POLYNOMIALS

□ INTRODUCTION

It's very difficult to define what a *polynomial* is at this point in your algebra studies, because we haven't come across many things that aren't polynomials. Suffice it to say that a typical polynomial expression looks like

 $3x^5 - \pi x^3 + x^2 - 9x + 0.8$ [Note: 5 terms]

The main theme of a polynomial is that all of the exponents on the x (or whatever variable) must be one of the whole numbers 0, 1, 2, 3, The following are <u>not</u> polynomials: $8x^{-2}$ and $3x^{1/4}$, because the exponents -2 and 1/4 are not whole numbers.

WORKING WITH MONOMIALS

A polynomial with one term, such as $7x^3$, is called a *monomial*. Let's look at a couple of examples of multiplying monomials together, a skill we'll need when we multiply binomials together (Can you guess what a <u>binomial</u> is?). The key to multiplying monomials is that each monomial is a single term whose final operation is multiplication.

For example, to find the product of 7x and 9x, we proceed the long way -- you don't ever actually do it this way, but it's important to see:

	(7x)(9x)	(the original expression)
=	$(7 \cdot x) \cdot (9 \cdot x)$	(it's all multiplication)
=	$(7 \cdot 9) \cdot (x \cdot x)$	(rearrange the factors)
=	$63 \cdot x^2$	(something times itself is squaring)
=	$63x^2$	(remove the dot)

Another example is 3(-10n) = (3)(-10)n = -30n.

And don't forget that adding and subtracting don't follow the same rules as multiplication. Two monomials can be added or subtracted only if they are <u>like terms</u>. See if the homework sorts all of this out.

Homework

1. Simplify each expression:

a. 3(7 <i>L</i>)	b. $-5(2x)$	c. $-6(-2T)$
d. 20(–3 <i>w</i>)	e. 3 + 7 <i>L</i>	f. $-5 + 2x$
g. $-6 - 2T$	h. $20 - 3w$	i. (7 <i>y</i>)5
j. (-2 <i>p</i>)(-5)	k. (-3 <i>a</i>)(10)	l. (5 <i>n</i>)(-2)
m. $7y + 5$	n. $(4x)(3x)$	o. $4x + 3x$
p. (2 <i>n</i>)(-3 <i>n</i>)	q. 2 <i>n</i> – 3 <i>n</i>	r. $(-8x)(-7x)$
s. $(7u)(-u)$	t. $(-4c)(4c)$	u. $-4c + 4c$
v. (7 <i>m</i>)(6 <i>n</i>)	w. $7m - 6n$	x. (13k)(-13k)
y. 13 <i>k</i> – 13 <i>k</i>	z. $-14x + 20x$	

2. Find the **product** of

a. $3x$ and 4	b. 7 <i>y</i> and 5	c. $-3n$ and 2
d. $2n \text{ and } -10$	e. 6 and 7	f8 and -8
g. z and z	h. $2n$ and $3n$	i. $7m$ and $-2m$
j. $2p$ and $-2p$	k. $3a$ and $-5a$	l. $-3a$ and -7
m. –10 and 10	n8g and -10	o. 4 and $-12x$

□ More Like Terms

To simplify the 6-term polynomial

 $5x^2 + 7x - 8 - 2x^2 - 9x - 20$

we can rearrange the terms like this (since addition is commutative):

 $5x^2 - 2x^2 + 7x - 9x - 8 - 20$ (This step is optional)

and then combine like terms to reach a result of 3 terms:

For a second example, let's simplify an expression containing parentheses:

 $3(y^2 - 8y + 9) - (3y^2 - 7y + 1)$ (This polynomial has 2 terms) This next step is optional, but use it if you need to:

$$3(y^2 - 8y + 9) - 1(3y^2 - 7y + 1)$$

Now distribute:

$$3y^2 - 24y + 27 - 3y^2 + 7y - 1$$

Rearrange the terms into pairs of like terms:

 $3y^2 - 3y^2 - 24y + 7y + 27 - 1$ (This step is optional)

And then combine them:

 $-17y + 26 \leftarrow$ This is called a **binomial**.

Homework

3. Suppose a friend believes that $4n^2$ and 7n are like terms, and that their sum should be $11n^3$. Prove your friend wrong by letting n = 2.

4. Simplify each expression by combining like terms:

a.
$$3x^2 - 7x + 5x^2 + 9$$

b. $n^2 - 9 + 9 - n^2$
c. $1 - 3u - u^2 - 3u^2 + 7u - 1$
d. $7a^2 - 8a + 7 - 9a^2 + 7a - 7$
e. $x^2 - 3x - 1 + 7x^2 - 3x + 1$
f. $3y^2 - 2 + 3y^2 - 2$
g. $1 - 3x - x^2 + 5 - 7x + x^2$
h. $-5w^2 + 2 - 3w + 8w - 2 - w^2$

5. Simplify each expression by distributing and then combining like terms:

a.
$$(3c^2 - 2c - 1) + 2(c^2 + 5c - 7)$$

b. $3(x^2 - 8x + 1) - 5(2x^2 + 7x - 1)$
c. $-(a^2 - a - 1) + 3(-a^2 + a)$
d. $7w^2 - 13w + 8 - (5w^2 - 3w - 2)$
e. $-(7u^2 - 7u - 6) - (-6u^2 + 3u + 5)$
f. $(3x^2 - x - 1) - (3x^2 - x - 1)$
g. $-2(x^2 - 3x + 7) - (3x^2 + 10x - 1)$
h. $-(3n^2 + 8n - 1) - 3(n^2 + 2n - 1)$

More Distributing

4

A polynomial with one term is called a *monomial*, and a polynomial with two terms is called a *binomial*. A typical problem where we must multiply a monomial by a binomial is the following:

3x(2x + 10) (3x is the monomial; 2x + 10 is the binomial)

Finding the product of these two polynomials is pretty easy -- just distribute:

$$3x(2x + 10)$$

= $(3x)(2x) + (3x)(10)$
= $6x^2 + 30x$, and it's done

Homework

6. Simplify each expression by distributing:

a.	9a(a + 9)	b. $10x(3x-1)$	c.	-5y(1-y)
d.	n(5n + 1)	e. $5a(5a + 5)$	f.	3u(7u - 8)
g.	-5m(m + 1)	h. $-3t(10t + 12)$	i.	$-(6x^2 - 9)$

Review Problems

7. Simplify each expression:

a.	4(3 <i>n</i>)	b. $-8(3x)$	c.	2b + 3b
d.	(8y)(-2y)	e. $8y - 2y$	f.	(2x)(-3z)

8. Find the product of

a.	7x and 4	b. $3a$ and $5a$	c.	2n and $3m$
d.	7 and –7	e. 3 and –13 <i>t</i>	f.	7x and $-7x$

9. Simplify each expression:

a.
$$7x^2 - 3x + 7 - 7x^2 - 3x - 7$$

b. $-8(3y^2 - 4y - 1)$
c. $2(a^2 - 8) - (a^2 - 2a - 1)$
d. $-(4n^2 - 4n) - (4n - 4n^2)$
e. $3(4g^2 - g + 3) - 2(6g^2 + g - 1)$
f. $-8x(-7x - 5)$

Solutions

1.	a. 21 <i>L</i>	b10 <i>x</i>	c. $12T$	d. –60 <i>w</i>	e. As is	f. As is
	g. As is	h. As is	i. 35y	j. 10p	k. –30 <i>a</i>	l. –10 <i>n</i>
	m. As is	n. $12x^2$	o. 7 <i>x</i>	p. $-6n^2$	q. – <i>n</i>	r. $56x^2$
	s. $-7u^2$	t. $-16c^2$	u. 0	v. 42mn	w. As is	x. $-169k^2$
	y. 0	z. 6 <i>x</i>				
2 .	a. 12x	b. 35y	c6 <i>n</i>	d. –20 <i>n</i>	e. 42	f. 64
	g. z^2	h. $6n^2$	i14m ²	j. $-4p^2$	k. $-15a^2$	l. 21 <i>a</i>
	m100	n. 80g	o48 <i>x</i>			
3.	$4n^2 + 7n =$	$4(2)^2 + 7(2)$	= 4(4) + 7(2)	2) = 16 + 14	= 30	
•	whereas 11	$n^3 = 11(2)^3$	= 11(8) =	-) 10 11 88	,	
	Therefore, 4	$4n^2 + 7n \neq 1$	$11n^3$			
Л	$2 8m^2 7m$	±0 b	0	$4u^2 \pm 4u$	d 90	2
4.	a. $\partial x = 7x$ $\partial x^2 = 6x$	+9 D.	0 c .	-4u + 4u	$\begin{array}{c} u2u \\ h & 6u \end{array}$	$u^2 \pm 5w$
	e. or - or	1.	0y - 4 g.	-101 + 0	II0 <i>t</i>	v + 5w
5.	a. $5c^2 + 8c$	- 15	b. $-7x^2 - 5$	59x + 8	c. $-4a^2 + 4a^2$	4 <i>a</i> + 1
	d. $2w^2 - 10$	w + 10	e. $-u^2 + 4u$	$\iota + 1$	f. 0	
	g. $-5x^2 - 4$	x - 13	h. $-6n^2 - 1$	14 <i>n</i> + 4		
6 .	a. $9a^2 + 81$.a	b. $30x^2 - 1$	0 <i>x</i>	c. $-5y + 5y$	y^2
	d. $5n^2 + n$		e. $25a^2 + 2$	25a	f. $21u^2 - 2$	24u
	g. $-5m^2 - 8$	5m	h. $-30t^2$ –	36t	i. $-6x^2 + 9$)

Polynomials

6

7 .	a.	12n	b.	-24x	c. 5 <i>b</i>	d.	-16y	² e. 6y	,	f.	-6xz
8.	a.	28x	b.	$15a^2$	c. 6mn	d.	-49	e3	89 <i>t</i>	f. ·	$-49x^2$
9.	a.	-6x		b.	$-24y^2 + 32y + 8$		c.	$a^2 + 2a -$	15		
	d.	0		e.	-5g + 11		f.	$56x^2 + 40$)x		

"Formal education is but an incident in the lifetime of an individual. Most of us who have given the subject any study have come to realize that education is a continuous process ending only when ambition comes to a halt."

– R.I. Rees