1 213, �1 212, 2 2

y

0 x2

2

y

0 x
5

5

_5

_5

x0 1
1

y

(2, _2)

2x+y=2

x-y=4

12, �2 2
1�2, 3 211, 2 212, 1 213, 1 213, 2 2

1 � t; 11, 0 2 , 1�3, 4 2 , 15, �4 2

12, 1 2
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11. 13.

15. 17.

19.

21. 23.
25. 27.

Not bounded Not bounded

29. 31.

Bounded Bounded

y

0 x1

1
3x + 5y = 15

, 2

3x + 2y = 9

( )5
3

x 0 1 
1 

(0, 5) (2, 4) 

(4, 0) 

y=_2x+8

yy=_ x+51
2

y

0 x3

(4, 3)1
4

3
y =

y = 2x − 5

x + 2

y

0 x3

3

x + y = 4

y = x

(2, 2)

x 2 	 y 2 � 4y � 1
2 x � 1

y
≈+¥=100

x20
2

x 2 	 y2 � 100

y

≈+y=3

x10

1

y

2x-3y=9

x10
1

x 2 	 y � 32x � 3y � 9

y

_3x+7y=21

x20
1

y

_2x+y=4

x_4 0

5

�3x 	 7y � 21�2x 	  y � 4SECTION 5.5 ■ PAGE 451

1. equation; y � x 	 1; test

2. (a) (b)

(c) (d)

3. 5.

7. 9.
y

y=x-3

x10
1

y

x=2

x10
1

y � x � 3x � 2

y

y=2
x10

1

y

y=2x

x10
1

y � 2y � 2x

x 0 1 

1 

y 

x+y=2

x-y=0

x 0 1 

1 

y 

x+y=2

x-y=0

x 0 1 

1 

y 

x+y=2

x-y=0

x 0 1 

1 

y 

x+y=2

x-y=0

x0 1 

1 

y 

y=x+1
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53. 55.

57. x � number of fiction books
y � number of nonfiction

books

59. x � number of standard 
packages

y � number of deluxe
packages

CHAPTER 5 REVIEW ■ PAGE 454

1. 3. x � any number
y �

5. No solution 7. No solution

9. , 11. 13. 121.41, �15.93 2A16
7 , �14

3 B12, 8 21�3, 3 2

3x+4y=15

x+3y=10

2x-y=1

y

0 x1

1

y

6x-8y=16
x30

1

_ x+2y=_23
2

y= x-42
7

y

0 x2

1
3x-y=5

2x+y=5

y

0 x1

1

2
7  
x � 4

12, 1 2

c  

1
4  
x 	 5

8  
y � 80

3
4  
x 	 3

8  
y � 90

x � 0, y � 0

y

0 x50

(70, 100)
(0, 128)

(120, 0)

50

c 

x 	 y � 100

20 � y, x � y

 x � 0, y � 0

y

x50

50

0

(50, 50)

(80, 20)
(20, 20)

10

−6

10−4

(0.6, 3.4)

(6.4, −2.4)

10

−4

13−5

(11, 8)
(−1, 8)

33. 35.

Bounded Bounded

37. 39.

Bounded Bounded

41. 43.

Bounded Not bounded

45. 47.

Bounded Bounded

49. 51.

Bounded Bounded

y

0 x2

2

(0, 3)

,( )−3   2
2

3   2
2

x + y = 0

x2 + y2 = 9

y

0 x1

1

(2, 2)

x2 + y2 = 8
x = 2

(2   2, 0)

y

0 x3

3
x + 1 = 0

x + 2y = 12

y = x + 1

10
3

13
3,( )13

2−1,( )

y

0 x1

1

x + y = 7

x = 5

(5, 2)

y

x2

2

x − y = 2

3x − y = 0

x + 2y = 14
(6, 4)

(−1, −3)

y

(_ 5, _2)

≈+2y=1

≈+¥=9

x20

1

( 5, _2)

y

0 x1

5
x2 − y = 0

2x2 + y = 12

(2, 4)(−2, 4)

y

0 x1

1

(−   2, −   2)

x2 + y2 = 4

x − y = 0

(   2,    2)

y

0 x1

1

y = 9 − x2

y = x + 3

(2, 5)

(−3, 0)

x0 1 
1 

y 

(3, 0) 

(0, 9) 

y=9-x2
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5. Wind 60 km/h, airplane 300 km/h
6. (a) (b) Neither
7. (a) No solution (b) Inconsistent

8. (a) (b) Dependent

9. (a) (b) neither 10. Coffee $1.50, juice $1.75,
donut $0.75
11. (a) (b)

12. 13.

14. 15.

FOCUS ON MODELING ■ PAGE 462

1. 198, 195
3. maximum 161

minimum 135

5. 3 tables, 34 chairs 7. 30 grapefruit crates, 30 orange crates
9. 15 Pasadena to Santa Monica, 3 Pasadena to El Toro, 0 Long
Beach to Santa Monica, 16 Long Beach to El Toro
11. 90 standard, 40 deluxe 13. $7500 in municipal bonds,
$2500 in bank certificates, $2000 in high-risk bonds
15. 4 games, 32 educational, 0 utility

CHAPTER 6
SECTION 6.1 ■ PAGE 476

1. dependent, inconsistent

2. C
1 1 �1 1

1 0 2 �3

0 2 �1 3

S

y

0 x3

3

2x + y = 10

2x + 4y = 28

�
1
x

	
x 	 2

x2 	 3

1

x � 1
	

1

1x � 1 2 2
�

1

x 	 2

y

0 x1

1(_2, 1)

y = 2x + 5

x2 + y = 5

y

0 x1

1

(2, 4)
2x + y = 8

x − y = −2

x + 2y = 4

y

_≈+y=3

x10
1

y

3x+4y=6

x40

3

110, 0, 1 2

x � 1
7 1t 	 1 2 , y � 1

7 19t 	 2 2 , z � t

12, 1, �1 2
15. 17.

19. No solution 21.

23.

25. Siobhan is 9 years old; Kieran is 13 years old

27. 12 nickels, 30 dimes, 8 quarters

29. 31.

33. 35. 37.

39. 41.

43. 45.

47. 49.

51. 53.

bounded bounded

55.

57. 2, 3

CHAPTER 5 TEST ■ PAGE 457

1. (a) linear (b)

2. (a) nonlinear (b) ,

3. (a) Nonlinear (b)

4. 12.12, 0.56 210.43, �0.29 2 ,1�0.55, �0.78 2 ,

A�110, �3110B, A110, 3110B

14, �6 2A12, 1B

13, �1 2

x �
b 	 c

2
, y �

a 	 c

2
, z �

a 	 b

2

y

0 x4

4

,( )4
3

16
3

x + 2y = 12

y = x + 4

y

0 x2

2,( )−3   2
2

3   2
2

,( )−3   2
2

3   2
2

x2 + y2 = 9

x + y = 0

y

0 x1

1

y

0 x1

1

y

0 x1

1

x2 + y2 = 9

y

0 x1

1

3x + y = 6

x 	 y 
2 � 412, �2 2A�1

2, 
7
4B,

12, 1 2
3

x2 	 2
�

x

1x2 	 2 2 2
�1
x

	
x 	 2

x 
2 	 1

�4
x

	
4

x � 1
	

�2

1x � 1 2 2
2

x � 5
	

1

x 	 3

x � 6 � 5t, y � 1
2 17 � 3t 2 , z � t

x � �4t 	 1, y � �t � 1, z � t

11, 1, 2 2112.07, 1.44 2111.94, �1.39 2 ,
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17. 19. No solution 21.

23. (a) (b) Impossible

25. (a) (b) Impossible

27. (a) Impossible (b)

29. (a) (b)

31. (a) (b)

33. (a) (b)

35. (a) (b) Impossible 37.

39. 41. Impossible

43. 45.

47.

49.

51. Only ACB is defined.

53. (a) (b) Total revenue in Santa
Monica, Long Beach, and Anaheim, respectively.
55. (a) (b) The first entry is the total
amount (in ounces) of tomato sauce produced, and the second en-
try is the total amount (in ounces) of tomato paste produced.

57.

(a) (b)

(c) F

2 3 2 3 2 2

3 0 3 2 1 2

2 1 3 3 0 3

2 0 1 0 1 3

3 0 3 3 1 2

2 1 3 2 0 2

V

F

2 1 2 1 2 2

1 3 1 2 3 2

2 3 1 1 3 1

2 3 3 3 3 1

1 3 1 1 3 2

2 3 1 2 3 2

VF

1 0 1 0 1 1

0 3 0 1 2 1

1 2 0 0 3 0

1 3 2 3 2 0

0 3 0 0 2 1

1 2 0 1 3 1

V

3105,000 58,000 4

34,690 1,690 13,210 4

ACB � B�3 �21 27 �6

�2 �14 18 �4
R

C
3 2 �1 1

1 0 �1 0

0 3 1 �1

S   D
x1

x2

x3

x4

T � C
0

5

4

S

B2 �5

3 2
R  B x

 y
R � B7

4
R

x � 1, y � �2x � 2, y � �1

C
�0.35 0.03 0.33

�0.55 �1.05 1.05

�2.41 �4.31 4.46

S

C
1.56 �5.62

1.28 �0.88

�1.09 0.97

SB 13

�7
R

B8 �335

0 343
RB4 �45

0 49
R

C
�1

8

�1

SC
5 �3 10

6 1 0

�5 2 2

S

B6 �8

4 �17
RB�4 7

14 �7
R

314 �14 4

B10 �25

0 35
R

B5 �2 5

1 1 0
R

C
0 �5

�25 �20

�10 10

SB�1 �1
2

1 2
R

3. (a) x and y (b) dependent (c)
4. (a) (b)
(c) No solution 5. 3 � 2 7. 2 � 1 9. 1 � 3

11.

13. (a) Yes (b) Yes (c)

15. (a) Yes (b) No (c)

17. (a) No (b) No (c)

19. (a) Yes (b) Yes (c)

21. 23.

25. (a) (b) (1, 3, 2)

27. (a) (b) (7, 3, �1, 3)

29. 31. 33. 35.
37. 39. No solution 41.
43. No solution 45.
47. 49.
51. No solution 53.
55. 57.
59. 61. ,
63.
65.
67.
69. 2 VitaMax, 1 Vitron, 2 VitaPlus 71. 5-mile run, 2-mile
swim, 30-mile cycle 73. Impossible

SECTION 6.2 ■ PAGE 487

1. dimension 2. (a) columns, rows (b) (ii), (iii) 3. (i), (ii)

4. 5. No 7. 9.

11. 13. Impossible 15. B5 2 1

7 10 �7
RC

3 6

12 �3

3 0

S

B1 3

1 5
Ra � �5, b � 3C

4 9 �7

7 �7 0

4 �5 �5

S

x � 1.2, y � 3.4, z � �5.2, „ � �1.3
x � 1.25, y � �0.25, z � 0.75
A74 � 7

4t, �
7
4 	 3

4t, 
9
4 	 3

4t, tB
y � 1

3s 	 1
3t, z � s, „ � tx � 1

3s � 2
3t1�1, 0, 0, 1 2

10, �3, 0, �3 2x � 5 � t, y � �3 	 5t, z � t
1�9, 2, 0 2

1�2, 1, 3 2x � �1
2s 	 t 	 6, y � s, z � t

1�2t 	 5, t � 2, t 2
12 � 3t, 3 � 5t, t 2110, 3, �2 2

1�1, 5, 0 21�1, 0, 1 211, 0, 1 211, 1, 2 2

d 

x 	 2y 	 3z � „ � 7

y � 2z � 5

z 	 2„ � 5

„ � 3

c 

x � 2y 	 4z � 3

y 	 2z � 7

z � 2

C
2 1 �3 5

2 3 1 13

0 �8 8 �8

SC
�1 1 2 0

0 4 7 4

1 �2 �1 �1

S

d 

x 	 3y �  „ � 0

z 	 2„ � 0

0 � 1

0 � 0

c 

x � 0

0 � 0

y 	 5z � 1

c
x 	 2y 	 8z � 0

y 	 3z � 2

0 � 0

e
x � �3

y � 5

C
3 1 �1 2

2 �1 0 1

1 0 �1 3

S

x � 2 � t, y � 1 � t, z � tx � 2, y � 1, z � 3
x � 3 	 t, y � 5 � 2t, z � t
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59. ; inverse exists for all x

61. (a) (b) 1 oz A, 1 oz B, 2 oz C

(c) 2 oz A, 0 oz B, 1 oz C (d) No

63. (a)

(b) (c)

She earns $16 on a standard model, $28 on a deluxe model and $36 
on a super-deluxe model.

SECTION 6.4 ■ PAGE 509

1. True 2. True 3. True 4. (a)
(b)
	1 (2 � 4 � (�3) � 1) � 0(3 � 4 � 0 � 1) 	 2(3 � (�3) � 0 � 2) � �7
5. 6 7. 0 9. �4 11. Does not exist 13. 15. 20, 20
17. �12, 12 19. 0, 0 21. 4, has an inverse
23. 5000, has an inverse 25. 0, does not have an inverse
27. �4, has an inverse 29. �6, yes 31. �12, yes 33. 0, no
35. �18 37. 120 39. (a) �2 (b) �2 (c) Yes 41.
43. 45. 47. 49.

51. 53. 55.

57. abcde 59. 0, 1, 2 61. 1, �1 63. 21 65.

69. (a)

(b) y � �0.05x2 	 3x

CHAPTER 6 REVIEW ■ PAGE 514

1. (a) 2 � 3 (b) Yes (c) No (d)

3. (a) 3 � 4 (b) Yes (c) Yes (d)

5. (a) 3 � 4 (b) No (c) No (d)

7. 9. No solution 11.
13. 15.
17. No solution 19. 21. Not equal

23. Impossible 25. 27.

29. 31. 33. C
�1

2
11
2

15
4 �3

2

�1
2 1

SC 30 22 2

�9 1 �4
Sc

�7
2 10

1 �9
2

d

310 0 �5 4C
4 18

4 0

2 2

S
11, t 	 1, t, 0 2

1s 	 1, 2s � t 	 1, s, t 2A�4
3t 	 4

3, 
5
3t � 2

3, tB
11, 0, 1, �2 210, 1, 2 2

c 

y � 3z � 4

x 	 y � 3z � 7

x 	 2y 	  z � 2

c
x 	 8z � �0

y 	 5z � �1

0 � �0

e
x 	 2y � �5

x 	 2y � �3

c 

1100a 	 10b 	 c � 25

1225a 	 15b 	 c � 333
4

1600a 	 40b 	 c � 40

63
2

A12, 
1
4, 

1
4, �1BA189

29 , �108
29 , 88

29B10, �1, 1 2

11, 3, 2 214, 2, �1 214, �1 210.6, �0.4 2
1�2, 5 2

1
8

 2 # 4 � 1�3 2 # 1 � 11

A�1 � C
7
4 �7

4 1

�27
28

31
28 �5

7

�29
56

25
56 �1

7

SC
9 11 8

13 15 16

8 7 14

S   C
x

y

z
S � C

740

1204

828

S

c 

 9x 	 11y 	 8z � 740

13x 	 15y 	 16z � 1204

 8x 	 7y 	 14z � 828

C
0 1 �1

�2 3
2 0

1 �3
2 1

S

1
2C

1 �e�x 0

e�x �e�2x 0

0 �0 1

S
(d)

(e) The letter E

SECTION 6.3 ■ PAGE 498

1. (a) identity (b) A, A (c) inverse
A X B

2. (a) (b)

A�1 B X

(c) (d) 7.

9. 11. 13.

15. No inverse 17. 19.

21. No inverse 23.

25. 27.

29. 31.

33. 35.

37. 39. x � 12, y � �8

41. x � 126, y � �50 43. x � �38, y � 9, z � 47
45. x � �20, y � 10, z � 16 47. x � 3, y � 2, z � 1
49. x � 3, y � �2, z � 2 51. x � 8, y � 1, z � 0, „ � 3

53. 55.

57. ; inverse does not exist for x � 0D
1 �

1
x

�
1
x

2

x2

T

1

2a
  B 1 1

�1 1
RB 7 2 3

10 3 5
R

C
�7 �3 �4

22
7 �2

7
16
7

50
7

26
7

37
7

S

C
�1

4
3
4

3
4

� 7
16 �23

16 � 3
16

7
8 �1

8 �5
8

SD
1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
7

T

C
1 �7

2
1
6

0 1
2 �1

6

0 0 1
3

SD
�2 3 �1 �2

0 �1 0 1
2

�2 2 �1 �2

�1 �1 �1 0

T

C
2
3

4
3 3

1 1 3
1
3

2
3 1

SD
0 0 �2 1

�1 0 1 1

0 1 �1 0

1 0 0 �1

T

C
�9

2 �1 4

3 1 �3
7
2 1 �3

S

C
�4 �4 5

1 1 �1

5 4 �6

SB 1 2

�1
2

2
3

 R

B 13 5

�5 �2
RB 3 5

�2 �3
RB 1

3 �1
2

2 2
R

B 1 �2

�3
2

7
2

Rx � �1, y � 3B 2 �3

�3 5
R  B4

3
R � B x

 y
R

B 2 �3

�3 5
RB5 3

3 2
R  B x

 y
R � B4

3
R

F

3 3 3 3 3 3

3 0 3 3 0 3

3 0 3 3 0 3

3 0 0 0 0 3

3 0 3 3 0 3

3 0 3 3 0 3

V
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CHAPTER 7
SECTION 7.1 ■ PAGE 530

1. focus, directrix 2.
3.

4. (a) (b)

5. III 7. II 9. VI

Order of answers for 11–23, part (a): focus; directrix; 
focal diameter
11. (a) 13. (a)
(b) (b)

15. (a) 17. (a)
(b) (b)

19. (a) 21. (a)
(b) (b) y

x6

1

y

x10
1

F10, �3 2 ; y � 3; 12FA0, 54B; y � �5
4; 5

y

x1

1

y

x10
1

FA�1
8, 0B; x � 1

8; 
1
2F10, �2 2 ; y � 2; 8

y

x10
2

y

x10
1

F1�6, 0 2 ; x � 6; 24F10, 2 2 ; y � �2; 8

0 1

3
Vertex (0, 0)

Focus (3, 0)

Directrix
x=_3

x 

y

0 1 

1 

Focus (0, 3)

Vertex (0, 0)

Directrix
y=_3

x 

y

F1  p, 0 2 , x � �p, F13, 0 2 , x � �3
y � �p, F10, 3 2 , y � �3F10, p 2 ,

35. 37.

39. �12 41. 43. �4 47. 49.

51. 53. 55. 0, no inverse

57. 59.

61. 63. 65. (a) Matrix A describes the
number of pounds of each vegetable sold on each day; matrix B

lists the price per pound of each vegetable. (b) ; 

$68.50 was the total made on Saturday, and $41.00 was the total
made on Sunday. 67. 69. 71. 11
73. $2,500 in bank A, $40,000 in bank B, $17,500 in bank C

CHAPTER 6 TEST ■ PAGE 517

1. Row-echelon form 2. Neither 3. Reduced row-echelon form
4. Reduced row-echelon form 5. 6. No solution

7. 8. Incompatible dimensions

9. Incompatible dimensions 10. 11.

12. 13. B is not square 14. B is not square

15. �3 16. (a) (b)

17. 18.

19. 1.2 lb almonds, 1.8 lb walnuts

FOCUS ON MODELING ■ PAGE 520

3. (a) Shear to the right (b)

(c) Shear to the left (d) We get back the original square.

5. (a)

(b)

TD �

(c)

TD � B0 1 2 5 5.25 2.25 2.75 7.75 8 2 0

0 0 4 4 5 5 7 7 8 8 0
R

T � B1 0.25

0 1
R

B0 0.75 0.75 3 3 0.75 0.75 4.5 4.5 0 0

0 0 4 4 5 5 7 7 8 8 0
R

T � B0.75 0

0 1
R

D � B0 1 1 4 4 1 1 6 6 0 0

0 0 4 4 5 5 7 7 8 8 0
R

T 
�1 � B1 �1.5

0 1
R

15, �5, �4 20 A 0 � 0, 0 B 0 � 2, B�1 � C
1 �2 0

0 1
2 0

3 �6 1

S

170, 90 2B4 �3

3 �2
R  B x

 y
R � B10

30
R

c
2 �3

2

�1 1
d

C
36 58

0 �3

18 28

SC
6 10

3 �2

�3 9

S
A�3

5 	 2
5  
t, 15 	 1

5t, tB

A52, 
5
2, 0B

A�87
26, 

21
26, 

3
2BA15, 

9
5B

AB � B68.5

41.0
R

A� 1
12, 

1
12, 

1
12B165, 154 2

24, ≥

1 0 0 �1
4

0 1
2 0 �1

4

0 0 1
3 �1

4

0 0 0 1
4

¥�1, £

3 2 �3

2 1 �2

�8 �6 9

§

1, c
9 �4

�2 1
dc

2 �2 6

�4 5 �9
d

c
7
2 �2

0 8
d1

3 c
�1 �3

�5 2
d1

3

C
14 26 �8

�3 �7
3

7
3

18 80
3 �35

3

SC
27 0 �21

�20 5 13

�5 22 �7

S
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Order of answers for 9–27 part (a): vertices; foci; eccentricity
9. (a) 11. (a)

(b) 10, 6
(b) 18, 12

(c) (c)

13. (a) 15. (a)

(b) 14, 10 (b) 6, 4
(c) (c)

17. (a) 19. (a)

(b) 8, 4 (b) 20, 16
(c) (c)

21. (a) 23. (a)

(b) (b)
(c) (c) y

x10

1

y

x10

1

4, 2226, 223

22/2F10, �22 2 ; 26/3F10, �26 2 ;

V10, �2 2 ;V10, �3 2 ;

y

x20
2

y

0 x4

2

_4

_2

F1�6, 0 2 ; 3513/2FA�2 13, 0B;

V1�10, 0 2 ;V1�4, 0 2 ;

y

0 x2

2

_2

_2

y

x10
1

15/3FA0, �15B;226/7F1�226, 0 2 ;

V10, �3 2 ;V1�7, 0 2 ;

y

x20
2

y

0 x5

3

_5

_3

25/3F10, �325 2 ;

V10, �9 2 ;V1�5, 0 2 ; F1�4, 0 2 ; 45
23. (a) 25.
(b)

27. 29.

31. 33. 35. 37.
39. 41. 43. 45.
47. 49. 51. 53.
55. 57. (a) , 1, 4, and 8
(b) The closer the directrix to the    
vertex, the steeper the parabola.

59. (a) y2 � 12x (b) 61. x2 � 600y

SECTION 7.2 ■ PAGE 538

1. sum; foci
2.

3.

4. (a) (b)

5. II 7. I

0 1 

1 
Focus
(0, 3)

Focus
(0, _3)

Vertex (0, _5)

Vertex (0, 5)

x 

y

0 1 

1 Focus (3, 0)Focus (_3, 0)

Vertex (_5, 0) Vertex (5, 0)

x 

y

10, a 2 , 10, �a 2 ; c � 2a2 � b2; 10, 5 2 , 10, �5 2 , 10, 3 2 , 10, �3 2

15, 0 2 , 1�5, 0 2 , 13, 0 2 , 1�3, 0 21a, 0 2 , 1�a, 0 2 ; c � 2a2 � b2;

8 115 � 31 cm

0
3_3

_1

p=8

p=4

p=1 p=1
2

x 
2 � �4py, p � 1

2x 
2 � �4 12 y

x � y2y2 � �3xy2 � �16xx2 � 8y
x2 � 20yy2 � 4xy2 � �1

5 xx2 � 40y
y2 � �8xx 2 � �3yy2 � �32xx2 � 8y

4

_4

1_2

1

_1

1_3

1

_0.5

3_3

y

x

2

_1

_2

FA� 5
12, 0B; x � 5

12; 
5
3
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4. (a) (b)

5. III 7. II

Order of answers for 9–25, part (a): vertices; foci; asymptotes
9. (a) 11. (a) 

(b) 4 (b) 12
(c) (c)

13. (a) 15. (a)

(b) 2 (b) 2

(c) (c)

17. (a) 19. (a)

(b) 4 (b) 12
(c) (c) y

x4

4

y

x5−5

5

−5

y � �3
2 xF10, �2213 2 ;y � � 

3
2 x

V10, �6 2 ;V1�2, 0 2 ; FA� 113, 0B;

y

x3

3

_3

_3

y

x5

2

_5

_2

y � �xy � � 
1
5 xFA0, � 126B;

V1�1, 0 2 ; FA� 12, 0B;V10, �1 2 ;

y

x1

4

y

0 x3

3

_3

_3

y � � 3 xFA0, � 2210B;y � �2xFA�2 15, 0B;

V10, �6 2 ;V1�2, 0 2 ;

Focus
(0, _5)

Vertex
(0, 4)

4
3y=_ x

Vertex
(0, _4)

Focus
(0, 5)

4
3y= x

0 1

1
x

y

Focus (_5, 0)

Asymptote Asymptote
3 
4 

Focus (5, 0)

y=_ x 

Vertex (_4, 0) Vertex (4, 0)

3 
4 y= x 

0 1 

1 
x 

y

25. (a) 27. (a)

(b) 2, 1 (b)
(c) (c)

29. 31. 33.

35. 37.

39. 41. 43.

45. 47. 49.

51. 53. 55.

57. 59.

61. (a) x2 	 y2 � 4

65. Perihelion 3.87 � 109 km; aphelion 6.45 � 109 km

67. 8 ft; 6.92 ft apart

SECTION 7.3 ■ PAGE 547

1. difference; foci
2. horizontal;

3. vertical;
10, �a 2 , 10, a 2 ; 2a2 	 b2; 10, �4 2 , 10, 4 2 , 10, �5 2 , 10, 5 2

1�a, 0 2 , 1a, 0 2 ; 2a2 	 b2; 1�4, 0 2 , 14, 0 2 , 1�5, 0 2 , 15, 0 2

y

0 x1

1

_1

y

0 x3

2

_3

_2

1�1, 0 210, �2 2

x 
2 	

y 
2

4
� 1

x 2

32
	

y2

36
� 1

x 
2

25
	

y 
2

5
� 1

x 
2

100
	

y 
2

91
� 1

x 
2

9
	

y 
2

13
� 1x 

2 	
y 

2

4
� 1

x 2

39
	

y2

49
� 1

x 2

4
	

y2

3
� 1

x 
2

25
	

y 
2

9
� 1

7

7_7

_7

5

6_6

_5

x 
2

256
	

y 
2

48
� 1

x 
2

4
	

y 
2

8
� 1

x 
2

25
	

y 
2

16
� 1

y

x1−1 0

2

−2

y

0 x1

1

_1

_1

4, 222

12/2FA� 12, 0B;13/2FA�13/2, 0B;

V1�2, 0 2 ;V1�1, 0 2 ;
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SECTION 7.4 ■ PAGE 556

1. (a) right; left (b) upward; downward

2.

3.

4.

5. (a) 7. (a)

(b) 6, 4 (b) 10, 6
(c) (c) y

x3
1

y

x1

1

V210, 0 2 ; F110, �9 2 , F210, �1 2V215, 1 2 ; F12 � 25, 1 2

C10, �5 2 ; V110, �10 2 ,C12, 1 2 ; V11�1, 1 2 , 

Focus
(_2, 1)

Focus
(8, 1)

0 1 

1 
Vertex (_1, 1) Vertex (7, 1)

x 

y 

Asymptote
Asymptote3 

4 y=_ x+ 13 
4 x- 5 

4 
3 
4 y=

Focus (_5, 0) Focus (5, 0)

Vertex (_4, 0) Vertex (4, 0)

Asymptote Asymptote
3 
4 y=_ x 3 

4 y= x 

0 1 

1 

x 

y

0 1 

1 
Focus (6, 1)Focus (0, 1)

Vertex (_2, 1) Vertex (8, 1)

x 

y

0 1 

1 Focus (3, 0)Focus (_3, 0)

Vertex (_5, 0) Vertex (5, 0)

x 

y

0 1 

1 

Focus (3, 4)

Vertex (3, 1)

Directrix
y=_2

x 

y

0 1 

1 

Focus (0, 3)

Vertex (0, 0)

Directrix
y=_3

x 

y

21. (a) 23. (a)

(b) (b) 4

(c) (c)

25. (a ) (b) 1

(c)

27. 29. 31.

33. 35.

37. 39. 41.

43. 45. 47.

49. (b) x2 � y2 � c2/2

53. (b)

As k increases, the
asymptotes get 
steeper.

55. x2 � y2 � 2.3 � 1019

10

5_5 0

k=12

k=8

k=4

k=1

x 
2

9
�

y2

16
� 1

x 
2

16
�

y2

16
� 1

y2

36
�

x 
2

20
� 1

x 
2 �

y2

25
� 1y2 �

x 
2

3
� 1

x 
2

9
�

y2

16
� 1

8

_8

8_8

8

_8

8_8

y2

9
� x 

2 � 1
y2

16
�

x 
2

16
� 1

x 
2

4
�

y2

12
� 1

y

x3

2

_3

_2

y � � 
1
2 xFA0, � 15/2B;VA0, � 

1
2B;

y

x5−5

5

−5

y

x5

5

_5

_5

422

y � �xF10, �212 2 ;y � � 
1
2 xF1� 110, 0B;

V10, �2 2 ;VA� 212, 0B;
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25. (a) 27. (a)

asymptotes asymptotes 

(b) (b) 

29. 31.

33. 35.

37. 39.

41. 43.

45. Parabola; 47. Hyperbola; 

asymptotes

directrix 

49. Ellipse; 51. Hyperbola; 
; 

; asymptotes 
major axis 10, minor axis 4 

y

0 x
1

1

y

0 x3

_5

y � � 
4
3 1x � 3 2V11�2, �5 2 , V218, �5 2

V13, �4 2F13, �5 2 ;FA3 � 121, �5B;
C13, 0 2 ;C13, �5 2 ;

y

x20

2

y

x50

5

y � �
25

5
1x � 1 2 	 2

x � �5

V11�4, 2 2 , V216, 2 2 ;F1�3, 4 2 ;

C11, 2 2 ; F11 � 230, 2 2 ; V1�4, 4 2 ;

1x � 3 2 2

9
	

y2

25
� 1

y2

16
�
1x � 1 2 2

9
� 1

1x 	 3 2 2 � 121y � 5 2
1y � 4 2 2

49
�
1x 	 1 2 2

32
� 1

1x � 2 2 2

100
	
1y 	 3 2 2

64
� 11y � 1 2 2 � x 

2 � 1

1x � 5 2 2

25
	

y2

16
� 1x2 � � 

1
4 1y � 4 2

y

1

4

x

y

x1

1

y � �3x 	 1y � �2
3 x � 5

3

y � 3x 	 7 andy � 2
3 x � 1

3 and

V21�1, 10 2 ; F1�1, 4 � 2210 2 ;V212, �1 2 ; F1�1 � 213, �1 2 ;

C1�1, 4 2 ; V11�1, �2 2 ,C1�1, �1 2 ; V11�4, �1 2 ,9. (a) , 11. (a)

(b) 8, 4 (b) 10, 4
(c) (c) 

13. (a) 15. (a)
directix directix 
(b) (b) 

17. (a) 19. (a)

directix directix 
(b) (b) 

21. (a) 23. (a)

asymptotes 

(b) (b) y

x1

2

y

x10
1

y � �4
3 x 	 5

3

y � 1
2 x 	 1

2 and y � �1
2 x � 1

2y � 4
3 x 	 13

3  and

F1�1, �25 2 ; asymptotesV212, 3 2 ; F11�6, 3 2 , F214, 3 2 ;

C1�1, 0 2 ; V1�1, � 1 2 ;C1�1, 3 2 ; V11�4, 3 2 ,

y

x1
1

y

x1

1

x � �1y � �1
8

V12, 3 2 ; F15, 3 2 ;V11, 0 2 ; FA1, 18B; 

y

x1
1

y

x20

1

x � 7
2y � �3

V12, �5 2 ; FA12, �5B;V13, �1 2 ; F13, 1 2 ;

y

x50
1

y

x10
1

F1�221, 1 2V21�1, 1 2 ; F1�5 � 223, 1 2

C10, 1 2 ; V1�5, 1 2 ;C1�5, 1 2 ; V11�9, 1 2
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9. (a) 11. (a) 
directrix directrix 
(b) (b)

13. (a) 15. (a)

(b) 10, 6 (b) 14, 4
(c) (c)

17. (a) 19. (a)

(b) 8, 4 (b) 8, 6
(c) (c)

21. (a) 23. (a)

(b) 12, 6 (b) 6, 4

(c) (c)

3_3

y

0 x

1

y

x10

2

FA� 15,  2BV212, 3 2 ; F12, �3 � 323 2

C10,  2 2 ; V1�3,  2 2 ;C12, �3 2 ; V112, �9 2 ,

y

x1

_4

4

y

0 x4

1

_4

FA3,  � 17BFA�2 13,  0B
C13,  0 2 ; V13,  � 4 2 ;C10,  0 2 ; V1�4,  0 2 ;

y

x20

4

y

0 x2_2
_2

2

F1�325, 0 2F10,  �4 2

C10, 0 2 ; V1�7, 0 2 ;C10,  0 2 ; V10,  �5 2 ;

y

x20
1

y

x10
1

y � �4F1�2,  �2 2 ;x � 1
2

V1�2,  �3 2 ;V10, 3 2 ; FA�1
2, 3B; 53. Degenerate conic 55. Point 

(pair of lines),

57. 59.

61. (a) (b) (c)

63. (a)

(c) The parabolas become narrower.

65.

CHAPTER 7 REVIEW ■ PAGE 560

1. (a) 3. (a) 
directrix directrix
(b) (b)

5. (a) 7. (a) 
directrix directrix 
(b) (b) y

x10
1

y

x40

1

x � �3y � 2
V1�2, 2 2 ; F1�1, 2 2 ; V10,  0 2 ; F10,  �2 2 ;

y

x1

1
0

y

x10

2

y � �2x � �1
V10, 0 2 ; F10, 2 2 ;V10,  0 2 ; F11,  0 2 ;

1x � 150 2 2

18,062,500
�

y2

18,040,000
� 1

6

6_6

_6

p=1
p=
p=2

p=-2
p=-

p=-1

1
2p=

3
2

1
2

3
2

p=-

F � 17F � 17F � 17

8

_12

6_2

3

4_2

_9

y

0 x1

1

(1, 3 )

y

0 x

4

4

y � � 
1
2 1x � 4 2

11, 3 2
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43. Parabola; 45. Hyperbola; 

;

47. Ellipse; ; 49. Parabola; ;

51. Ellipse; ; 53. Has no graph

55. x2 � 4y 57. 59.

61. 63.

65. (a) 91,419,000 mi (b) 94,581,000 mi
67. (a)

10

10_10

_10

k=8
k=4

k=1

k=2

41x � 7 2 2

225
	
1y � 2 2 2

100
� 1

1x � 1 2 2

3
	
1y � 2 2 2

4
� 1

x2

9
	
1y � 4 2 2

25
� 1

x 2

4
	

y2

25
� 1

y

0 x3

_3

V113, �4 2 , V213, �2 2

F a3, �3 �
22

2
b ; 

C13, �3 2

y

0 x

5

_60

_5

y

0 x3_3

3

V11, 4 � 225 2

FA�255
4 , 8B; directrix x � �257

4F11, 4 � 215 2 ;

V1�64, 8 2C11, 4 2

y

0
x18

18

_18

_18

y

0 x3

3

_3

_3

asymptotes y � �x

F10, �1222 2 ; V10, �12 2F10, �2 2 ; directrix y � 4
C10, 0 2 ;V10, 1 2 ;25. (a) 27. (a)

(b)

29. (a) 31. (a)

(b) (b)

33. (a) 35. (a)

asymptotes 

(b) (b)

37. y2 � 8x 39.

41.
1x � 4 2 2

16
	
1y � 2 2 2

4
� 1

y2

16
�

x2

9
� 1

y

0 x3

2

_3

_2

y

x20

6

y � � 
1
3 x � 2

asymptotes y � 1
3 x,y � �1

3x 	 8
3

FA�3,  �1 � 2 15B;y � 1
3 x 	 10

3  and
VA�3,  �1 � 12B;V21�1, 5 2 ; F1�1, 3 � 2210 2 ;

C1�3,  �1 2 ;C1�1, 3 2 ; V11�1, 1 2

y

0 1

1

4

_4

y

0 x3

3

_3

_3

asymptotes y � �1x 	 4 2
y � � 

112
 x

V210,  0 2 ; FA�4 � 4 12,  0B;FA�2 16,  0B; asymptotes

C1�4,  0 2 ; V11�8,  0 2 ,C10,  0 2 ; V1�4,  0 2 ;

y

x1

6

y

x2

2

y � �7
2 xy � � 

4
3 x

F1�253, 0 2 ; asymptotesF10,  �5 2 ; asymptotes 

C10, 0 2 ; V1�2, 0 2 ;C10,  0 2 ; V10,  �4 2 ;
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CUMULATIVE REVIEW TEST FOR 

CHAPTERS 5, 6, AND 7 ■ PAGE 567

1. (a) Nonlinear (b)
(c) Circle, parabola (d), (e)

2. (a) (b)
3. Xavier 4, Yolanda 10, Zachary 6
4. (a) A 	 B impossible; 

C � D �

CB impossible; 

det(B) impossible; det(C) � 2; det(D) � 0

(b) 5. (a)

(b) (c) (d)

6. 7.

8. (a) (b)
directrix directrix

9. (a) Hyperbola; (b) Ellipse; 

; 

asymptotes 

x0 1 

2 

y 

x2 

1 

y 
y � �1

3x

F1�212, 0 2F1�110, 0 2

V1�3, 0 2 ,V1�3, 0 2 ,

x0

1 

1 

y 

0

1

1

y 

x 

x � �1
8y � 3

2

F118, 1 2 ,F10, �3
2 2 ,

x 2 � 12y
1
x

	
2

x 2 �
x 	 2

x 2 	 4

x � 10, y � 15X � c
10

15
dc

2 �3
2

3 �5
2

d

c
x

y
d � c

5

0
dc

5 �3

6 �4
dC �1 � £

0 0 �1

�1
2

1
2 �1

2

1 0 1

§

BD � c
�1 �2 �1

�1
2 �1 �1

2

d ;

C
0 �4 �2

�1 �4 �4

�1 �1 �1

S ;  AB � c
�9

2 1 5

�4 2 0
d ;

x � t � 1, y � t 	 2, z � t13, 0, 1 2

y

x

2

2_2 0

10, 0 2 , 12, 2 2 , 1�2, 2 2

CHAPTER 7 TEST ■ PAGE 562

1. 2.

3.

4. x2 � 16y 5. 6.

7. y 2 � �x 8. 9.

10. Ellipse; 11. Hyperbola; 

,

asymptotes

12. Parabola; 

13. 14. 15.

FOCUS ON MODELING ■ PAGE 565

5. (c)
discriminant m 2 � 4ma 	 4a2 � 1m � 2a 2 2,  m � 2a

x 2 � mx 	 1ma � a2 2 � 0,

3
4 in.1x � 2 2 2 � 81y � 2 2

1x � 2 2 2

7
	

y2

16
� 1

FA72, �4B; directrix x � 9
2

y

0 x4

2

_4

_4

V14, �4 2 ;

y

0 x_2

4

y

0 x6

3

_3

y � 4 � �
322

4
1x 	 2 2

V1�2 � 222, 4 2 ,V2A6, �1
2B

F1�2 � 217, 4 2 ,FA3 � 25, �1
2B; V1A0, �1

2B

C1�2, 4 2 ,CA3, �1
2B;

1x � 2 2 2 �
y2

3
� 1

x2

16
	
1y � 3 2 2

9
� 1

y2

9
�

x2

16
� 1

x 2

16
	

y2

7
� 1

y

0 x8

8

_8

_8

V10,  �3 2 ; F10,  �5 2 ; y � � 
3
4 x

y

0 x4

2

_4

_2

y

0 x4

2

_4

_2

V1�4,  0 2 ; FA�2 13,  0B; 8, 4F10,  �3 2 , y � 3
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25. (a)
(b)

27. 2n 29. 2n 31. 3n � 2 33.

35. 37. 39. 1, 4, 9, 16, 25, 36

41.

43.

45.
47. 10 49. 51. 8 53. 31 55. 385 57. 46,438

59. 22 61.

63.

65. x3 	 x4 	 . . . 	 x100 67. 69.

71. 73. 75.

77. (a) 2004.00, 2008.01, 2012.02, 2016.05, 2020.08, 2024.12
(b) $2149.16 79. (a) 35,700, 36,414, 37,142, 37,885, 38,643
(b) 42,665 81. (b) 6898 83. (a)
(b) $38,000

SECTION 8.2 ■ PAGE 584

1. difference 2. common difference; 2, 5 3. True 4. True
5. (a) 5, 7, 9, 11, 13 7. (a)
(b) 2 (b) �1
(c) (c)

9.
11.

13. Arithmetic, 3 15. Arithmetic, �25 17. Not arithmetic
19. Arithmetic, 21. Arithmetic, 1.7
23. 11, 18, 25, 32, 39; 7; 
25. ; not arithmetic

27. �4, 2, 8, 14, 20; 6; 
29.
31.
33.
35.
37.
39. s, a5 � 2 	 4s, an � 2 	 1n � 1 2s, a100 � 2 	 99s

1.5, a5 � 31, an � 25 	 1.51n � 1 2 , a100 � 173.5
4, a5 � 4, an � �12 	 41n � 1 2 , a100 � 384
5, a5 � 24, an � 4 	 51n � 1 2 , a100 � 499
�8, a5 � �11, an � 21 � 81n � 1 2 , a100 � �771
3, a5 � 14, an � 2 	 31n � 1 2 , a100 � 299

an � �4 	 61n � 1 2

1
3, 

1
5, 

1
7, 

1
9, 

1
11

an � 11 	 71n � 1 2
� 

3
2

an � 5
2 � 1

2 1n � 1 2 , a10 � �2
an � 3 	 51n � 1 2 , a10 � 48

1

1

n

an

0
_1

1

10

15

5

n

an

0

5
2, 

3
2, 

1
2,� 

1
2, � 

3
2

Sn � Sn�1 	 2000

212
n�12/2n

a
100

k�0
xk

a
999

k�1

1

k1k 	 1 2

a
10

k�1
k2

a
100

k�1
k

14 	 15 	 16 	 17 	 18 	 19 	 110

11 	 12 	 13 	 14 	 15

11
6

1 � 12, 1 � 13, �1, 1 � 15; Sn � 1 � 1n 	 1

2
3, 

8
9, 

26
27, 

80
81; Sn � 1 �

1

3n

1
3, 

4
9, 

13
27, 

40
81, 

121
243, 

364
729

1 	 1�1 2 n12n � 1 2 /n2

an � 1�1 2 n	1
 5n

3

110

2, 12, 2, 12, 2, 12, 2, 12, 2, 12(c) Hyperbola; ; 

asymptotes 

10. (a)
; 

ellipse

(b)

hyperbola

11.

CHAPTER 8
SECTION 8.1 ■ PAGE 578

1. the natural numbers 2.
3. 2, 3, 4, 5; 101 5.

7. 5, 25, 125, 625, 5100 9.

11. 0, 2, 0, 2; 2 13. 1, 4, 27, 256; 100100

15. 3, 2, 0, �4, �12 17. 1, 3, 7, 15, 31
19. 1, 2, 3, 5, 8
21. (a) 7, 11, 15, 19, 23, 27, 31, 35, 39, 43
(b)

23. (a)
(b) 14

110

4
3, 

6
512, 6, 4, 3, 12

5 , 2, 12
7 , 32, 

45

110

�1, 14, � 
1
9, 

1
16; 

1
10,000

1
2, 

1
3, 

1
4, 

1
5; 

1
101

n; 12 	 22 	 32 	 42 � 30

1x � 5 2 2

16
�

y2

9
� 1

F21�3 � 312, 4 2 ;
F11�3 	 312, 4 2 ,

x0 

4 

4 

y

F210, 3 � 15 2
F110, 3 	 15 2 ,y

0 x

3

2_2

x0 1 

2 

y 

y � �1
3 x

V10, �1 2 , F10, �110 2
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5. Let denote the statement

.

Step 1 is true, since 

Step 2 Suppose is true. Then

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

7. Let denote the statement

.

Step 1 is true, since .

Step 2 Suppose is true. Then

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

9. Let denote the statement

.

Step 1 is true, since .

Step 2 Suppose is true. Then

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.P1n 2

P1k 2P1k 	 1 2

 � 
1k 	 1 221k 	 2 2 2

4

 � 
1k 	 1 2 2 3k 

2 	 41k 	 1 2 4

4

Induction 
hypothesis � 

k 
21k 	 1 2 2

4
	 1k 	 1 2 3

13 	 23 	 . . . 	 k3 	 1k 	 1 2 3
P1k 2

13 �
12 # 11 	 1 2 2

4
P11 2

13 	 23 	 . . . 	 n3 �
n21n 	 1 2 2

4

P1n 2

P1n 2
P1k 2P1k 	 1 2

 � 
1k 	 1 2 1k 	 2 2 1k 	 3 2

3

Induction 
hypothesis � 

k1k 	 1 2 1k 	 2 2

3
	 1k 	 1 2 1k 	 2 2

1 # 2 	 2 # 3 	 . . . 	 k1k 	 1 2 	 1k 	 1 2 1k 	 2 2

P1k 2

1 # 2 �
1 # 11 	 1 2 # 11 	 2 2

3
P11 2

1 # 2 	 2 # 3 	 . . . 	 n1n 	 1 2 �
n1n 	 1 2 1n 	 2 2

3

P1n 2

P1n 2
P1k 2P1k 	 1 2

 � 
1k 	 1 2 331k 	 1 2 	 7 4

2

 � 
3k2 	 13k 	 10

2

Induction 
hypothesis � 

k13k 	 7 2

2
	 13k 	 5 2

5 	 8 	 . . . 	 13k 	 2 2 	 331k 	 1 2 	 2 4

P1k 2

5 �
113 # 1 	 7 2

2
P11 2

5 	 8 	 . . . 	 13n 	 2 2 �
n13n 	 7 2

2

P1n 241. 43. �100, �98, �96 45. 30th 47. 100 49. �660
51. 1090 53. 20,301 55. 1735 57. 832.3 59. 46.75
63. Yes 65. 50 67. $1250 69. $403,500 71. 20 73. 78

SECTION 8.3 ■ PAGE 591

1. ratio 2. common ratio; 2, 5 3. True 4. (a) a

(b) geometric; converges, ; diverges
5. (a) 5, 10, 20, 40, 80 7. (a)
(b) 2 (b)
(c) (c)

9. an � 3 � 5n�1, a4 � 375 11.
13. Geometric, 2 15. Geometric, 17. Geometric,

19. Not geometric 21. Geometric, 1.1

23. 6, 18, 54, 162, 486; geometric, common ratio 3; an � 6 � 3n�1

25. ; geometric, common ratio 

27. 0, ln 5, 2 ln 5, 3 ln 5, 4 ln 5; not geometric

29. 3, a5 � 162, an � 2 � 3n�1

31.

33.

35. 37.

39. 41. 43. 45.

47. 11th 49. 315 51. 441 53. 3280 55. 57.

59. 61. divergent 63. 2 65. divergent 67.

69. 71. 73. 75. 10, 20, 40

77. (a) (b) 4th year 79. 19 ft,

81. 83. (a) ft (b)

85. 2801 87. 3 m 89. (a) 2 (b) 91. 1

SECTION 8.4 ■ PAGE 598

1. amount 2. present value 3. $13,180.79 5. $360,262.21
7. $5,591.79 9. $572.34 11. $13,007.94 13. $2,601.59
15. $307.24 17. $733.76, $264,153.60 19. $583,770.65
21. $9020.60 23. (a) $859.15 (b) $309,294.00
(c) $1,841,519.29 25. 18.16% 27. 11.68%

SECTION 8.5 ■ PAGE 605

1. natural; P(1) 2. (ii)
3. Let denote the statement .

Step 1 is true, since .
Step 2 Suppose is true. Then

Induction
hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.P1n 2

P1k 2P1k 	 1 2

 � 1k 	 1 2 1k 	 2 2

 � k1k 	 1 2 	 21k 	 1 2

2 	 4 	 . . . 	 2k 	 21k 	 1 2

P1k 2
2 � 111 	 1 2P11 2

2 	 4 	 . . . 	 2n � n1n 	 1 2P1n 2

8 	 4 12

18 � A13B
n�3

17 
8
9

64
25, 

1024
625 , 5 A45B

n

80 A34B
nVn � 160,00010.80 2 n�1

112
999

1
33

7
9

12 	 13
4

3
2

6141
1024

25
4a1 � 5, an � 5 # 2n�1a1 � 25, a2 � 50

3
1
2

s2/7, a5 � s8/7, an � s21n�12/732/3, a5 � 311/3, an � 312n	12/3

� 
1
12, a5 � 1

144, an � 144 A� 
1

12B
n�1

�0.3, a5 � 0.00243, an � 10.3 2 1�0.3 2 n�1

an � 1
4 A14B

n�11
4;

1
4, 

1
16, 

1
64, 

1
256, 

1
1024

1
2

2
3

an � 5
2 A� 

1
2B

n�1
, a4 � � 

5
16

1

1

n

an

0
_1

1

40

60

20

n

an

0

80

� 
1
2

5
2, � 

5
4, 

5
8, � 

5
16, 

5
32

a/ 11 � r 2

a
1 � r 

n

1 � r
b

1
2
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21. Let denote the statement n � 2n.

Step 1 is true, since 1 � 21.
Step 2 Suppose is true. Then

Induction hypothesis

Because 1 � 2k

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

23. Let denote the statement for x � �1.

Step 1 is true, since .
Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

25. Let denote the statement an � 5 � 3n�1.

Step 1 is true, since a1 � 5 � 30 � 5.
Step 2 Suppose is true. Then

Definition of ak+1

Induction hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

27. Let denote the statement x � y is a factor of xn � yn.

Step 1 is true, since x � y is a factor of x1 � y1.
Step 2 Suppose is true. Now

But is clearly divisible by x � y, and is di-
visible by x � y (by the induction hypothesis), so their sum is di-
visible by x � y. So follows from . Thus by the
Principle of Mathematical Induction holds for all n.

29. Let denote the statement F3n is even.

Step 1 is true, since F3�1 � 2, which is even.
Step 2 Suppose is true. Now, by the definition of the 
Fibonacci sequence

But F3k is even (by the induction hypothesis), and 2 � F3k	1 is
clearly even, so is even. So follows from .
Thus by the Principle of Mathematical Induction holds for 
all n.

P1n 2
P1k 2P1k 	 1 2F31k	12

 � F3k 	 2 # F3k	1

 � F3k	1 	 F3k 	 F3k	1

 F31k	12 � F3k	3 � F3k	2 	 F3k	1

P1k 2
P11 2

P1n 2

P1n 2
P1k 2P1k 	 1 2

1x 
k � y 

k 2yx 
k1x � y 2

 � x 
k1x � y 2 	 1x 

k � y 
k 2y

x 
k	1 � y 

k	1 � x 
k	1 � x 

ky 	 x 
ky � y 

k	1

P1k 2
P11 2

P1n 2

P1n 2
P1k 2P1k 	 1 2

 � 5 # 3k

 � 3 # 5 # 3k�1

ak	1 � 3 # ak

P1k 2
P11 2

P1n 2

P1n 2
P1k 2P1k 	 1 2

 � 1 	 1k 	 1 2x

 � 1 	 1k 	 1 2x 	 kx2

 � 11 	 x 2 11 	 kx 2

11 	 x 2 k	1 � 11 	 x 2 11 	 x 2 k

P1k 2
11 	 x 2 1 � 1 	 1 # xP11 2

11 	 x 2 n � 1 	 nxP1n 2

P1n 2
P1k 2P1k 	 1 2

 � 2 # 2k � 2k	1

 � 2k 	 2k

 k 	 1 � 2k 	 1

P1k 2
P11 2

P1n 211. Let denote the statement
.

Step 1 is true, since .
Step 2 Suppose is true. Then

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

13. Let denote the statement
.

Step 1 is true, since .
Step 2 Suppose is true. Then

Induction
hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

15. Let denote the statement n2 	 n is divisible by 2.

Step 1 is true, since 12 	 1 is divisible by 2.
Step 2 Suppose is true. Now

But k2 	 k is divisible by 2 (by the induction hypothesis), and
is clearly divisible by 2, so is divisi-

ble by 2. So follows from . Thus by the Principle of
Mathematical Induction holds for all n.

17. Let denote the statement n2 � n 	 41 is odd.

Step 1 is true, since 12 � 1 	 41 is odd.
Step 2 Suppose is true. Now

But k2 � k 	 41 is odd (by the induction hypothesis), and 2k is
clearly even, so their sum is odd. So follows from .
Thus by the Principle of Mathematical Induction holds for 
all n.

19. Let denote the statement 8n � 3n is divisible by 5.

Step 1 is true, since 81 � 31 is divisible by 5.
Step 2 Suppose is true. Now

which is divisible by 5 because 8k � 3k is divisible by 5 (by the in-
duction hypothesis) and 5 � 3k is clearly divisible by 5. So 
follows from . Thus by the Principle of Mathematical
Induction holds for all n.P1n 2

P1k 2
P1k 	 1 2

 � 8 # 8k � 18 � 5 2 # 3k � 8 # 18k � 3k 2 	 5 # 3k

8k	1 � 3k	1 � 8 # 8k � 3 # 3k

P1k 2
P11 2

P1n 2

P1n 2
P1k 2P1k 	 1 2

1k 	 1 22 � 1k 	 1 2 	 41 � 1k2 � k 	 41 2 	 2k

P1k 2
P11 2

P1n 2

P1n 2
P1k 2P1k 	 1 2
1k 	 1 2 2 	 1k 	 1 221k 	 1 2

 � 1k2 	 k 2 	 21k 	 1 2

1k 	 1 2 2 	 1k 	 1 2 � k2 	 2k 	 1 	 k 	 1

P1k 2
P11 2

P1n 2

P1n 2
P1k 2P1k 	 1 2

 � 2 	 2k2k	1 � 211 	 k2k	1 2

 � 2 	 1k � 1 22k	1 	 1k 	 1 2 # 2k	1

 � 2 31 	 1k � 1 22k 4 	 1k 	 1 2 # 2k	1

1 # 2 	 2 # 22 	 . . . 	 k # 2k 	 1k 	 1 2 # 2k	1

P1k 2
1 # 2 � 2 31 	 0 4P11 2

1 # 2 	 2 # 22 	 . . . 	 n # 2n � 2 31 	 1n � 1 22n 4
P1n 2

P1n 2
P1k 2P1k 	 1 2

 � 21k 	 1 2 21k 	 2 2 2

 � 1k 	 1 2 212k2 	 8k 	 8 2

Induction hypothesis � 2k21k 	 1 2 2 	 321k 	 1 2 4 3

23 	 43 	 . . . 	 12k 2 3 	 321k 	 1 2 4 3

P1k 2
23 � 2 # 1211 	 1 2 2P11 2

23 	 43 	 . . . 	 12n 2 3 � 2n21n 	 1 2 2
P1n 2
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17. 15 19. 4950 21. 18 23. 32
25. x4 	 8x3y 	 24x2y2 	 32xy3 	 16y4

27.

29. x20 	 40x19y 	 760x18y2

31. 25a26/3 	 a25/3 33. 48,620x18 35. 300a2b23 37. 100y99

39. 13,440x4y6 41. 495a8b8 43. 45.
47. 3x2 	 3xh 	 h2

CHAPTER 8 REVIEW ■ PAGE 617

1. 3. 5. 1, 3, 15, 105; 654,729,075
7. 1, 4, 9, 16, 25, 36, 49 9. 1, 3, 5, 11, 21, 43, 85
11. (a) 7, 9, 11, 13, 15 13. (a)
(b) (b)

(c) 55 (c)
(d) Arithmetic, common (d) Geometric, common 
difference 2 ratio 

15. Arithmetic, 7 17. Arithmetic, t 	 1 19. Geometric,

21. Geometric, 23. 2i 25. 5 27.
29. (a) (b) $32,000, $33,600, $35,280,
$37,044, $38,896.20, $40,841.01, $42,883.06, $45,027.21
31. 12,288 35. (a) 9 (b) 37. 126
39. 384 41. 02 	 12 	 22 	 . . . 	 92

43.

45. 47. 49. Geometric; 4.68559

51. Arithmetic, 53. Geometric, 9831
55. 57. Divergent 59. Divergent 61. 13 63. 65,534
65. $2390.27
67. Let denote the statement

.

Step 1 is true, since .

Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.P1n 2

P1k 2P1k 	 1 2

 � 
1k 	 1 2 331k 	 1 2 � 1 4

2

 � 
1k 	 1 2 13k 	 2 2

2

 � 
3k2 � k 	 6k 	 2

2

� 
k13k � 1 2

2
	 33k 	 1 4

1 	 4 	 7 	 . . . 	 13k � 2 2 	 331k 	 1 2 � 2 4

P1k 2

1 �
113 # 1 � 1 2

2
P11 2

1 	 4 	 7 	 . . . 	 13n � 2 2 �
n13n � 1 2

2

P1n 2

5
7

5050 15

a
100

k�1
k2k	2

a
33

k�1
3k

3

22 	
32

23 	
33

24 	 . . . 	
350

251

�6 12

An � 32,00011.05 2 n�1

81
4

4
27

1

t

3
2

633
64

1

2

3

1

n

an

0

4

1

10

15

5

n

an

0

3
4, 

9
8, 

27
16, 

81
32, 

243
64

0, 14, 0, 1
32; 1

500
1
2, 

4
3, 

9
4, 

16
5 ; 100

11

12a 	 b 2 31x 	 y 2 4

1 	
6
x

	
15

x2 	
20

x3 	
15

x4 	
6

x5 	
1

x6

31. Let denote the statement
.

Step 1 is true, since F2
1 � F1 � F2 (because F1 � F2 � 1).

Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

33. Let denote the statement .

Step 1 is true, since .

Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n � 2.

35. Let denote the statement Fn � n.

Step 1 is true, since F5 � 5 (because F5 � 5).
Step 2 Suppose is true. Now

Definition of the Fibonacci sequence

Induction hypothesis

Because Fk�1 � 1

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n � 5.

SECTION 8.6 ■ PAGE 614

1. binomial 2. Pascal’s; 1, 4, 6, 4, 1

3.

4. Binomial; 

5. x6 	 6x5y 	 15x4y2 	 20x3y3 	 15x2y4 	 6xy5 	 y6

7.

9. x5 � 5x4 	 10x3 � 10x2 	 5x � 1
11. x10y5 � 5x8y4 	 10x6y3 � 10x4y2 	 5x2y � 1
13. 8x3 � 36x2y 	 54xy2 � 27y3

15.
1

x5 �
5

x7/2
	

10

x2 �
10

x1/2
	 5x � x5/2

x4 	 4x2 	 6 	
4

x2 	
1

x4

a
4

0
b , a

4

1
b , a

4

2
b , a

4

3
b , a

4

4
b

n!

k!1n � k 2 !
; 

4!

3!14 � 3 2 !
� 4

P1n 2
P1k 2P1k 	 1 2

 � k 	 1

 � k 	 Fk�1

Fk	1 � Fk 	 Fk�1

P1k 2
P15 2

P1n 2

P1n 2
P1k 2P1k 	 1 2

Definition of the
Fibonacci sequence � c

Fk	2 Fk	1

Fk	1 Fk

d

 � c
Fk	1 	 Fk Fk	1

Fk 	 Fk�1 Fk

d

 � c
Fk	1 Fk

Fk Fk�1
d c

1 1

1 0
d

c
1 1

1 0
d

k	1

� c
1 1

1 0
d

k

c
1 1

1 0
d

P1k 2

c
1 1

1 0
d

2

� c
2 1

1 1
d � c

F3 F2

F2 F1
dP12 2

c
1 1

1 0
d

n

� c
Fn	1 Fn

Fn Fn�1
dP1n 2

P1n 2
P1k 2P1k 	 1 2

 � Fk	1
# Fk	2

Definition of the
Fibonacci sequence

 � Fk	11Fk 	 Fk	1 2

 � Fk
# Fk	1 	 F2

k	1

F2
1 	 F2

2 	 . . . 	 F2
k 	 F2

k	1

P1k 2
P11 2

F2
1 	 F2

2 	 . . . 	 F2
n � Fn

# Fn	1

P1n 2

A56 Answers to Selected Exercises and Chapter Tests

Unless otherwise noted, all content on this page is © Cengage Learning.

90169_Ans_SE_A01-A60.qxd  11/30/11  9:23 AM  Page A56



11. 32x5 	 80x4y2 	 80x3y4 	 40x2y6 	 10xy8 	 y10

12.

13. (a) (b) 3.09 lb (c) Geometric

FOCUS ON MODELING ■ PAGE 622

1. (a) An � 1.0001An�1, A0 � 275,000 (b) A0 � 275,000,
A1 � 275,027.50, A2 � 275,055.00, A3 � 275,082.51,
A4 � 275,110.02, A5 � 275,137.53, A6 � 275,165.04,
A7 � 275,192.56 (c)
3. (a) An � 1.0025An�1 	 100, A0 � 100 (b) A0 � 100,
A1 � 200.25, A2 � 300.75, A3 � 401.50, A4 � 502.51
(c) (d) $6580.83
5. (b) A0 � 2400, A1 � 3120, A2 � 3336, A3 � 3400.8,
A4 � 3420.2 (c)
(d) 3427.8 tons, 3428.6 tons
(e)

7. (b) In the 35th year
9. (a) R1 � 104, R2 � 108, R3 � 112, R4 � 116, R5 � 120,
R6 � 124, R7 � 127 (b) It approaches 200.

CHAPTER 9
SECTION 9.1 ■ PAGE 633

1. ; 2. permutations,
3. combinations, 4. (a) False (b) True
(c) False (d) True 5. 336 7. 7920 9. 100 11. 56
13. 330 15. 100 17. 12 19. (a) 40,320 (b) 336
21. 8,000,000 23. 60 25. 32 27. 216 29. 158,184,000
31. 208,860 33. 24,360 35. 700,000,000 37. (a) 56
(b) 256 39. 1024 41. (a) 3,628,800 (b) 151,200
43. 2730 45. 336 47. 362,880 49. 997,002,000
51. 24 53. 15 55. 277,200 57. 2,522,520 59. 168
61. 2300 63. 220 65. 2,598,960 67. 120 69. 495
71. 120 73. 13,983,816 75. (a) 15,504 (b) 792 (c) 6160
77. 1,162,800 79. 104,781,600 81. 6600 83. 182 85. 48
87. (a) 20,160 (b) 8640 89. 17,813,250

SECTION 9.2 ■ PAGE 646

1. sample space; event; ; ; 

2. (a)

(b) mutually exclusive; mutually exclusive

(c)

3. ; P1E 0 F 2 �
1

3
P1E 0 F 2 �

n1E � F 2

n1F 2

P1E � F 2 � P1E 2 	 P1F 2

P1E � F 2 � P1E 2 	 P1F 2 � P1E � F 2P1E 2 �
n1E 2

n1S 2
�

3

4

E � 5HH, HT, TH6S � 5HH, HT, TH, TT6

n!/ 3r! 1n � r 2 ! 4
n!/ 1n � r 2 !2 � 3 � 6m � n

250

500

3600

200

An � 3428.611 � 0.3n	1 2

An � 100 3 11.0025n	1 � 1 2 /0.0025 4

An � 1.0001n1275,000 2

an � 10.85 2 11.24 2 n

13x 2 31�2 2 7 � �414,720x 
3a

10

3
b

69. Let denote the statement
.

Step 1 is true, since .
Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

71. Let denote the statement an � 2 � 3n � 2.

Step 1 is true, since a1 � 2 � 31 � 2 � 4.
Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.

73. 100 75. 32 77.
79. 1 � 6x2 	 15x4 � 20x6 	 15x8 � 6x10 	 x12

81. 1540a3b19 83. 17,010A6B4

CHAPTER 8 TEST ■ PAGE 619

1. 1, 6, 15, 28, 45, 66; 161 2. 2, 5, 13, 36, 104, 307 3. (a) 3

(b) (c) 104 4. (a) (b)

(c) 3/48 5. (a) (b) 6. (a) (b) 60

8. (a)

(b)

9. (a) (b)

10. Let denote the statement

.

Step 1 is true, since .

Step 2 Suppose is true. Then

Induction hypothesis

So follows from . Thus by the Principle of 
Mathematical Induction holds for all n.P1n 2

P1k 2P1k 	 1 2

 � 
1k 	 1 2 3 1k 	 1 2 	 1 4 321k 	 1 2 	 1 4

6

 � 
1k 	 1 2 12k2 	 7k 	 6 2

6

 � 
1k 	 1 2 3k12k 	 1 2 	 61k 	 1 2 4

6

 � 
k1k 	 1 2 12k 	 1 2 	 61k 	 1 2 2

6

 � 
k1k 	 1 2 12k 	 1 2

6
	 1k 	 1 2 2

12 	 22 	 . . . 	 k2 	 1k 	 1 2 2

P1k 2

12 �
111 	 1 2 12 # 1 	 1 2

6
P11 2

12 	 22 	 . . . 	 n2 �
n1n 	 1 2 12n 	 1 2

6

P1n 2

2 	 1258,025
59,049

1�1 2 321 	 1�1 2 422 	 1�1 2 523 	 1�1 2 624 � 10

11 � 52 2 � �50

11 � 12 2 	 11 � 22 2 	 11 � 32 2 	 11 � 42 2 	

� 
8
9, �78

58 � 1

12,500
1
5, 

1
25

an � 12A14B
n�11

4an � 2 	 1n � 1 23

A3 � 3A2B 	 3AB2 � B3

P1n 2
P1k 2P1k 	 1 2

 � 2 # 3k	1 � 2

 � 312 # 3k � 2 2 	 4

 ak	1 � 3ak 	 4

P1k 2
P11 2

P1n 2

P1n 2
P1k 2P1k 	 1 2

 � 1k 	 1 2 	 1

 � 1k 	 1 2 a 1 	
1

k 	 1
b

a 1 	
1

1
b a 1 	

1

2
b  . . . a1 	

1

k
b a 1 	

1

k 	 1
b

P1k 2
A1 	 1

1B � 1 	 1P11 2

A1 	 1
1B A1 	 1

2B . . . A1 	 1
nB � n 	 1

P1n 2

Answers to Section 9.2 A57
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19. (a) (b)

21.
23.
25. (a)
(b)

27. (a)
(b)

(c)
29. (a)
(b)
(c)
31. (a)
(b)
33.

35. (a) (b)
(c)
(d)

37. (a)
(b)
39. (a)
(b)
41. (a)

(b) Yes

SECTION 9.4 ■ PAGE 658

1. 2. $19 3. $1.50
5. $0.94 7. $0.92 9. 0 11. 13.
15. 17. No, she should expect to lose $2.10 per stock.
19. 21. 3.35 h 23. 1.95 25. (a) No (b)
27. (a) No (b) 29. (a) No (b)

CHAPTER 9 REVIEW ■ PAGE 661

1. 624 3. (a) 10 (b) 20 5. 120 7. 45 9. 17,576
11. 120 13. 5 15. 14 17. (a) 240 (b) 3360 (c) 1680
19. 720 21. 120 23. (a) 31,824 (b) 11,760 (c) 19,448
(d) 2808 (e) 2808 (f) 6,683,040
25. (a) (b) (c) (d)
27. (a) S � {HHH, HHT, HTH, HT T, THH, THT, T TH, T T T}
(b) (c) (d) 29. 31. (a) (b) (c)

33. (a) (b)

(c) 35. 37. (a) 3 (b) 0.511
24

2 # C126, 4 2

C152, 4 2
� 0.11044

C113, 4 2

C152, 4 2
� 0.00264

C14, 4 2

C152, 4 2
� 3.69 � 10�6

3
52

1
48

1
624

1
78

1
2

1
2

1
8

4
5

2
15

8
15

2
3

$623$70
$25.50�$0.93

�$0.50
�$0.0526�$0.30

E � $10 � 0.9 	 $100 � 0.1 � $19

C110, 10 2 10.4 2 1010.6 2 0 � 0.0123
C110, 8 2 10.4 2 8 10.6 2 2 	 C110, 9 2 10.4 2 910.6 2 1 	

1 � 10.7 2 4 � 0.7599
C14, 1 2 10.3 2 110.7 2 3 � 0.4116

C14, 3 2 10.25 2 310.75 2 1 	 C14, 4 2 10.25 2 410.75 2 0 � 0.05078
1 � 10.75 2 4 � 0.68359

0.46606
1 � C16, 6 2 10.25 2 010.75 2 6 � C16, 5 2 10.25 2 110.75 2 5 �
C16, 3 2 10.75 2 310.25 2 3 � 0.13184

10.25 2 6 � 2.4414 � 10�410.75 2 6 � 0.17798
0.038147

1 � C18, 0 2 10.04 2 010.96 2 8 � C18, 1 2 10.04 2 110.96 2 7 �
1 � 10.995 2 3 � 0.014925
10.005 2 3 � 1.25 � 10�7

C110, 5 2 10.52 2 510.48 2 5 � 0.24413
10.48 2 10 � 6.4925 � 10�4

10.52 2 10 � 1.4456 � 10�3

C14, 4 2 10.75 2 410.25 2 0 � 0.31641
C14, 4 2 10.75 2 410.25 2 0 � 0.94922

C14, 2 2 10.75 2 210.25 2 2 	 C14, 3 2 10.75 2 310.25 2 1 	

1 � C14, 0 2 10.75 2 010.25 2 4 � 0.99609
C110, 2 2 10.45 2 210.55 2 8 � 0.90044

1 � C110, 0 2 10.45 2 010.55 2 10 � C110, 1 2 10.45 2 110.55 2 9 �

C110, 5 2 10.45 2 510.55 2 5 � 0.23403
C110, 4 2 10.4 2 410.6 2 6 � 0.25082

C16, 2 2 A16B
2
A56B

4 � 0.20094

0.3

0 2 3 41 5 6 7

4. (a) (b) independent; independent
(c)
5. (a) (b) (c)
7. (a) (b) (c) (d)
9. (a) (b) (c)
11. (a) (b) (c)
13. (a) (b) (c)

15. (a) (b)

(c) (d)

17. (a) (b)

19. (a) (b)

21. (a) (b) (c) 23. (a) Mutually exclusive; 

(b) Not mutually exlusive; 25. (a) Not mutually exclusive; 

(b) Mutually exlusive; 27. (a) (b) 29. 31. (a)
(b) (c) (d) 33. (a) (b) 35. (a) (b)
37. 39. (a) Yes (b)
41. (a)

(b) (c) (d) (e)
43. 45.
47. 49. (a)

(b) 51.

53. (a) (b) 55. 57.

59. (a) (b) (c) (d) 61. (i)

63. 65. 67.

SECTION 9.3 ■ PAGE 653

1. two; success, failure 2.
3.
5.
7.
9.
11.
13.
15. (a) (b) 

17. (a) (b)

1
16

0 2 3 41

0 2 3 4 5

0.2

1

1 � C15, 0 2 10.7 2 010.3 2 5 � C15, 1 2 10.7 2 110.3 2 4 � 0.96922
C15, 5 2 10.7 2 510.3 2 0 	 C15, 4 2 10.7 2 410.3 2 1 � 0.52822

C15, 4 2 10.7 2 410.3 2 1 	 C15, 5 2 10.7 2 510.3 2 0 � 0.52822
C15, 1 2 10.7 2 110.3 2 4 � 0.02835
C15, 0 2 10.7 2 010.3 2 5 � 0.00243
C15, 2 2 10.7 2 210.3 2 3 � 0.1323

1 � p; C1n, r 2pr11 � p 2 n�r

1
9,979,200

1
10600/P140, 3 2 � 5/494

13
16

11
16

1
2

3
8

1/363 � 2.14 � 10�51
1444

1
4

3
4

1

P18, 8 2
	

1

P18, 8 2
� 0.00004961/4818 � 5.47 � 10�31

1/486 � 8.18 � 10�111
1024

1/C149, 6 2 � 7.15 � 10�89
19

11
16

1
8

3
8

1
16BBBG, BBBB6

GBGB, BGGB, BGBG, BBGG, GBBG, GBBB, BGBB, BBGB,
S � 5GGGG, GGGB, GGBG, GBGG, BGGG, GGBB, 

1
8

1
12

1
221

4
663

7
15

7
30

2
5

2
51

1
2

1
3

1
3

1
3

1
2

11
26

2
3

111
2

3
4

1 �
C140, 5 2

C152, 5 2
� 0.7471 �

C139, 5 2

C152, 5 2
� 0.778

C15, 2 2

C18, 2 2
� 0.36

C13, 2 2

C18, 2 2
� 0.11

4

C152, 5 2
� 0.00000154

C112, 5 2

C152, 5 2
� 0.000305

4 # C113, 5 2

C152, 5 2
� 0.00198

C113, 5 2

C152, 5 2
� 0.000495

07
8

5
8

10
13

3
13

1
13

1
6

1
2

1
6

1
2

3
4

1
4S � 5HH, HT, TH, TT6

55, 6652, 4, 6651, 2, 3, 4, 5, 66
P1E � F 2 � P1E 2 # P1F 2

P1E � F 2 � P1E 2P1F 0 E 2

A58 Answers to Selected Exercises and Chapter Tests

Unless otherwise noted, all content on this page is © Cengage Learning.

Outcome Probability

1 0.2
2 0.2
3 0.2
4 0.2
5 0.2

r Probability

0

1

2

3

4 1
16

4
16

6
16

4
16

1
16

r Probability

0 0.2097
1 0.3670
2 0.2753
3 0.1147
4 0.0287
5 0.0043
6 0.00036
7 0.000013
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APPENDIX B ■ PAGE 677

1. (c) 2. (c) 3. (c) 4. (d) 5. (c) 6. (d)
7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. No 20. No 21. Yes, 2 22. Yes, 1

−10

10

−10 10

−1

5

−3 5

−0.2

0.2

−10 10

_8

8

_2 4

−250

150

−10 10

−2000

2000

−50 150

20

0
10

−1

5

−20 20

−10

20

−10 5

−10

20

−4 10

−1000

100

−5 5

−10

400

−2 2

39. (a) 109 (b) 105 (c) 10�4

41. (a) (b) (c) (d)
43. (a) (b)
(c)
(d)

45.

47. $0.00016

CHAPTER 9 TEST ■ PAGE 664

1. 81 2. 72 3. (a) 456,976,000 (b) 258,336,000
4. (a) (b) 5. 12

6. 4 � 214 � 65,536 7. (a) 4! � 24 (b) 6!/3! � 120
8. 9. (a) (b)
(c) 10. (a) (b) (c)
11. 12.
13.
14. (a)
(b)

15. $0.65

FOCUS ON MODELING ■ PAGE 666

1. (b) 3. (b) 7. (b)

CUMULATIVE REVIEW TEST FOR 

CHAPTERS 8 AND 9 ■ PAGE 669

1. (a) (b) (c) (d)

(e)
2. (a) 41.4 (b) 88,572 (c) (d) 9 3. $2658.15

4. Hint: Induction step is

5. (a) (b) 

6. (a)

(b)

(c) 7. (a) (b) (c)

8. �0.56 dollar 9. (a) Getting 3 heads and 2 tails

(b) 10. (a) The event that a randomly selected 

insect has at least one spot; (b)

APPENDIX A ■ PAGE 672

1. 3.09 2. 129.4 3. 14,220 4. 38.41 5. 2.52 6. 20.67
7. 2300 8. �75.9 9. 3.80 10. 506.6 11. 33.1 ft, 87.3 ft2

12. 997 cm3 13. 2.66 � 10�12 N 14. (a) 3.52 � 1022 N
(b) 7.93 � 1021 lb

2049
3072

1023
3072

10A23B
2
A13B

3 � 0.16

5
108

1
8

1
36C126, 3 2 # C110, 4 2 � 546,000

P126, 3 2 # P110, 4 2 � 78,624,000

263 # 104 � 175,760,000

495
16  x 

432x 
5 � 40x4 	 20x3 � 5x 

2 	 5
8x � 1

32

an	1 � an 	 21n 	 1 2 � 1 � n2 	 2n 	 1 � 1n 	 1 2 2

5115
512

1�2 2 6 # 0.01 � 0.64, 1�2 2 19 # 0.01 � �5242.88

12A  56 B
6
, 12A  56 B

1937
2 , 115

2
99

340, 
801

7984
7

15, 
20
41

1
2

7
8

9
10

C110, 2 2 10.55 2 210.45 2 8 � 0.02739
C110, 0 2 10.55 2 010.45 2 10 	 C110, 1 2 10.55 2 110.45 2 9 	

C110, 6 2 10.55 2 610.45 2 4 � 0.23837
1 � 1 # 11

12
# 10

12
# 9

12 � 0.427

1
6C15, 3 2 /C115, 3 2 � 0.022

9
13

6
13

5
13

1
26

1
13

1
230 # 29 # 28 # C127, 5 2 � 1,966,582,800

C130, 4 2 � 27,405P130, 4 2 � 657,720

C15, 5 2 10.3 2 010.7 2 5 � 0.83692
C15, 3 2 10.3 2 210.7 2 3 	 C15, 4 2 10.3 2 110.7 2 4 	

C15, 2 2 10.3 2 210.7 2 3 � 0.3087
10.7 2 5 � 0.1680710.3 2 5 � 0.00243

1
12

1
3

2
13

1
13

Answers to Appendix B A59

Unless otherwise noted, all content on this page is © Cengage Learning.

Outcome Probability
(heads)

0 0.0081

1 0.0756

2 0.2646

3 0.4116

4 0.2401
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25. 26.

−5

5

−5 5

−0.8

0.8

−1.2 1.2

23. 24.

−1

3

−3 3

−4

4

−6 6

A60 Answers to Selected Exercises and Chapter Tests
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Abel, Niels Henrik, 297
Absolute value, 13–14

equations, 81, 152–153
properties of, 14

Absolute value function, 188, 191
Absolute value inequalities, 153–154
Addition

of complex numbers, 299
graphical, of functions, 224
of inequalities, 142
of matrices, 480–482
of polynomials, 32
of rational expressions, 46–47

Additive identity, 9
Adleman, Leonard, 318
Ahmes (Rhind papyrus scribe), 436
Algebra, derivation of term, 8
Algebraic errors

avoiding, 49–50
counterexamples, 53

Algebraic expressions, 31–43
domain of, 44
multiplying, 33

Algebra models, 2–6
making, 4
for making best decisions, 68–73
using, 2–4

al-Khowarizmi, 8
Amortization schedule, 600
Anagram, 662, 664
Analogy, used in problem solving, P2
Ancillary circle of ellipse, 540
Annual percentage yield, 351
Annuities

calculating amount of, 594–596
in perpetuity, 599–600
present value of, 596–597

Aphelion, 540
Apolune, 540
Approval voting, 657
Approximate data, rules for working with,

671–672

Base 10 logarithm, 363–364
Beer-Lambert Law, 380, 410
Bell, E.T., 481
Best fit

exact fit vs., 434
finding, 162–167, 340–342
finding, on graphing calculator, 682
measuring, 166–167
polynomials of, 340–342

Bhaskara, 111
Binomial coefficients, 608–610
Binomial distribution, 653
Binomial expansion, 607–615

term in, finding, 612
using Binomial Theorem, 611–612
using Pascal’s triangle, 607–608

Binomial experiment, 651
Binomial probability, 650–656
Binomials, 31, 606

multiplying, using FOIL, 33
Binomial Theorem, 610–613
Bits, 21

changing words, sound, and pictures into,
97

Boltzmann Law, 203
Bounded regions, of planes, 449
Boyle’s Law, 327
Brahe, Tycho, 550
Brams, Steven, 582
Branches, of hyperbolas, 542
Building envelope, 36
Burton, David, 668

C(n, r), 631
CAD (computer-aided design), 272
Calculators. See Graphing calculators
Cancellation, simplifying rational

expressions by, 45
Cardano, Gerolamo, 297, 308
Carrying capacity, 408
Cartesian plane, 74–75, 213. See also

Coordinate plane

Approximation symbol, 8
Archimedes, 120, 529
Architecture, conics in, 563–566
Area

of a circle, 180
modeling area problems, 111–112
of a triangle, 508–509, 511

Aristotle, 253, 261
Arithmetic mean, 585–586
Arithmetic sequences, 580–586

defined, 581
partial sums, 582–584

Arrow, Kenneth, 657
Arrow diagram, of functions, 175
Arrow notation, 312
Assets, division of, 582
Associative Property, 8
Asymptotes, 311–313

defined, 313
horizontal, 313, 315–321
of hyperbolas, 542, 543, 546
of rational functions, 314–322
slant, 320–321
vertical, 313, 314–322

Atmospheric pressure formula, 383
Augmented matrix, 466, 467
Automotive design, 272
Average rate of change, 204–211
Avogadro’s number, 24
Axes

of ellipses, 534, 535
of hyperbolas, 542
of parabolas, 525–527

Axis of symmetry, parabolas, 524

Back-substitution
in nonlinear systems, 441
solving linear equations, 416, 417, 427, 428
solving linear systems, 469, 470

Base
change of, 372–373
in exponential notation, 18

I N D E X

I1
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CAT (Computer Aided Tomography) scan,
526

Catenary, 354
Cayley, Arthur, 492
Center

of ellipse, 534
of hyperbola, 542

Central box, of hyperbolas, 543, 544, 545
Change of Base Formula, 372–373
Chevalier, Auguste, 288
Chu Shikie, 608
Circles, 83–85, 523

ancillary, of ellipse, 540
area of, 180
equations of, 84–85
graphing, 84, 676–677
symmetry, 87

Codes, unbreakable, 318
Coefficient matrix, 495
Coefficients

binomial, 608–610
correlation, 166–167
of polynomials, 266, 269–270

Cofactors, determinant of matrix, 501–502
Collinear points, 104, 511
Column transformations, of determinants,

504–505
Combinations, 631–633

complementary, 637
identity involving, 637
of n objects taken r at a time, number of,

631
problem solving with, 632–633

Combining logarithmic expressions,
370–371

Comets, paths of, 545
Common (base 10) logarithms, 363–364
Common difference of sequence, 581
Common ratio of geometric sequence, 586
Commutative Property, 8
Complement of an event, probability of,

641–642
Complete Factorization Theorem, 304–305
Completing the square, 85, 122
Complex conjugates, 299–300, 302, 303

Conjugate Zeros Theorem, 308, 311
Complex numbers, 298–303

arithmetic operations on, 299–300
complex roots of quadratic equations,

301–302, 303
defined, 298
square roots of negative numbers,

300–301
Complex roots, of quadratic equations,

301–302, 303
Complex zeros, 303–311
Composite function, 224–227
Compound fractions, 47–48
Compound interest, 350–351, 353, 383

annuities and, 594–596
continuously compounded, 356

formula for, 350
using logarithmic equations for, 380–381,

383
Computer-aided design (CAD), 272
Computer Aided Tomography (CAT) scan,

526
Computer graphics, applying matrices to

generation of, 486–487, 518–521
Computers, applications of, 214
Conditional probability, 643–646
Confocal conics

family of, 558
hyperbolas, 549
parabolas, 557

Conics. See also by type
in architecture, 563–566
basic shapes of, 523
confocal, 549, 557, 558
degenerate, 554–555
shifted, 550–558

Conjecture, mathematical induction and,
600–601

Conjugate hyperbolas, 548
Conjugate radical, 49
Conjugate Zeros Theorem, 308, 311
Constant coefficient, 266
Constant function, 185
Constant rate of change, 208
Constant(s)

of proportionality, 326, 327
spring, 331

Constant term, 266
Constraints, 449–450, 458, 459
“Contestant’s dilemma,” 665, 668
Continuous functions, 189, 268
Continuously compounded interest, 356
Contradiction, proof by, P2
Convergent infinite series, 590
Cooling, Newton’s Law of, 390–391, 396,

624
Coordinate line (real number line),

11, 13
Coordinate plane, 74–80

coordinates as addresses, 75
graphing regions in, 74–75

Coordinates, 74, 75
Correlation, 166–167

causation vs., 167
Correlation coefficient, 166–167
Cost function, 188–189
Counterexample, 53
Counting, calculating probability by,

640–641
Counting principles, 626–637. See also

Probability
Counting problems, guidelines for solving,

632
Cramer’s Rule, 505–508
Cubic formula, 297
Cubic splines, 267
Cumulative voting, 657

Data
entering, on graphing calculator, 682
fitting a line to, 99–100
linearizing, 405–406
rules for working with approximate,

671–672
Data matrix, 519–520
Decibel scale, 394
Decision-making, modeling, 68–72
Degenerate conics, 554–555
Demand function, 239
Denominators, 10

of partial fractions, 435–439
rationalizing, 28, 49

Dependent systems, linear equations, 419,
420–421, 429, 430–431, 472, 473–475

Dependent variables, 175
Depressed cubic, 297
Descartes, René, 74, 213, 290
Descartes’ Rule of Signs, 290
Determinants, 492, 501–512

areas of triangles, 508–509, 511
cofactors, 501–502
collinear points and, 511
expanding, about row and column, 503
finding, on graphing calculator, 684
invertibility criterion, 504
minors, 501–502
row and column transformations,

504–505
zero, matrices with, 512

Diaconis, Persi, 640
Difference

of cubes, 39
of functions, 222, 223
of matrices, 480
of squares, 39

Difference quotients, 177, 206
Digital images, 486–487, 489–490
Diophantus, 47
Directrix, 524, 526
Direct variation, 326–327
Discriminant of quadratic formula, 125
Distance, between points on the real line, 14
Distance, rate, and time problems,

115–116
modeled by quadratic equation, 127–128

Distance formula, 75–76
Distinguishable permutations, 630–631
Distributive Property

combining like terms, 32
factoring with, 37
multiplying algebraic expressions, 33
real numbers and, 8–9

Divergent infinite series, 590, 591
Dividends, 281
Division

of complex numbers, 299–300
long, 280–282, 439
overview of, 10–11
of polynomials, 280–286

I2 Index

90169_SEIndex_I1-I10.qxd  11/30/11  9:34 AM  Page I2



of rational expressions, 46
synthetic, 282–283

Division Algorithm, 281
Divisors, 10, 281
Domains

of algebraic expression, 44
of combined functions, 223
finding, from graphs, 195–196
of functions, 175, 178–179
of inverse functions, 232
of logarithmic functions, 365
of rational functions, 311

Doppler effect, 325

e (number), 354
expressing a model in terms of, 388
logarithm with base e (natural logarithm),

364–365
Earthquakes, magnitude of, 393
Ebbinghaus, Hermann, 371, 410
Eccentricity

of an ellipse, 536–538
of planetary orbits, 538

Ecology, mathematical study of, 497
Economics, use of mathematics in, 596
Einstein, Albert, P4, 505
Elementary row operations, 467–468
Elements, of sets, 11
Elimination method, 417–418

for solving system of nonlinear equations,
441

Ellipses, 523, 532–541
ancillary circle of, 540
with center at origin, 534
constructing, 566
eccentricity of, 536–538
equation of, 534, 536, 537
foci of, 537
geometric definition of, 532
graphing shifted, 550–552
latus rectum of, 541
orbits of planets as, 538
sketching, 535
vertices of, 534, 535

Empty set , 12
Encryption, 318
End behavior

of polynomials, 268, 271
of rational functions, 321–322

Envelope of lines, parabola as, 564
Equality

of matrices, 479–480
properties of, 54

Equations, 53–61. See also Systems of
equations; Systems of linear equations

absolute value, 81, 152–153
of circles, 84–85
of an ellipse, 534, 536, 537
equivalent, 53
exponential, 375–377
false, 429

�

Index I3

family of, 348
graphs of, 347–350
natural, 354–359
transformations of, 349, 355

Exponential growth, 353
doubling time, 384–386
relative growth rate, 386–388

Exponential modeling, 384–391, 403, 407
Exponential notation, 18–19, 21–22
Exponents, 18

fractional, 26, 41, 58, 136
integer, 17–24
integer, exponential notation, 18–19
integer, zero and negative exponents,

18–19, 20–21
Laws of, 19–21, 27, 346
rational, 26–28

Extraneous solutions, 56, 134
Extreme values, using graphing devices for,

199–200

Factoring
common factors, 37–38
Complete Factorization Theorem,

304–305
completely, 40–41
complex zeros and, 306
differences and sums of cubes, 40
differences of squares, 39
expressions with fractional exponents, 41
fifth-degree polynomial, 291–292
by grouping, 41, 133
inequalities, 143–147
polynomials, 303–305, 306
solving polynomial equation by, 132
by trial and error, 38, 39
trinomials, 38–39

Factoring formulas, 39
Factor Theorem, 284–285, 287
Fair division of assets, 582
Fair game, 657–658
Fair voting methods, 657
False equations, 429
Family

of equations, 61
of exponential functions, 348
of lines, graphing, 97–98
of logarithmic functions, 361
of parabolas, 528
of polynomials, 277
of power functions, 186–187

Feasible region, 449–450, 459, 460, 461
Fechner, Gustav, 364
Fermat, Pierre de, 47, 74, 107
Ferrari, 297
Fibonacci, Leonardo, 574
Fibonacci numbers, 481, 573–574, 577,

580, 684
Finance

mathematics of, 594
modeling using linear systems, 431–432

family of, 61
of functions, 190–191
graphic solutions for, 104–108
graph of, 80–90, 679
of horizontal lines, 94
of a hyperbola, 542
involving fractional expressions, 55,

133–134
involving fractional powers, 58, 136
involving radicals, 134
linear, 54–56, 94–95, 98–100
of lines, 92–97
logarithmic, 377–380
matrix, 485, 495–498
modeling with. See Mathematical models
nonlinear, 54
of a parabola, 525
polynomial, 132–134, 292–293
power, 56–58
Properties of Equality and, 54
quadratic, 121–132
of quadratic type, 134–136
roots of, 271
of a shifted conic, 554–555
solving by working backward, P2
solving for one variable in terms of

others, 58–59
solving for unknown functions, 230, 240
solving using analogy strategy, P2
two-intercept form of, 102
in two variables, 80–90
of vertical lines, 94

Equivalent equations, 53
Equivalent inequalities, 142
Equivalent systems, 427–428
Eratosthenes, 572
Error-correcting codes, 135
Euclid, 57
Euler, Leonhard, P1, 300, 354, 502
Even function, 217–218, 222, 230
Events

defined, 639
probability of, finding, 640–641
probability of complement of, 641–642
probability of the intersection of

independent, 645–646
probability of union of, 642–643
probability of union of mutually exclusive

events, 643
in a sample space, 639

Expanding a logarithmic expression, 370
Expected value, 656–658
Experiment, 638. See also Probability

binomial, 651
with small samples, 650–656

Exponential data, linearizing, 406
Exponential equations, 375–377
Exponential form, 359–360
Exponential function, 345, 346–359

compared with power function, 349–350
compound interest, 350–351
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Focal diameter, of parabolas, 527, 528
Focal length, 532
Focus

of an ellipse, 532, 535, 536, 537
of a hyperbola, 541, 545–546
of a parabola, 524, 526, 532
prime, 532

FOIL method, 33
For command, in graphing calculators, 520
Forgetting, Law of (Forgetting Curve), 371,

410
Formula

distance, 75–76
midpoint, 76–77
representing functions with, 179, 180

Fourier analysis, 97
Frac command, in calculators, 494, 499,

683, 685
Fractal image compression, 590
Fractals, 590
Fractional exponents, 26, 41, 58, 136
Fractional expressions, 44. See also

Rational expressions
compound fractions, 47–48
solving equations involving, 55, 133–134

Fractions
compound, 47–48
LCD and adding, 10–11
partial, 435–440
properties of, 10
solving linear equation involving, 55
writing repeated decimal as, 591

Functions, 173–256
algebra of, 223
average rate of change and, 204–211
combining, 222–230
common examples of, 174–175
composition of, 224–227
defined, 175–176
demand, 239
domain of, 178–179
equations of, 190–191
evaluating, 176–178
even, 217–218, 222, 230
exponential, 345, 346–359
finding values of, from graph, 195–196
graphing, 184–194, 316–322, 325,

347–350
greatest integer, 188
identity, 239
increasing/decreasing, 196–198, 232
inverse, 232–236
linear, constant rate of change, 208
local maximum and minimum values of,

198
logarithmic, 345, 359–368, 391–394
methods for representing, 179–181
modeling with, 247–256
modeling with, guidelines for, 249
objective, 458, 459, 460, 461
odd, 217–218, 222, 230

one-to-one, 231–232, 234–235
polynomial, 257, 266–280, 340–342
power, 186–187, 191, 349–350, 404–407
rational, 311–326
table of values of, making, 681
transformations of, 211–222

Fundamental Counting Principle, 626–628,
632

combinations, 631–633
permutations, 628–633

Fundamental Principle of Analytic
Geometry, 80, 83

Fundamental Theorem of Algebra, 303–304

Galileo, Galilei, 261
Galois, Evariste, 288, 297
Gateway Arch, 354
Gaudí, Antoni, 563
Gauss, Carl Friedrich, 303, 306, 469, 582
Gaussian elimination, 428, 468–471
Gauss-Jordan elimination, 471–472
Geometric mean, 592
Geometric sequences, 586–594
Geometry, analytic. See Conics; Ellipses;

Hyperbolas; Parabolas
GIMPS (Great Internet Mersenne Prime

Search), 573
Global Positioning System (GPS), 442
Golden ratio, 577
Googol, 368
Googolplex, 368
Graham, Ronald, 629
Graphical addition, 224
Graphical solutions, 104–108

compared with algebraic method, 104,
105–106

for equations, 104–108
for inequalities, 147–148
for systems of equations, 418–419
for systems of nonlinear equations,

442–443
using graphing calculator, 673–677,

679–686
Graphing calculators, 186–187

for extreme values of functions,
199–200

using, 81, 673–677, 679–686
Graphing devices. See Graphing calculators
Graphing functions, 184–194

exponential functions, 347–350
getting information from, 195–204
with a graphing calculator, 186–187
logarithmic functions, 361–363, 365
rational functions, 316–322, 325

Graphs
of equations in two variables, 80–90
on graphing calculator, 679
of inverse function, 236
of nonlinear inequalities, 446–447
of polynomials, 267–277
reflecting, 214–215, 216

representing functions with, 179, 180
shifted, 550–554
shifts, horizontal, 212–214
shifts, vertical, 211–212, 214
stretching and shrinking, 215–217
of systems of inequalities, 447–452
using symmetry to sketch, 86

Gravity, Newton’s Law of, 58–59, 203,
329–330, 405

Greater than (>), 11
Greatest integer function, 188, 191
Great Internet Mersenne Prime Search

(GIMPS), 573
Grouping, factoring by, 41, 133

Half-life of radioactive elements, 388–389
Halley, Edmund, 613
Hamming, Richard, 135
Hardy, G.H., 588
Harmonic mean, 585
Harmonic sequences, 585
Hilbert, David, 105, 502
Hilbert’s tenth problem, 481
Histogram, probability, 652–653
Hooke’s Law, 158, 331
Horizontal asymptotes, 313, 315–321
Horizontal lines, 94, 231, 232
Horizontal Line Test, 231, 232
Horizontal shifts, of graphs, 212–214
Horizontal stretching and shrinking, of

graphs, 216–217
Hyperbolas, 523, 541–549

with center at origin, 542
confocal, 549
conjugate, 548
constructing, 565–566
degenerate, 555
equation of, 545–546
geometric definition of, 541
shifted, 553–554
sketching, 543–545
with transverse axis, 543–545

Hyperbolic cosine function, 357
Hyperbolic sine function, 357
Hypothesis, induction, 602

Ideal Gas Law, 332
Identity function, 239
Identity involving combinations, 637
Identity matrices, 490–491
Image of x under f, 175
Imaginary part, of complex numbers, 298
Inconsistent systems, linear equations, 419,

420, 429–430, 472–473
Independent events, probability of

intersection of, 645–646
Independent variables, 175
Index of summation, 576
Induction, mathematical, P2, 600–606

conjecture and proof, 600–601
induction step, 601–602

I4 Index
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principle of, 602–605
sums of powers and, 604

Induction hypothesis, 602
Inequalities, 11, 141–152. See also Systems

of inequalities, graphing
absolute value, 153–154
equivalent, 142
graphic solutions for, 147–148
graphing, 12, 446–447, 681
linear, 142–143, 448
modeling with, 148–149
nonlinear, 143–147
proving by induction, 604–605
with repeated factors, 146
rules for, 142

Infinite geometric series, 590–591
Infinite series, 589–591
Infinity symbol, 12
Inner product, of row and column matrices,

482–483
Input, in function as machine, 175
Installment buying, 597–598
Instantaneous rate of change, 206
Integer exponents, 17–24
Integers, as real number type, 7
Intensity levels of sound, 364, 394
Intensity of light, 107
Intercepts, 82–83
Interest, on investment, 111
Interest problems, modeling, 110–111. See

also Compound interest
Intermediate Value Theorem for

Polynomials, 271
Intersect command, in calculators,

106, 449, 680
Intersections

finding intersection points, 680–681
of independent events, probability of,

645–646
of intervals, 13
of sets, 12

Intervals, 12–13
graphing, 12, 13
increasing/decreasing functions,

197–198
open and closed, 12, 13
solving an equation in an interval, 106
test values for, 144–145
unions and intersections, 13

Invariant Theory, 505
Inverse functions, 232–236

defined, 232
finding, 233–235
graphing, 236
linear functions becoming, 239
properties of, 234

Inverse numbers, 10
Inverse of matrices, 490–495, 496
Inverse square law for sound, 397
Inverse variation, 327–328
Invertibility criterion, 504

Index I5

Linear inequalities, 142–143, 448
graphing systems of, 448–449

Linearizing, 405–406
exponential data, 406
power data, 406

Linear programming, 458–464
guidelines for, 460
Karmarkar’s technique, 459

Lines, 90–104
of best fit, 162–167
family of, graphing, 97–98
general equation of, 94–95
horizontal, 94, 231, 232
parallel, 95–96
perpendicular, 96–97
point-slope form of equation of, 92–93
slope-intercept form of equation of,

93–94
slope of, 90–92
using slope to indicate rate of change,

98–100
vertical, 91, 94

Lithotripsy, reflection property used in, 538
LnReg command, in calculators, 412
Local extrema, of polynomials, 275–277,

280
Local maximum, 198–200, 276
Local minimum, 198–200, 276
Loga, 359
Logarithmic equations, 377–380

applications of, 380–381
guidelines for solving, 378

Logarithmic form, 359–360
Logarithmic functions, 345, 359–368

applications of, 391–394
common (base 10) logarithms, 363–364
defined, 359
family of, 361
graphs of, 361–363, 365
natural logarithms, 364–365
properties of, 360

Logarithmic model, 412
Logarithmic scales, 391–394
Logarithms, Laws of, 369–375
Logistic command, in calculators, 408,

412
Logistic curves (or logistic growth model),

356, 358, 408, 412
Logistic population growth, 624
Log-log plot, 406
Long division

partial fractions and, 439
of polynomials, 280–282

LORAN (LOng RAnge Navigation), 547
Lotka, Alfred J., 497
Lower bounds, 290–291, 293
Lowest common denominator (LCD),

solving linear equations using, 55

Machine, function as, 175
Magnetic resonance imaging (MRI), 526

Irrational numbers, 7
Irreducible quadratic factor, 309, 437–439

Joint variation, 328–330
Jordan, Camille, 288

Kantorovich, Leonid, 458
Karmarkar, Narendra, 459
Kepler, Johannes, 404, 405, 538, 550
Kepler’s Third Law, 331
Kirchhoff’s Laws, 434
Knuth, Donald, 190
Koopmans, T.C., 458
Kovalevsky, Sonya, 217

Laminar flow, law of, 183
Latus rectum, 527, 541
Law enforcement, use of mathematics for, 362
Law of Cooling, Newton’s, 390–391, 396
Law of Forgetting (Forgetting Curve), 371,

410
Law of Gravity, 58–59, 203, 329–330, 405
Law of laminar flow, 183
Law of the Lever, 120, 529
Law of the pendulum, 332
Laws of Exponents, 19–21, 346

for rational exponents, 27
Laws of Logarithms, 369–375
LCD. See Least common denominator

(LCD)
Leading coefficients, 266, 269–270
Leading entry in row-echelon form, 469
Leading terms, 266

end behavior of polynomial and, 269–270
Leading variable, 472
Learning curve, 383–384
Least common denominator (LCD)

adding fractions, 10–11
using with rational expressions, 46–47

Least squares line, 426
Lens equation, 140
Leontief, Wassily, 596
Less than (�), 11
Lever, Law of the, 120, 529
Like terms, combining, 32
Linear and Quadratic Factors Theorem, 309
Linear depreciation, 103, 104
Linear equations, 94–95. See also Systems

of linear equations
applying to rate of change, 98–100
graph of, 95
solving, 54–56
two-intercept form of, 102

Linear factors, 309, 435–437
Linear fractional transformations, 313–314
Linear functions

becoming inverse, 239
composing, 230
constant rate of change, 208
defined, 185
graphs of, 191
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Magnitude
of an earthquake, 393
of a star, 374

Main diagonal, of matrices, 490
Major axes, of ellipses, 534, 535
Majority voting, 657
Mandelbrot, Benoit, 590
Manning Equation, 31
Mathematical models, 109–120, 136–138.

See also Modeling
constructing, 110–116
defined, 162
finding line of best fit, 162–167
functions as, 247–256
guidelines for, 109
guidelines for modeling functions, 249
logarithmic model, 412
measuring fit, 166–167
using inequalities, 148–149
variation, 326–333

Matijasevič, Yuri, 481
Matrices, algebra of, 479–490. See also

Determinants
applied to computer graphics, 486–487
determinants, 492, 501–512, 684
equality of matrices, 479–480
on graphing calculator, 682–683, 684
identity matrices, 490–491
inverse of matrices, 490–495, 496
matrix equations, 485, 495–498
modeling with, 518–521
multiplication, 482–486, 518–520
no Zero-Product Property for, 500
singular matrix, 495
square matrix, 490, 501–505
square roots of matrix, 490
stochastic matrices, 486
sum, difference, and scalar product,

480–482
transition matrix, 490, 497

Matrices, solving linear systems, 466–479
augmented matrix, 466, 467
elementary row operations, 467–468
Gaussian elimination, 468–471
matrix defined, 466
reduced row-echelon form, 469, 471–472,

683
row-echelon form, 469–471, 472–475

Matrix equations, 485, 495–498
Maximum command, in calculators, 199,

200
Maximum values, 259–262

of a fourth-degree polynomial function,
266

linear programming for, 458–464
local, 198–200, 276
modeling with functions to find, 249–250,

262–263
Mean

arithmetic, 585–586
geometric, 592
harmonic, 585

Median, 78
Mendel, Gregor, 649
Méré, Chevalier de, 638
Mersenne numbers, 573
Midpoint formula, 76–77
Mill, John Stuart, 213
Minimum command, in calculators, 199
Minimum values, 259–262

local, 198–200, 276
modeling with functions to find, 251–252

Minor axes, of ellipses, 534, 535
Minors, determinant of matrix, 501–502
Mixture problems, 113–114
Modeling, 2. See also Algebra models;

Mathematical models
algebra models, 2–6, 68–72
with area, 111–112
computer graphics, 518–521
decision-making, 68–72
defined, 247
with equations, 109–120, 136–138
exponential, 384–391, 403–404, 407
with inequalities, 148–149
with linear equations, 98–100
with linear systems, 421–423, 431–432,

475–476
logarithmic, 391–394
with logistic functions, 408
Monte Carlo method, 665–668
with polynomial functions, 340–342
population growth, 345, 384–388,

403–404, 408
with power functions, 404–407
prey/predator models, 497
with quadratic equations, 126–129
with quadratic functions, 262–263
with recursive sequences, 620–622
using linear programming, 458–464
using matrix equations, 496–498

Mode on graphing calculator, setting, 679
Monomials, 31, 267–268
Monte Carlo method, 665–668
Mortgage payments, 597–598

amortizing a mortgage, 600
MRI (magnetic resonance imaging), 526
Multiplication

of algebraic expressions, 33
of complex numbers, 299
of functions, 222, 223
of inequalities, 142
of matrices, 482–486
of polynomials, 33
properties, common errors in applying

them to addition, 50
of rational expressions, 45

Multiplicative identity, 10
Multiplicities, zeros and, 274–275, 305–307
Mutually exclusive events, probability of

union of, 643

n! (n factorial), 609
Napier, John, 363

Nash, John, 596
Natural exponential functions, 354–359
Natural logarithms, 364–365
Natural numbers, 7
Navigation

Global Positioning System (GPS),
442

LORAN, 547
Negative exponents, 18–19, 20–21
Negative numbers, 9

square roots of, 300–301
Negative of image, 489
Net change in value of function, 177
Newton, Sir Isaac, 538, 545, 613
Newton’s Law of Cooling, 390–391, 396,

624
Newton’s Law of Gravity, 58–59, 203,

329–330, 405
n factorial (n!), 609
Noether, Emmy, 505
Nonlinear equations, 54

systems of, 440–445
Nonlinear inequalities, 143–147

graphing, 446–447
guidelines for solving, 144

Notation
arrow, 312
exponential, 18–19, 21–22
scientific, 21–22, 671
set-builder, 11
sigma, 576–578
summation, 576–578
use in problem solving, P1

nth root, 25–26
Numbers

complex. See Complex numbers
imaginary, 298–299
inverse, 10
irrational, 7
negative, 9
ordered pair of, 74
prime, 572, 573
rational, 7
real. See Real numbers
representing functions with, 179, 180
significant digits in, 671–672

Numerators, 10
rationalizing, 49

Objective function, 458, 459, 460, 461
Oblique asymptotes, 320–321
Odd functions, 217–218, 222, 230
One-to-one function, 231–232

finding inverse of, 234–235
Orbits. See Planetary orbits
Ordered pair, of numbers, 74
Origin (O), 11, 74

ellipse with center at, 534
hyperbola with center at, 542
symmetry with respect to, 85, 86

Outcomes, 638
Output, in function as machine, 175

I6 Index
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P(n, r), 628–630
Palindrome, 662
Parabolas, 446, 523, 524–532

confocal, 557
constructing, 564, 565
equation of, 525
family of, 528
focal diameter of, 527, 528
focal point of, 529–530
geometric definition of, 524
graph of, 81
graph of shifted, 552
with horizontal axis, 526–527
latus rectum of, 527
as quadratic function, 258
sketching, 527–528
with vertical axis, 525–526

Parallel lines, 95–96
Parameters, 431
Pareto, Vilfredo, 374
Pareto’s Principle, 374
Partial fraction decomposition, 435–439
Partial fractions, 435–440
Partial sums, of sequences, 575–576,

582–584, 588–589, 686
Partitions in permutations, finding number

of, 631
Pascal, Blaise, 604
Pascal’s triangle, 607–608, 610
Pattern recognition, P2, 594
Paulos, John Allen, 167
Pendulum, law of the, 332
Perfect square, 39–40, 85, 122
Perihelion, 540
Perilune, 540
Periodic rent, 595
Permutations, 628–630

anagram as, 662, 664
distinguishable, 630–631
finding the number of partitions, 631
of n objects taken r at a time, number of,

628–630
problem solving with, 632–633

Perpendicular lines, 96–97
pH scale, 392
Pi, Monte Carlo method to estimate, 667
Piecewise defined function, 177

graphing, 187
Plane(s)

bounded and unbounded regions, 449
coordinate, 74–75
as graph of linear equation in three

variables, 429
Planetary orbits

eccentricities of, 538
Kepler’s description of, 331, 550
perihelion and aphelion, 540
power model for planetary periods,

404–405
Plurality voting, 657
Point-slope form of equation of lines, 92–93
Pole. See Origin (O)

Index I7

Probability histogram, 652–653
Problem solving

with permutations and combinations,
632–633

principles, P1–P4
Products. See also Multiplication

of functions, 222, 223
inner, 482–483
of polynomials, 33
positive/negative, 143
scalar, 480, 481
sign of, 143
Special Product Formulas, 34–35

Projectile, modeling path of, 128–129
Proof

by contradiction, P2
mathematical induction and, 600–601

Proportionality, 326–330
constant of, 326, 327
direct, 326–327
inverse, 327–328
joint, 328–330

Pure imaginary number, 298–299
Pythagoras, 253
Pythagorean Theorem, 253

Quadrants, of coordinate plane, 74
Quadratic equations, 121–132

complex roots of, 301–302, 303
dimensions of building lot modeled by,

126–127
distance-speed-time problem modeled by,

127–128
exponential equation of quadratic type,

377
form of, 121
fourth-degree equation of quadratic type,

135–136
path of projectile modeled by, 128–129
solving by completing the square,

122–123
solving by factoring, 121

Quadratic factors, 309
irreducible, 309, 437–439

Quadratic formula, 123–124
complex solutions and, 301–302
discriminant of, 125
using Rational Zeros Theorem and,

289–290
Quadratic function, 258–266

graphing, 258–259
maximum/minimum value of, 259–262
modeling with, 262–263
standard form of, 258–259

Quadratic inequalities, 144–145
Quadratic type, equations of, 134–136
Quotients, 281

difference quotients, 177
in division, 10
of functions, 222, 223
inequalities and, 146–147
positive/negative, 143

Polya, George, P1
Polynomial equations, solving, 132–134,

292–293
Polynomial function, 257, 266–280

defined, 266
of degree n, 258, 266
as models, 340–342

Polynomials, 32
adding and subtracting, 32
of best fit, 340–342
defined, 266
degrees of, 32
dividing, 280–286
end behavior of, 268, 271
factoring, 303–305, 306
family of, 277
graphs of, 267–277
guidelines for graphing, 271
local extrema of, 275–277, 280
nested form, 286
product of, 33
real zeros of, 271, 287–297
zeros of, 271–275, 284–285

Population growth, 345, 384–388, 403–404,
408

carrying capacity and, 408
logistic, 624

Power data, linearizing, 406
Power equations, 56–58
Power functions

compared with exponential functions,
349–350

graphs of, 186–187, 191
modeling with, 404–407

Predator/prey models, 497
Preference voting, 657
Present value, 353

of an annuity (Ap), 596–597
Prime focus, 532
Prime numbers, 572, 573
Principal, compound interest and, 350
Principal nth root, 25
Principal square root, 25

of complex numbers, 300
of negative numbers, 300

Principle of Mathematical Induction, 602–605
Principle of Substitution, 34
Probability, 625, 638–650

binomial, 650–656
of complement of an event, 641–642
conditional, 643–646
defined, 639
of event, finding, 640–641
expected value, 656–658
of intersection of events, 645
of intersection of independent events,

645–646
Monte Carlo method, 665–668
of union of mutually exclusive events,

643
of union of two events, 642–643

Probability distributions, 652–653
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Radicals, 25–26
combining, 26
conjugate, 49
equations for, 134
nth root and, 25–26
simplifying, as rational exponents, 27–28

Radioactive decay model, 389–390
Radioactive elements, half-lives of, 388–389
Radioactive waste, 390
Radiocarbon dating, 378
Ramanujan, Srinivasa, 588
Range

finding from graphs, 195–196
of functions, 175
of an inverse function, 232

Rate of change
average, 204–211
constant, 208
instantaneous, 206
slope as, 98–100, 205

Rational exponents, 26–28
Rational expressions, 44–53

adding and subtracting, 46–47
avoiding common errors, 49–50
compound fractions, 47–48
multiplying and dividing, 45–46
rationalizing denominator or numerator, 49
simplifying, 45

Rational functions, 311–326
asymptotes of, 314–322
graphing, 316–322, 325
inverse of, finding, 235
simple, 311–312
slant asymptotes and end behavior,

320–322
transformations, 313–314, 325–326

Rationalizing the denominator or numerator,
28, 49

Rational numbers, 7
Rational zeros. See Real zeros, of

polynomials
Rational Zeros Theorem, 287–290, 307
Real number line, 11, 13
Real numbers, 7–17

absolute values and distance, 13–14
Law of Exponents and, 346
natural numbers as, 7
order of (less than, greater than), 11
properties of, 8–19
real lines and, 11
sets and intervals, 11–13

Real part, of complex numbers, 298
Real zeros, of polynomials, 271, 287–297
Reciprocal functions, 191
Reciprocals of inequalities, direction of

inequality and, 142
Recursive formula, sequence expressed by,

570
Recursive sequences, 573–574

finding terms of, on graphing calculator,
684–685

as models, 620–622

Reduced row-echelon form of matrix, 469,
471–472, 683

Ref command, in calculators, 470
Reflecting graphs, 214–15, 216, 361, 362
Reflection property

of ellipses, 538
of hyperbolas, 546
of parabolas, 529

Regression line, 163–167, 426, 682
Relative growth rate, 386–388
Relativity, Theory of, 183, 505
Remainders, 281
Remainder Theorem, 283–284
Repeating decimal, 7, 591
Resistance, electrical, 52, 322, 332
Rhind papyrus, 436
Richter, Charles, 393
Richter scale, 393
Rise, vs. run in slope, 90
Rivest, Ron, 318
Rnd or Rand command, on calculators, 665
Robinson, Julia, 481
Root functions, 191
Roots

complex, 301–302, 303
of equations, 53
of polynomial equations, 271
of unity, 311

Rounding off, significant digits, 671, 672
Row-echelon form

of a matrix, 469–471, 472–475
reduced, 469, 471–472, 683
solutions of a linear system in, 472–475
solving linear systems using, 470

Row transformations, of determinants,
504–505

Rref command, in calculators, 472, 476,
683

RSA code, 318
Rule of Signs (Descartes’), 290
Rules, for inequalities, 142
Run, vs. rise in slope, 90

Salt Lake City, 75
Sample space of an experiment, 638
Scalar product, of matrices, 480, 481
Scatter plots, 162–167, 340–342, 403–404,

406, 407
Scientific notation, 21–22, 671
Secant line, average rate of change as slope

of, 205
Self-similar, fractals as, 590
Semi-log plot, 406
Seq mode, in calculators, 572
Sequences, 569–594

arithmetic, 580–586
defined, 570
Fibonacci, 481, 573–574, 577, 580, 684
finding terms of, 571–572, 587–588,

684–685
geometric, 586–594
on graphing calculator, 684–685, 686

harmonic, 585
infinite series, 589–591
partial sums of, 575–576, 582–584,

588–589, 686
properties of sums of, 578
recursive, 573–574, 620–622, 684–685
sigma notation of, 576–578
table of values of, making, 685

Series, infinite, 589–591
Set-builder notation, 11
Sets

as collection of objects, 11
subsets of, finding number of, 628
unions and intersections, 12

Shamir, Adi, 318
Shifted conics, 550–558
Sieve of Eratosthenes, 572
Sigma notation, 576–578
Significant digits, 671–672
Singular matrix, 495
Slant asymptotes, 320–321
Slope, 90–92

indicating rate of change, 98–100, 205
of lines, 90–92, 94, 95, 96
point-slope form of equation of a line,

92–93
Slope-intercept form of equation of a line,

93–94
Smith, Edson, 573
Solutions. See Roots
Sørensen, Søren Peter Lauritz, 392
Sound

intensity levels of, 364, 394
inverse square law for, 397

Special Product Formulas, 34–35
Species, study of survival of, 490
Species-area relationship, 374
Sphere, area of, 183
Splines, polynomial curves, 267, 272
Spring constant, 331
Square matrix, 490, 501–505
Square roots, 25

of matrices, 490
of negative numbers, 300–301
nth root and, 25

Squaring function, 175
Standard form, of equation of a circle, 84
Stefan Boltzmann Law, 203
Step functions, 188–189, 194
Stochastic matrices, 486
Substitution, Principle of, 34
Substitution method

for solving linear systems, 416–417
for solving system of nonlinear equations,

440–441
Subtraction

of complex numbers, 299
of inequalities, 142
of matrices, 480
overview of, 9
of polynomials, 32
of rational expressions, 46–47
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Summation notation, 576–578
Summation variable, 576
Sums

of cubes, 39, 40
of functions, 222, 223
of infinite geometric series, 590–591
of matrices, 480–482
partial sums of sequences, 575–576,

582–584, 588–589, 686
of powers, 604
of sequences, properties of, 578

Symmetry, 85–87
defined, 86
of graphs of even and odd functions, 218
tests of, 86, 87

Synthetic division, 282–283
Systems of equations, 415, 416

elimination method for solving, 417–418
graphical method for solving, 418–419
modeling with, 421–423
substitution method for solving, 416–417

Systems of inequalities, graphing, 447–452.
See also Inequalities

linear inequalities, 448–449
Systems of linear equations

dependent and inconsistent, 419–421,
429–431

graph of, 429
modeling with, 421–423, 431–432,

475–476
several variables, 426–434
solutions of, 416
three variables, 508
two variables, 416–426, 506–507
using Cramer’s rule for solving, 505–508
writing as matrix equations, 485

Systems of nonlinear equations, 440–445

TABLE command, in calculators, 572
Table of values, making

of a function, 681
of a sequence, 685

Taking cases, P2
Tangent to parabola, 564, 566
Taussky-Todd, Olga, 486
Taylor, Brook, 582
Terminal velocity, 357
Terms

combining like, 32
of polynomial, 32

Terms, of sequences
defined, 570
finding, 571–572, 581–582, 584,

587–588, 612, 684–685
listing, on graphing calculator, 685
for recursive sequences, 573

Index I9

Variation in sign, 290
Velocity, terminal, 357
Vertical asymptotes, 313, 314–322
Vertical axes, of parabolas, 525–526
Vertical lines, 91, 94
Vertical line test, 189
Vertical shifts, graphs, 211–212, 214
Vertical stretching and shrinking, graphs,

215–216
Vertices

of ellipses, 534, 535
of feasible region, 459, 461
of hyperbolas, 542, 545–546
of parabolas, 258, 524
of systems of inequalities, 448, 449
x-intercepts and, 266

Viète, François, 124
Viewing rectangle, of graphing calculator,

673–674
Volterra, Vito, 497
Von Neumann, John, 214
Voting methods, fair, 657

Weather prediction, 418
Weber-Fechner Law, 394
Whispering galleries, reflection property

used in, 538
Wiles, Andrew, 107
Words, representing functions with, 179,

180

x-axis, 74, 85, 86
x-coordinate, 74
x-intercepts, 82–83

graphing rational functions and, 317–321
vertex and, 266

y-axis, 74, 85, 86
y-coordinate, 74
y-intercepts, 82, 83

graphing rational functions and, 317–321

Zero(s)
additive identity, 9
complex, 303–311
Factor Theorem and, 284–285
multiplicities and, 274–275, 305–307
of polynomials, 271–275, 284–285
Rational Zeros Theorem, 287–290, 307
real, 271, 287–297

Zero exponents, 18–19
Zero-Product Property, 121
Zeros Theorem, 305–306
Zooming in on a graph, on graphing

calculator, 680
Zsquare command, in calculators, 676

Test points, graphing, 271, 272, 446, 447
Test values for intervals, 144–145
Theory of Relativity, 183, 505
Time needed to do job, problems about,

114–115
Torricelli’s Law, 183, 239, 344
TRACE command, in calculators, 106, 199,

449, 680
Transformation matrix, 518–519
Transformations

of exponential functions, 349, 355
of functions, 211–222
of monomials, 267–268
of rational functions, 313–314, 325–326

Transition matrix, 490, 497
Transverse axes, of hyperbolas, 542,

543–545
Tree diagram, 626
Triangles

area of, 508–509, 511
Pascal’s triangle, 607–608, 610
solving height problems, 112–113

Triangular form, of linear systems, 427
Triangulation in Global Positioning System

(GPS), 442
Trinomials, 31

factoring, 38–39
Turing, Alan, 105, 214
Two-intercept form of linear equation, 102

Unbounded regions, of planes, 449
Unbreakable codes, 318
Union of events, probability of, 642–643

mutually exclusive events, 643
Unions

of intervals, 13
of sets, 12

Universal machine, 214
Upper and Lower Bounds Theorem, 291,

293
Upper bounds, 290–291, 293

Value of f at x, 175
Variables

correlation of, 166–167
defined, 31
dependent and independent, 175
leading, 472
in linear systems, 416–434
solving for one variable in terms of

others, 58–59
summation, 576

Variation, modeling, 326–333
direct, 326–327
inverse, 327–328
joint, 328–330
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SEQUENCES AND SERIES

Arithmetic

a, a � d, a � 2d, a � 3d, a � 4d, . . .

an � a � �n � 1�d

Geometric

a, ar, ar 2, ar 3, ar 4, . . .

an � ar n�1

If then the sum of an infinite geometric series is

THE BINOMIAL THEOREM

FINANCE

Compound interest

where A is the amount after t years, P is the principal, r is the
interest rate, and the interest is compounded n times per year.

Amount of an annuity

where Af is the final amount, i is the interest rate per 
time period, and there are n payments of size R.

Present value of an annuity

where Ap is the present value, i is the interest rate per 
time period, and there are n payments of size R.

Installment buying

where R is the size of each payment, i is the interest rate per
time period, Ap is the amount of the loan, and n is the number of
payments.

R �
iAp

1 � 11 � i 2�n

Ap � R 
1 � 11 � i 2�n

i

Af � R 
11 � i 2 n � 1

i

A � P a1 �
r

n
b

nt

� a
n

n � 1
babn�1 � a

n

n
bbn

1a � b 2 n � a
n

0
ban � a

n

1
ban�1 b � p

S �
a

1 � r

0 r 0 � 1,

Sn � a
n

k�1
ak � a 

1 � r 
n

1 � r

Sn � a
n

k�1
ak �

n

2
 32a � 1n � 1 2d 4 � n a

a � an

2
b

COUNTING

Fundamental counting principle

Suppose that two events occur in order. If the first can occur 
in m ways and the second can occur in n ways (after the 
first has occurred), then the two events can occur in order 
in m � n ways.

Permutations and combinations

The number of permutations of n objects taken r at a time is

The number of combinations of n objects taken r at a time is

The number of subsets of a set with n elements is 2n.

The number of distinguishable permutations of n elements, with
ni elements of the ith kind (where n1 � n2 � 	 	 	 � nk � n), is

PROBABILITY

Probability of an event:

If S is a sample space consisting of equally likely outcomes, and E
is an event in S, then the probability of E is

Complement of an event:

P1E ′2 � 1 � P1E 2

Union of two events:

Conditional probability of E given F:

Intersection of two events:

Intersection of two independent events:

Binomial Probability: If an experiment has the outcomes 
“success” and “failure” with probabilities p and q � 1 � p
respectively, then

P(r successes in n trials) � C 1n, r2prqn�r

If a game gives payoffs of a1, a2, . . . , an with probabilities 
p1, p2, . . . , pn , respectively, then the expected value is 

E � a1 p1 � a2 p2 � 	 	 	 � an pn

P1E � F 2 � P1E 2P1F 2

P1E � F 2 � P1E 2P1F 0 E 2

P1E 0 F 2 �
n1E � F 2

n1F 2

P1E � F 2 � P1E 2 � P1F 2 � P1E � F 2

P1E 2 �
n1E 2

n1S 2
�

number of elements in E

number of elements in S

n!

n 1! n 2! p nk!

C1n, r 2 �
n!

r!1n � r 2 !

P1n, r 2 �
n!

1n � r 2 !
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GEOMETRIC FORMULAS

Formulas for area A, perimeter P, circumference C, volume V :

Rectangle Box

A � l„ P � 2l � 2„ V � l„ h

Triangle Pyramid

Circle Sphere

A � 
r 2 C � 2
r A � 4
r 2

Cylinder Cone

V � 
r 2h

PYTHAGOREAN THEOREM

In a right triangle, the square on the  
hypotenuse is equal to the sum of 
the squares on the other two sides.

a2 � b2 � c2

SIMILAR TRIANGLES

Two triangles are similar if corresponding angles are equal.

If �ABC is similar to �A�B�C�, then ratios of corresponding sides
are equal:

a

a¿
�

b

b¿
�

c

c¿

c

C

BA

b a

c�

C �

B�A�

b� a�

b

c
a

hh

r

r

V � 1
3 pr 

2h

r r

V � 4
3 pr 

3

h

b a
a

h

V � 1
3 ha 

2A � 1
2 bh

„

l

h

l
„

CONIC SECTIONS

Circles

1x � h2 2 � 1y � k2 2 � r 2

Parabolas

x 2 � 4py y 2 � 4px

Focus 10, p2 , directrix y � �p Focus 1p, 02 , directrix x � �p

y � a 1x � h22 � k, y � a 1x � h2 2 � k,
a � 0, h � 0, k � 0 a � 0, h � 0, k � 0

Ellipses

Foci 1�c, 02 , c2 � a2 � b2 Foci 10, �c2 , c2 � a2 � b2

Hyperbolas

Foci 1�c, 02 , c2 � a2 � b2 Foci 10, �c2 , c2 � a2 � b2

a

b

_a

_b

_c c
x

y

b

a

_b
_a

c

_c

x

y

� 

x 
2

b 
2 �

y 
2

a 
2 � 1

x 
2

a 
2 �

y 
2

b 
2 � 1

a>b

b

a

_b

_a

c

_c

a>b

a

b

_a

_b

c_c x

y

x

y

x 
2

b 
2 �

y 
2

a 
2 � 1

x 
2

a 
2 �

y 
2

b 
2 � 1

0

y

x

(h, k)

0

y

x
(h, k)

y

x

p>0

p<0

y

x

p>0p<0
p

p

0

C(h, k)

r

x

y
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